EVALUATION AND CLASSIFICATION OF POTENTIAL SEDIMENTARY BASINS IN MALAYSIA FOR CARBON DIOXIDE STORAGE

DAYANG ZULAIKA BINTI ABANG HASBOLLAH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Petroleum Engineering)

Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia

DECEMBER 2017

For Dad...

There are so many things I want to share, so many secrets I want to bare... Wish you were here to be proud of my accomplishments and to see the person I've become.

May your soul rest in peace pak..

Al-fatihah

IN LOVING MEMORY

ABANG HASBOLLAH BIN ABANG KIPRAWI (1942-2008)

For my family...

Who always believes in me

ACKNOWLEDGEMENT

First and foremost, all praises are to Him the Almighty without whose guidance, I may not be able to complete this thesis. Secondly, I would like to express my heartfelt gratitude to my supervisor, Prof. Dr. Radzuan B. Junin for his guidance, encouragement and constant supervision as well as providing necessary information regarding my research. Without him, the completion of this thesis would be impossible.

I am also highly indebted to Assoc. Prof. Mohamad Nor B. Said because willing to spend his time to introduce and explain ArcGIS to me. I also would like to express my appreciation to GIS staff in G&P Sdn. Bhd for their kind guidance and assistance in my process of learning how to use ArcGIS.

Not to forget, special thanks are accorded to my family and friends for always giving me supports, ideas and attention in any situation I had faced. Honestly, these 4 years I have encountered so many challenges and obstacles but their continuous love and support somehow make my journey easier and meaningful.

Finally, I wish to express my acknowledgement to Universiti Teknologi Malaysia and Ministry of Higher Education Malaysia for their generous funding of my research by awarding GUP (Vot No: 06H82) and FRGS (Vot No: 4F562) grants.

ABSTRACT

The purpose of this study is to evaluate and classify potential sedimentary basins in Malaysia for carbon dioxide (CO₂) storage that includes screening and ranking of potential sedimentary basins based on selected criteria by using parametric normalization, mapping of potential sedimentary basins by using ArcGIS, and finally estimation of theoretical storage capacity and anticipation of potential injection zone based on the basin stratigraphy of the highest potential area for CO₂ sequestration. The screening and ranking of potential sedimentary basins was conducted quantitatively by assigning score and weight to each of the screening criteria and analyzed using Excel-based evaluation tools to rank the potential storage sites for CO₂ sequestration in Malaysia. The mapping was conducted by using ArcGIS and revealed that 27% of the study area was classified as high potential area, 23% was average potential area, 30% was low potential area, and 20% was classified as no potential area. Based on the screening and ranking results supported by mapping output, detailed assessments on the top two potential basins (i.e. Malay Basin and Central Luconia Province) were conducted qualitatively which comprised the estimation of theoretical storage capacity using methods proposed by CSLF and US-DOE-NETL. From the calculation, the estimated theoretical storage capacity for Malay Basin was approximately 114 Gt (CSLF) and 75 Gt (US-DOE-NETL) while for Central Luconia Province was approximately 84 Gt (CSLF) and 56 Gt (US-DOE-NETL). The potential injection sites for both basins were identified at the depth ranging from 1000 to 1500 m considering they are warm basins. This study can provide a basis for further work to reduce the uncertainty in these estimates and also provide support to policy makers on future planning of carbon storage projects in Malaysia.

ABSTRAK

Tujuan kajian ini adalah untuk menilai kesesuaian dan mengklasifikasikan lembangan sedimen yang berpotensi di Malaysia untuk storan karbon dioksida (CO₂) yang merangkumi proses saringan dan penentuan kedudukan lembangan sedimen yang berpotensi berdasarkan kriteria yang dipilih menggunakan kaedah taburan normalisasi parametrik, pemetaan lembangan sedimen yang berpotensi menggunakan perisian ArcGIS, dan akhir sekali penganggaran muatan teori storan serta pengenalpastian zon suntikan yang berpotensi berdasarkan stratigrafi lembangan yang paling berpotensi untuk sekuestrasi CO₂. Proses saringan dan penentuan kedudukan lembangan sedimen yang berpotensi dilaksanakan secara kuantitatif dengan memberi skor dan pemberat kepada setiap kriteria saringan dan dianalisis menggunakan perisian Excel bagi mengatur kedudukan tapak storan yang berpotensi untuk sekuestrasi CO₂ di Malaysia. Proses pemetaan yang dilaksanakan menggunakan ArcGIS menunjukkan bahawa 27% daripada kawasan kajian telah diklasifikasikan sebagai kawasan yang berpotensi tinggi, 23% ialah kawasan yang berpotensi sederhana, 30% ialah kawasan yang berpotensi rendah, dan baki 20% sebagai kawasan yang tiada potensi. Berdasarkan keputusan saringan dan penentuan kedudukan yang disokong hasil pemetaan, penilaian secara terperinci terhadap dua buah lembangan yang berpotensi (iaitu Malay Basin dan Central Luconia Province) telah dilaksanakan secara kualitatif yang mencakupi penganggaran muatan teori storan menerusi penggunaan kaedah yang dicadangkan oleh CSLF dan US-DOE-NETL. Muatan teori storan bagi Malay Basin dianggarkan bernilai 114 Gt (CSLF) dan 75 Gt (US-DOE-NETL) manakala bagi Central Luconia Province pula ialah 84 Gt (CSLF) dan 56 Gt (US-DOE-NETL). Zon penyuntikan yang berpotensi untuk kedua-dua lembangan telah dikenalpasti, iaitu dari kedalaman 1000 m hingga ke 1500 m dengan menganggap lembangan adalah suhu panas. Kajian ini menyediakan asas untuk kajian lanjut bagi mengurangkan ketidakpastian dalam penganggaran terbabit dan juga sebagai rujukan bagi penggubal dasar dalam merancang masa depan projek storan karbon di Malaysia.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENT	vii
	LIST OF TABLES	xiii
	LIST OF FIGURES	xiv
	LIST OF ABBREVIATIONS	xvi
	LIST OF SYMBOLS	xviii
	LIST OF APPENDICES	xix
1	INTRODUCTION	1
	1.1 Background of Study	1
	1.2 Problem Statement	5
	1.3 Objectives of the Study	6
	1.4 Scope of Research	7
	1.5 Significance of Research	8
	1.6 Structure of Thesis	9
2	LITERATURE REVIEW	11
	2.1 Introduction	11
	2.2 Carbon Dioxide Sources	11
	2.2.1 Anthropogenic Sources of CO ₂	12
	2.2.2 Natural Sources of CO ₂	14

2.3	Global Anthropogenic CO ₂ Emission 15			
2.4	Carbon Dioxide Emission in Malaysia			
2.5	Geological CO ₂ Storage	22		
	2.5.1 Geological CO ₂ Storage in Deep Saline Aquifer	23		
2.6	Aquifer Properties	25		
	2.6.1 Porosity	25		
	2.6.2 Permeability	26		
2.7	Level of Assessment	26		
	2.7.1 Country/state Scale Screening	27		
	2.7.2 Basin-scale Assessment	27		
2.8	Geographic Information System (GIS)	29		
2.9	Geology Setting of Malaysia	30		
2.10	 D Stratigraphy and Correlation Scheme in Sedimentary Basins of Malaysia 2.10.1 Sequence Stratigraphic Studies 	32 32		
	2.10.2 Basin Nomenclature	33		
	2.10.3 Basin Types	35		
2.11	1 Evaluation Criteria	38		
	2.11.1 Type of Basins	38		
	2.11.2 Fault Intensity	39		
	2.11.3 Basin Stratigraphy	39		
	2.11.4 Basin Depth	40		
2.12	 2 Previous and Ongoing Research on CO₂ Storage in Deep Saline Formations 2.12.1 Canada (1990s) 	42 43		
	2.12.2 Norway	43		
	2.12.2.1 Sleipner (1996)	44		
	2.12.2.2 Snohvit (2008)	45		
	2.12.3 Japan (2005)	45		
	2.12.4 United States of America (2004, 2005)	45		
	2.12.5 Australia (2008)	45		
	2.12.6 Greece (2008)	47		
	2.12.7 Ireland (2009)	48		
	2.12.8 Netherland (2009) 49			

	2.12.	.9 Germ	any (2010)	50
	2.12	.10 China	a (2010)	51
	2.12	.11 Israel	(2012)	52
	2.12	.12 Camb	oodia (2013)	53
	2.12	.13 Color	nbia (2016)	54
	2.12	.14 Indor	uesia (2017)	54
2.13	3 Sumr	nary		55
RE	SEAR(CH MET	HODOLOGY	62
3.1	Introd	uction		62
3.2	Data			64
	3.2.1	Tectonic	e Setting	64
	3.2.2	Fault Li	ne	65
	3.2.3	Seismic	Points	65
	3.2.4	Basin St	ratigraphy	66
	3.2.5	Basin Si	ze	67
	3.2.6	Basin G	eothermal Temperature	67
	3.2.7	Basin M	aturity	68
	3.2.8	Spatial I	Data (vector data)	69
3.3	Analy	sis Metho	od	69
	3.3.1	Screenir	g and Ranking of Sedimentary Basins	71
		3.3.1.1	Selection of Criterion	71
		3.3.1.2	Screening Criteria	73
		3.3.1.3	Ranking of Sedimentary Basins	75
	3.3.2	ArcGIS	(Geographical Information System)	78
		3.3.2.1	Georeferencing	80
		3.3.2.2	Digitizing	80
		3.3.2.3	Development of Mapping Criteria	81
		3.3.2.4	Buffer Zone for Selected Features	82
		3.3.2.5	Vector Overlay (Analysis)	84
		3.3.2.6	Area Estimation	88
	3.3.3	Detailed	Basin-scale Evaluation	88
		3.3.3.1	Identifying the Location of Potential Injection Zone	90

3

ix

	3.3.3.2 Storage Capacity Estimation	91
PR	ELIMINARY SCREENING AND RANKING OF	
SE	DIMENTARY BASINS	94
4.1	Introduction	94
	4.1.1 Identification of Basins	96
	4.1.2 Selection of Criterion	96
	4.1.2.1 Tectonic Setting	97
	4.1.2.2 Faulting Intensity	97
	4.1.2.3 Reservoir-seal Pair	98
	4.1.2.4 Depth	98
	4.1.2.5 Size	98
	4.1.2.6 Geothermal	99
	4.1.2.7 Hydrogeology	99
	4.1.2.8 Maturity	99
	4.1.2.9 Hydrocarbon Potential	100
	4.1.2.10 Onshore/offshore	100
	4.1.2.11 Accessibility and Infrastructure	100
	4.1.2.12 Climate	100
4.2	Screening Criteria	101
4.3	Results	103
4.4	Discussions	104
MA	APPING OF POTENTIAL CO2 STORAGE SITES	107
5.1	Introduction	107
5.2	Results	111
5.3	Discussions	115
	5.3.1 High Potential Area	115
	5.3.2 Average Potential Area	117
	5.3.3 Low Potential Area	119
	5.3.4 No Potential Area	121

GL			52 SEQUESTRATION IN
MA	LAYS	IA	
6.1	Introd	uction	
6.2	Malay	Basin	
	6.2.1	Evaluati	on Results of Malay Basin
	6.2.2	Discussi	ons
		6.2.2.1	Tectonic Setting of Malay Basin
		6.2.2.2	Stratigraphy of Malay Basin
		6.2.2.3	Fault Line of Malay Basin
		6.2.3.4	Seismic Activity of Malay Basin
		6.2.3.5	Geothermal of Malay Basin
		6.2.3.6	Maturity of Malay Basin
		6.2.3.7	Overpressure
6.3	Centra	al Luconi	a Province
	6.3.1	Evaluati	on Result of Central Luconia Province
	6.3.2	Discussi	ons
		6.3.2.1	Tectonic Setting of Central Luconia Province
		6.3.2.2	Stratigraphy of Central Luconia Province
		6.3.2.3	Fault Line of Central Luconia Province
		6.3.2.4	Seismic Activity of Central Luconia Province
		6.3.2.5	Geothermal of Central Luconia Province
		6.3.2.6	Maturity of Central Luconia Province
6.4	Storag	ge Capaci	ty Estimation
	6.4.1	Discussi	lons
ററ	NCLU	SIONS A	ND RECOMMENDATIONS
20 7.1	Concl	usions	

7.2 Recommendations 158

REFERENCES	159
Appendices A-C	172-180

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	CO ₂ emissions from fuel combustion in Malaysia based	
	on total final use	21
2.2	Summary of previous research on CO ₂ geological storage	
	in deep saline aquifer	57
3.1	Screening criteria	77
3.2	Mapping criteria to be used in overlay process of ArcGIS	82
3.3	Buffer distance for seismic points	83
3.4	Buffer distance for faults	84
4.1	Evaluation criteria for preliminary evaluation of CO ₂	
	geological storage in Malaysia	102
4.2	List of ranking for sedimentary basins in Malaysia	104
5.1	Basin types based on exploration maturity and the degree	
	of commercial success	110
5.2	Mapping criteria according to potential class	110
5.3	Buffer distance for seismic points	111
5.4	Buffer distance for faults	111
5.5	Percentage of potential area in sedimentary basins of	
	Malaysia for CO ₂ storage	112
6.1	Compilation of Malay Basin characteristics from various	
	published data	127
6.2	Summary of basin properties in Malay Basin	132
6.3	Compilation of Central Luconia Province characteristics	140
6.4	Summary of basin properties in Central Luconia Province	144
6.5	Carbon dioxide theoretical storage capacity estimation based on 50 th percentile	153

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	The global carbon budget 1959-2011	12
2.2	Natural sources of CO ₂	15
2.3	Recorded global average temperatures	16
2.4	The contribution of different GHG to global warming;	
	CO ₂ is a major anthropogenic contributor	17
2.5	Trends in carbon emission for the period 1750-2000	18
2.6	Trend of CO_2 emission (metric ton per capita) in	
	Malaysia compared to Thailand and Indonesia up to year	
	2010	19
2.7	Projected CO ₂ emissions for four sectors in Malaysia	
	from year 2000 to 2020	20
2.8	Grains arrangement for different level of porosity and	
	permeability	25
2.9	GIS overlay process	30
3.1	Methodology workflow applied in this research	63
3.2	Workflow for preliminary screening and ranking of	
	sedimentary basins of Malaysia for CO2 storage	70
3.3	Carbon dioxide phase diagram	72
3.4	GIS workflow to map the potential area in sedimentary	
	basins of Malaysia for CO ₂ storage	79
3.5	Assigning coordinate system	80
3.6	Buffer zone for points, lines and polygons	83
3.7	Concept of union tool	85
3.8	Concept of intersecting two features	86
3.9	Concept of clipping feature	87

3.10	Detailed basin-scale workflow to locate potential	
	injection zone and estimate storage capacity	89
4.1	Flow diagram of the methodology used in preliminary	
	evaluation of sedimentary basins in Malaysia	95
5.1	Potential areas for CO ₂ storage in sedimentary basins of	
	Malaysia	114
5.2	High potential area for CO ₂ storage in sedimentary basins	
	of Malaysia.	116
5.3	Average potential area for CO ₂ storage in sedimentary	
	basins of Malaysia	118
5.4	Low potential area for CO ₂ storage in sedimentary basins	
	of Malaysia	120
5.5	No potential area for CO ₂ storage in sedimentary basins	
	of Malaysia	122
6.1	The location of Malay Basin	128
6.2	Potential injection zone for CO ₂ in Malay Basin	129
6.3	Fault map in the Malay Basin area	134
6.4	Seismic map of onshore and offshore Peninsular	
	Malaysia	135
6.5	Geothermal gradient map of Malay Basin	136
6.6	Hydrocarbon maturity map of Malay Basin	137
6.7	The location of Central Luconia Province within	
	Sarawak basin	141
6.8	Potential injection zone in Central Luconia Province	142
6.9	Fault map in the Central Luconia Province area	148
6.10	Seismic map of Central Luconia Province	149
6.11	Geothermal gradients map within Central Luconia	
	Province	150
6.12	Hydrocarbon maturity map of Central Luconia Province	152

LIST OF ABBREVIATIONS

CAD	-	Computer Aided Design
CH ₄	-	Methane
CO ₂	-	Carbon Dioxide
CO2CRC	-	Carbon Dioxide Cooperative Research Centre
CSLF	-	Carbon Sequestration Leadership Forum
DBMS	-	Database Management System
EEA	-	European Energy Agency
EIA	-	Energy Information Administration
EOR	-	Enhanced Oil Recovery
ESRI	-	Environmental Systems Research Institute
GHG	-	Greenhouse gas
GIS	-	Geographical Information System
Gt	-	Giga tons
H_2S	-	Hydrogen sulphide
IEO	-	International Energy Outlook
INDC	-	Intended Nationally Determined Contributions
IPCC	-	Intergovernmental Panel on Climate Change
JMG	-	Jabatan Mineral dan Geosains
km	-	Kilo meter
kW	-	Kilo Watt
LNG	-	Liquefied Natural Gas
Ma	-	Magnitude
MCO _{2t}	-	Geometric volume of the structural trap down to the
		spill point
GCO ₂	-	Geologic storage of CO ₂ in saline aquifer
Bt	-	Billion tons

N_2O	-	Nitrus oxide
NE	-	Northeast
ppmv	-	Parts per million by volume
STP	-	Standard Temperature and Pressure
tcf	-	Trillion per cubic feet
TW	-	Tera Watt
UNFCCC	-	United Nations Framework Convention on Climate
		Change
USDOE	-	United States Department of Energy
USGS	-	United States of Geological Survey
INC	-	Initial National Communication
NC2	-	Secondary National Communication
NETL	-	National Energy Technology Laboratory
OECD	-	Organization for Economic Cooperation and
		Development
DNV	-	Det Norske Veritas
GETSCO	-	Geological Storage of CO ₂ from Combustion of Fossil
		Fuel
RCSP	-	Regional Carbon Sequestration Partnership
PCS	-	Project Coordinate System
WHF	-	Western Hinge Fault

LIST OF SYMBOLS

А	-	Area
A _t	-	Total geographical area of the basin
E _{saline}	-	CO ₂ storage efficiency of saline formation
h	-	Thickness
hg	-	Gross thickness of saline formation
m ³	-	Meter cubic
$\mathbf{S}_{\mathrm{wirr}}$	-	Irreducible water saturation
ρ	-	Density of CO ₂ within the reservoir
φ	-	Porosity
ϕ_{tot}	-	Total porosity in volume defined by the net thickness
Ca ²⁺	-	Calsium cation
Fe ²⁺	-	Ferrous cation
Mg^{2+}	-	Magnesium cation

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Characteristics of sedimentary basins in Malaysia	172
В	Calculation for theoretical storage capacity estimation	174
С	Area estimation of potential sites for CO ₂ sequestration	
	by using ArcGIS	177

CHAPTER 1

INTRODUCTION

1.1 Background of study

The alarming increase in concentration of greenhouse gases such as carbon dioxide (CO_2) in the atmosphere has recently become one of the most-discussed issues in relation with the world's concern on climate change. Based on the data compiled by U.S Energy Information Administration (EIA), global energy-related CO_2 emission is projected to increase by one-third between 2012 and 2040 from 32.3 billion metric tons in 2012 to 35.6 billion metric tons in 2020 and to 43.2 billion metric tons in 2040 (IEO, 2016). The increase is most likely contributed by countries outside of the Organization for Economic Cooperation and Development (non-OECD) such as China and India.

Malaysia is a developing country and currently undergoing a transformation to become a high income economy with sustainable development in mind. The high use of fossil fuels is foreseen to increase rapidly in the future in line with the transition and transformation. The Malaysian economy, as well as the economies of neighbouring countries, is highly dependent on industry and agriculture, which partly contributes to the increase of CO_2 emission in atmosphere. With the development pace experienced by Malaysia and other Southeast Asian countries in recent decades, it was predicted that without any mitigation measures being taken up resulting in fast increase of CO_2 emissions will bring challenge of reducing unwanted greenhouse gas emissions in Malaysia. Malaysia is also well known as one of the main oil-producing countries in the world. Malaysia produced about 697,000 barrels of oil per day in 2014, most of which was extracted from offshore fields (Carpenter, 2015). Malaysia also holds proven oil reserves of 4 billion barrels as of January 2014 and according to EIA database, up to January 2016, the production of crude oil has decreased to 688,000 barrels of oil per day (EIA, 2016).

Malaysia is also well known as one of the top natural gas producer and exporter country. Up to now, Petronas has identified 15 offshore gas fields that have high content of CO₂ that contain 13.2 trillion cubic feet (tcf) of natural gas for 27.32 tcf of CO₂ (Jalil *et al.*, 2012). The development of these fields for example K5 carbonate reservoir located in Sarawak which contains approximately 70% of CO₂ require the finest way to manage this natural CO₂ to prevent unnecessary emission into the atmosphere. Jalil *et al.*, (2012) suggested there is a possibility to inject and sequester natural CO₂ into depleted gas field nearby (M4 field). Due to the immense exploration of oil and gas in this country, CO₂ emission as a result of petroleum production has been identified as one of the contributors to the emission of CO₂ in Malaysia.

Up to 2016, 263.8 million tonnes of CO_2 has been emitted to Malaysian atmosphere (BP, 2017). The increase of CO_2 emission rate in Malaysian atmosphere is anticipated to continue well in the future if there are no mitigation taken to manage CO_2 emission in Malaysia. For this distressing reason, Malaysia has taken a few iniatiatives to deal with this problem and one of it is by making a pledge to cut down carbon intensity by 45% by 2030 (Goh, 2015).

Under this pressure, local researchers and academicians have come out with various suggestions on how to manage with CO_2 emission in Malaysia. For instance, Amran *et al.* (2013) suggested to take carbon trading into consideration and some of them also suggested terrestrial ecosystem and ocean disposal. As for this research, it suggests another possible way to deal with CO_2 emission in Malaysia which is by way of geological carbon storage in deep saline aquifer. The term 'carbon storage' is used to describe the containment of CO_2 in the ocean, terrestrial environments and

geologic formations like deep saline aquifer after CO_2 is removed from the atmosphere or diverted from emission sources (USGS, 2008). Meanwhile, the removal process of CO_2 directly from anthropogenic or natural sources and its disposal in geological media, either permanently (sequestration) or for significant time periods (storage) is called 'carbon sequestration'.

The geological storage of CO_2 currently represents the best short- to mediumterm option for significantly enhancing CO_2 sinks, thus reducing net carbon emissions into the atmosphere (Bachu *et al.*, 2004). Bachu (2000) also suggested that CO_2 geological storage has a significant potential for hydrocarbon rich region ergo in this case would be Malaysia. Taking into account the expected increase of energy demand for sustainable development in this country, the potential for CO_2 geological storage in deep saline aquifer should be investigated as a potential way of reducing CO_2 emission in Malaysia.

To the best of our knowledge, there have been no comprehensive studies of the CO₂ geologic storage in deep saline aquifer of Malaysia. Since Malaysia is well known as petroleum bearing country, CO₂ are constantly generated during the process of oil production including finding, extracting and processing hydrocarbon resources. Fortunately, Malaysia possesses very unique geological formations such as enormous unoccupied sedimentary basins that are more extensive than oil and gas fields and coal seams that lie underneath of our country. The DOE defines saline aquifer as layers of porous rock that are saturated with brine (US-DOE-NETL, 2012). To make use of these unoccupied sedimentary basins, the suitability of Malaysian basin has to be assessed in order to investigate the potential of CO_2 geological storage based on consistently applied criteria is necessary for early stage deployment of CO_2 storage project.

There are 14 identified sedimentary basins in Malaysia. Malay Basin alone covers an area of about 80000 km² and filled with 14 km or more sediments (Madon, 2007). This shows that sedimentary basins in Malaysia potentially can be an enormous geological storage for CO_2 . However, not all sedimentary basins are

suitable for CO_2 storage. The suitability of sedimentary basins of Malaysia has to be assessed strictly based on the merits of certain criteria that will be discussed later without regard to the proximity of CO_2 . The evaluation criteria are selected based on the compilation of literature review and expert advice. This is a crucial step in this research as the evaluation criteria will determine the accuracy and reliability of the evaluation results.

Having the concept in mind, the sedimentary basins in Malaysia has to be screened and ranked in preliminary evaluation to narrow the potential sites candidates. Based on previous study, the screening and ranking can be done by using normalized parametric equation. This normalization procedure transformed the characteristics of each basin into quantitative data that vary between 0 and 1. The score for each basin can be normalized using the approach of Bachu (2003b). Subsequently, the basin ranking can simply be done by using the normalized score for each basin multiply with weights that express the relative importance of each criterion to produce a general ranking score, R. After the basin screening and ranking, the potential sites for CO₂ geological storage are identified and mapped by using ArcGIS software. Geographical Information Systems (GIS) are used to perform a number of fundamental spatial analysis operations such as topological map overlay. When the potential sites had been identified, the storage capacity of the aquifers is estimated. There are various ways to do estimation. The most common one is the CSLF approach suggested by Bachu et al. (2007). The next one is method by Goodman et al. (US-DOE-NETL, 2010; 2012). In this research, theoretical estimation is being done due to limited data available.

A large number of studies have shown that CO_2 geological storage technology will play an important role in reducing CO_2 emissions in this century. The EIA (2006) studies indicated that, in the global power industries and industrial fields, the reduced emissions of CO_2 by CO_2 geological storage in deep saline aquifer will take 10% in total global energy-related emission reduction till 2030 and by the year of 2050 the contribution of CO_2 geological storage to the emission reduction will reach 19% in total global energy-related emission reduction. Some of the successful commercial projects of CO_2 storage in deep saline aquifer are located in Alberta, Canada and Sleipner, Norway. With such a huge potential of reducing emissions, CO_2 geological storage in deep saline aquifer is believed to be one of the most important emission reduction technologies.

1.2 Problem Statement

In recent years throughout the world including Malaysia, there has been alarming concern about the rate of CO₂ emission in the atmosphere. Global energyrelated CO₂ emission is projected to increase by one-third between 2012 and 2040 from 32.3 billion metric tons in 2012 to 35.6 billion metric tons in 2020 and to 43.2 billion metric tons in 2040 (IEO, 2016). Statistics shows that the emissions rate of anthropogenic CO₂ in Malaysia is anticipated to increase in the future as the high use of fossil fuels in Malaysia foreseen to continue well too. Up to 2016, 263.8 million tonnes of CO₂ has been emitted to Malaysian atmosphere (BP, 2017). There is an urgency to resolve the increasing of CO₂ emission rate in the atmosphere of Malaysia for the CO₂ emissions rate in Malaysia for the past few years which does not seem to lessening anytime soon.

As a major role of greenhouse gases (GHG), anthropogenic CO_2 that is generated from human beings activities such as the burning of fossil fuels contribute globally to the most to anthropogenic effects on climate change which can have serious consequences for human beings and environment. The burning of fossil fuels such as coal, natural gas and oil, solid waste release CO_2 and other GHG therefore can raise global temperature. Carbon dioxide persists in the atmosphere for 50 to 200 years, so emissions released now will continue to warm the climate in the future if there is no mitigation being taken. The increasing of CO_2 in the atmosphere might as well will result in the shrinking of water supplies as climate change is expected to increase rainfall in some area, thereby causing an increase in the sediment and pollutants washed into drinking water supplies. Besides, global warming which has been caused by the increase of CO_2 concentration in the atmosphere has the potential to result in increasing incidents of severe weather such as wildfires, droughts and tropical storm. All of these can happen in Malaysia if there are no mitigation taken to manage CO_2 emission in Malaysia.

Carbon dioxide storage in deep saline aquifer has been identified by previous studies as one of the best potential options for large volume geological storage of CO_2 (Bachu, 2000; Bradshaw *et al.*, 2002). Furthermore, according to Gibson-Poole *et al.* (2008), CO_2 can be effectively stored in deep saline formations because of its high density and high solubility in formation water at the relatively high formation pressures encountered. Hence this research embarks to evaluate the suitability of potential sedimentary basins in Malaysia for CO_2 storage by classifying the potential basins, identifying potential injection zone and estimating basin storage capacity for CO_2 storage.

1.3 Objectives of the Study

The main purpose of this research is to evaluate and classify the potential sites for CO_2 storage in sedimentary basins of Malaysia. Since the rate of CO_2 emission in Malaysia is increasing rapidly, such evaluation is essential to be conducted as an initiative to prevent excessive CO_2 intensity in the atmosphere from happening and to prepare in case this scenario happens in Malaysia in the future. The feasibility of this project to be carried out in Malaysia has to be considered so the budget for the project can be allocated and will give some time for public to accept the idea. The main objectives can further be divided as the followings:

- To screen and rank sedimentary basins of Malaysia in terms of their suitability for CO₂ storage based on selected criteria that suits the geology setting of Malaysia.
- To produce a visual interpretation of potential sedimentary basins in Malaysia to estimate the area (in percentage) of the potential sites for CO₂ storage.

- To categorize the potential sites for CO₂ storage in sedimentary basins of Malaysia.
- iv. To anticipate the potential injection zone and to estimate theoretical storage capacity in the most potential basins for CO_2 storage in Malaysia based on basin properties.

1.4 Scope of Research

This research concentrated on the assessment of 14 major sedimentary basins in Malaysia both onshore and offshore where potential geological formations in which CO_2 could be stored exist below 800 m and where suitable sealing formations are present. The study area was chosen because there is no comprehensive study on CO_2 storage in deep saline aquifer of Malaysia up until now. The study area was also chosen because there were available data regarding these area provided by oil and gas company and Mineral and Geosciences Department Malaysia.

Data for screening and ranking such as depth of the basin, tectonic setting, geothermal conditions, basin stratigraphy, and basin properties were collected from PETRONAS and other relevant literature reviews mostly in hardcopy form. For each basin, data was collected and interpreted and assessed according to its geological characteristics and available data. The data available for each basin were highly variable in coverage, type, quality and source. Meanwhile data for potential sites mapping were collected mostly from Mineral and Geoscience Department Malaysia as well as PETRONAS such as fault map, seismic map and basin maturity map. Those maps were converted into digital data by digitizing the hardcopy map and converted into spatial data by using ArcGIS 10.2 software.

The whole process of the research includes extensive data gathering from a variety of public and private sources for basin screening and ranking to narrow down the potential sites by modifying screening criteria proposed by Bachu (2003b). The

screening criteria were modified to suit geology setting of Malaysia. Next, the potential sites were mapped by using ArcGIS 10.2 software and area of potential sites was estimated according to potential class. The coordinate system that used in the mapping was world coordinate system WGS 1984. Afterward, detailed basin assessment for the most potential basins was conducted to locate potential injection zone and theoretical storage capacity of the potential sites were estimated by using CSLF and US-DOE-NETL methods.

However, this research was not including and discussing CO_2 trapping mechanism in sedimentary basin, the chemical reaction of CO_2 and brine, the brine management and the flow formation of CO_2 in the aquifer. It was also not discussing in detail on how CO_2 is generated and captured.

1.5 Significance of Research

The main contribution of this research is to evaluate the potential sites for long-term CO_2 storage in sedimentary basins of Malaysia as an initiative to reduce the intensity of CO_2 in the atmosphere of Malaysia and to the best of our knowledge, there have been no comprehensive studies of the CO_2 geologic storage in deep saline aquifer of Malaysia. This research also aims to modify evaluation criteria by Bachu (2003b) to suit the geological setting of Malaysia for basin screening and ranking. The methodology that this research implores is possibility of combining screening and ranking with GIS mapping to locate potential injection zone and to combine basin-scale detailed assessment and storage capacity estimation.

In terms of economic perspective, this research is considered as a good investment as the market of geological CO_2 storage in Malaysia is huge. The findings of this research are valuable for oil and gas industries as it suggests an alternative to manage CO_2 as a result of petroleum production. Mapping of potential sites for CO_2 storage in Malaysia mapped by using ArcGIS is very accommodating to locate the injection zone. Consequently, early budgeting can be done and the

project efficiency will increase. The outcome of this research will be useful as a cornerstone for future researchers to study on CO_2 geological storage in Malaysia. Politically speaking, the outcome of this research serves as a good point of reference for policy makers and legislators to emulate legislations relating to CO_2 emission in Malaysia.

In addition, this research provides preliminary insights into basin-scale site suitability evaluation and screening for early deployment of geological carbon storage technology in Malaysia. This research is conducted to consider CO_2 geological storage as an alternative way to reduce CO_2 emission by making use of the unoccupied basins in Malaysia.

1.6 Structure of thesis

The thesis is structured as follows:

Chapter 1 introduces the background of the research and the specific problem being addressed, the objectives of the research, delineates the scope and the significance of the study.

Chapter 2 gives more explanation about the fundamental of CO_2 storage in deep saline formation as well as the definition of CO_2 geological sequestration and storage. This chapter also includes the discussion about previous research and projects on CO_2 geological storage in other countries.

Chapter 3 discusses thoroughly the phases of methodology that have been applied in this study. These include the workflow for preliminary screening and ranking of sedimentary basins in Malaysia, mapping of potential sites for CO_2 storage and detailed basin-scale evaluation as well as storage capacity estimation.

Chapter 4 discusses the results of the preliminary screening and ranking of major sedimentary basins in Malaysia based on certain criteria and suitable for CO₂ storage.

Chapter 5 presents the mapping of potential sites in sedimentary basins of Malaysia for CO_2 storage. This chapter also includes the area of potential sites in percentage according to its potential class.

Chapter 6 discusses on basin-scale detailed assessment for the most potential basins that provides the location of potential injection zone as well as theoretical storage capacity estimation.

Chapter 7 presents the conclusions drawn from the research, which summarizes the findings in terms of the research question and the result obtained. It also highlights several issues and recommendation to be discussed further in future research.

REFERENCES

- Abd Rahman, A. H., Menier, D., Mansor, M. (2014). Sequence Stratigraphic Modelling and Reservoir Architecture of the Shallow Marine Successions of Baram Field, West Baram Delta, Offshore Sarawak, East Malaysia. *Marine* and Petroleum Geology. 58, 687 – 703.
- Amran, A., Zainuddin, Z., Zailani, S. (2013). Carbon Trading in Malaysia: Review of Policies and Practices. *Sustainable Development*. 21(3).
- Anthonsen, K. L., Aagaard, P., Bergmo, P. E. S., Erlstrom, M., Fareide, J. I., Gislason, S. R., Mortensen, G. M., Snaebjornsdottir, S. O. (2013). CO₂
 Storage Potential in the Nordic Region. *Energy Procedia*. 37, 5080 5092.
- Bachu, S. (2000). Sequestration of CO₂ in Geological Media: Criteria and Approach for Site Selection in Response to Climate Change. *Energy Conversion and Management*. 41, 953-970.
- Bachu, S. (2003a). Evaluation of CO₂ Sequestration Capacity in Oil and Gas Reservoirs in the Western Canada Sedimentary Basin. Alberta Energy Research Institute. Canada.
- Bachu, S. (2003b). Screening and Ranking of Sedimentary Basins for Sequestration of CO₂ in Geological Media in Response to Climate Change. *Environmental Geology*. 44, 227 – 289.
- Bachu, S. (2007). Carbon Dioxide Storage Capacity in Uneconomic Coal Beds in Alberta, Canada: Methodology, Potential and Site Identification. *International Journal of Greenhouse Gas Control*. 1(3), 374 – 385.
- Bachu, S. (2008). CO₂ Storage in Geological Media: Role, Means, Status and Barriers to Deployment. *Progress in Energy and Combustion Science*. 34 (2), 254-273.
- Bachu, S., Adams, J. J. (2003). Sequestration of CO₂ in Geological Media in Response to Climate Change: Capacity of Deep Saline Aquifers to Sequester CO₂ in Solution. *Energy Conversion and Management*. 44, 3151–3175.

- Bachu, S., Bonijoy, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N.P., Mathiassen, O.M. (2007). CO₂ storage capacity estimation: methodology and gaps. *Int. J. Greenhouse Gas Control.* 1, 430–443.
- Bachu, S., Gunter, W.D. (2004). Acid gas injection in the Alberta Basin, Canada: A CO₂ storage experience. In Baines, S.J., Warden, R.H. (Ed.) Geological Storage of Carbon Dioxide for Emissions Reduction Technology. Bath, UK: Geological Society Special Publication. 225-234.
- Bachu, S., Gunter, W.D., Perkins, E.H. (1994). Aquifer Disposal of CO₂: Hydrodynamic and Mineral Trapping. *Energy Convers. Manage*. 35 (4), 269– 279.
- Bachu, S., Nordbotten, J. M., Celia, M. A. (2004). Evaluation of the Spread of Acid
 Gas Plumes Injected in Deep Saline Aquifer in Western Canada as an
 Analogue for CO₂ Injection in Continental Sedimentary Basins. Proceedings of
 9th Conference on Greenhouse Gas Technology. 16-20 November.
 Washington, USA.
- Bachu, S., Stewart, S. (2002). Geological Sequestartion of Anthropogenic Carbon
 Dioxide in the Westrn Canada Sedimentary Basin: Suitability Analysis.
 Journal of Canadian Petroleum Technology. 41, 32 40.
- Bennion, B. and Bachu, S. (2005). Relative Permeability Characteristics for Supercritical CO2 Displacing Water in a Variety of Potential Sequestration Zones in the Western Canada Sedimentary Basin. SPE 95547, Proceedings of the SPE Annual Technical Conference and Exhibition. 9-12 October. Dallas, Texas, U.S.A.
- Bennion, B. and S. Bachu. (2006). Dependence on Temperature, Pressure, and Salinity of the IFT and Relative Permeability Displacement Characteristics of CO2 Injected in Deep Saline Aquifers. SPE 102138, Proceedings of the SPE Annual Technical Conference and Exhibition. 24-27 September. San Antonio, Texas, U.S.A.
- Benson, S. M. (2006). Monitoring Carbon Dioxide Sequestration in Deep Geological Formations for Inventory Verification and Carbon Credits. SPE 102833, Proceedings of the SPE Annual Technical Conference and Exhibition. 24-27 September. San Antonio, Texas, U.S.A.
- Bentham, M., Kirby, G. (2005). CO₂ Storage in Saline Aquifers. Oil & Gas Science and Technology – Rev IFP. 60 (3), 559 – 567.

- Bouzalakos, S., Valer, M. M. M. (2010). Overview of Carbon Dioxide Capture and Storage Technology in Developments and innovation in Carbon Dioxide Capture and Storage Technology. Notthingham, UK: Woodhead Publishing Series in Energy, 20, 1-24.
- BP. (2017). Statistical Review of World Energy. Carbon Emission (66th Ed).
 Summary Report.
- Bradshaw, B., Spencer, L., Lahtinen, A., Khider, K., Ryan, D., Colwell, J., Chirinos,
 A., Bradshaw, J., Draper, J., Hodgkinson, J., McKillop, M. (2001). An
 Assessment of Queensland's CO₂ Geological Storage Prospectivity The
 Queensland CO2 Geological Storage Atlas.
- Bradshaw, J., Bachu, S., Bonijoly, D., Burruss, R., Holloway, S., Christensen, N.P., Mathiassen, O.M. (2007). CO₂ Storage Capacity Estimation: Issues and Development of Standards. *International Journal of Greenhouse Gas Control.* 1, 62 68.
- Bradshaw, J., Bradshaw, B. E., Allinson, G., Rigg, A. J., Nguyen, V., Spencer, L. (2002). The Potential for Geological Sequestration of CO₂ in Australia: Preliminary Findings and Implications for New Gas Field Development: *The Australian Petroleum Production and Exploration Association (APPEA) Journal*. 42(1), 25-46.
- Bryant, E. (1997). *Climate Process & Change*. Cambridge, UK: Cambridge University Press.
- Bryant, S. L. and Blunt, M. J. (1992). Prediction of Relative Permeability in Simple Porous Media. *Physical Review A*. 46, 2004-2011.
- Calderon, S., Alvarez, A.C., Loboguerrero, A.M., Arango, S., Calvin, K., Kober, T., Daenzer, K., Fisher-Vanden, K. (2016). Achieving CO₂ reductions in Colombia: Effects of carbon taxes and abatement targets. *Energy Economics*. 56, 575 – 586.
- Calvo, R., Gvirtzman, Z. (2015). Assessment of CO₂ Storage Capacity in Southern Israel. *International Journal of Greenhouse Gas Control.* 14, 25 38.
- Carpenter, J.W. (2015, October 5). The Biggest Oil Producers in Asia. Investopedia. Retrieved September 7, 2016 from <u>http://www.investopedia.com/articles</u> /markets/100515/biggest-oil-producers-asia.asp.
- Carpenter, M., Kvien, Knut., Aarnes, J. (2011). The CO2QUALSTORE Guideline for Selection, Characterisation and Qualification of Sites and Projects for

Geological Storage of CO₂. *International Journal of Greenhouse Gas Control*. 5, 942 – 951.

- Chevron (2005). Draft Environment Impact Statement/Environmental Review and Management Programme for the Proposed Gorgon Development. Chevron: Australia Pty. Ltd. 818.
- Clarke, K. (1997). *Getting Started with Geographic Information Systems*. New Jersey: Prentice Hall.
- CO2CRC. (2008). Storage Capacity Estimation, Site Selection and Characterization for CO₂ Storage Projects. Australia: CO2CRC.
- Cook, P.J. (2006). Site characterization. International Symposium on Site Characterization for CO₂ Geological Storage. 20-22 March. California, USA.
- CSLF (2008). In Bachu, S. (Ed.). Comparison between Methodologies Recommended for Estimation of CO₂ Storage Capacity in Geological Media.
 Carbon Sequestration Leadership Forum (CSLF). Summary Report.
- Cullen, A. (2014). Nature and Significance of the West Baram and Tinjar Lines, NW Borneo. *Marine and Petroleum Geology*. 51, 197 209.
- Dahowski, R. T., Bachu, S. (2007). Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology. Montana: Zero Emissions Research and Technology.
- Dance, T. (2013). Assessment and Geological Characterisation of the CO2CRC Otway Project CO₂ Storage Demonstartion Site: From Feasibility to Injection. *Marine and Petroleum Geology*. 46, 251 – 269.
- Darmawan, A., Sugiyono, A., Liang, J., Tokimatsu, K., Murata, A. (2017). Analysis of Potential for CCS in Indonesia. *Energy Procedia*. 114, 7516 7520.
- Davidson, C.L., Dahowski, R.T., Saripalli, K.P. (2005). Tectonic Seismicity and the Storage of Carbon Dioxide in Geologic Formations. *Greenhouse Gas Control Technologies*. 7, 2305–2308.
- De Silva, P. N. K., Ranjith, P. G. (2012). A Study of Methodologist for CO₂ Storage Capacity Estimation of Saline Aquifers. *Fuel*. 93, 13 – 27.
- Denman, K.L., Brasseur, G., A. Chidthaisong, A., P. Ciais, P., P.M. Cox, P.M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., De Silva Dias, P. L., Wofsy, S. C. and

Zhang, X. (2007). Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

- Ditzhuijzen, P. J. D., (1984). Reservoir Compaction and Surface Subsidence in the Central Luconia. Offshore South East Asia. 21 – 24 February. Singapore, 27 – 40.
- Doust, H. (1981). Geology and Exploration History of Offshore Central Sarawak. American Association of Petroleum Geologists, Studies in Geology Series. 12, 17-30.
- EEA (European Environment Agency). (2007). Annual European Community Greenhouse Gas Inventory 1990 – 2005 and Inventory Report 2007. Technical report No.7/200
- EIA (Energy Information Administration). (2006). World Energy Outlook 2006. Paris: IEA.
- EIA (Energy Information Administration). (2016). Annual Energy Outlook 2016 with projections to 2040. U.S. Energy Information Administration. Summary report.
- Embong, W. M. Z. W., Mohamad, H., Mansor, K. (2008). New Perspective on Exploration Prospect Analysis: A Case Study on the Central Luconia Carbonates, Sarawak, East Malaysia. International Petroleum Techonology Conference. 3 – 5 December. Kuala Lumpur, Malaysia, 1-3.
- ESRI. (1990). *PC Overlay Users Guide*. Unpublished note, Environmental Systems Research Institute.
- ESRI. (2016, July 15). ArcGIS for Desktop Helpdesk. *Environmental System Research Instituite*. Retrieved July 15, 2016 from <u>http://desktop.arcgis.com/en/arcmap/.</u>
- Fleury, M., Pironon, J., Le Nindre, Y. M., Bildstein, O., Berne, P., Lagneau., Broseta, D., Pichery, T., Fillacier, S., Lescanne, M., Vidal, O. (2010). Evaluating Sealing Efficiency of Caprocks for CO₂ Storage: An Overview of the Geocarbone Integrity Program and Results. *Oil and Gas Science and Technology*. 65, 435 – 444.

Forster, A., Norden, B., Zinck-Jorgensen, K., Frykman, P., Kulenkampff, J.,

Spangenberg, E., Erzinger, J., Zimmer, M., Kopp, J., Bo, M.G., Juhlin, C., Cosma, C.G., Hurter, S. (2006). Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany. *Environemntal Geosci.* 13, 145-161.

- GESTCO (Geological Storage of CO₂ from Combustion of Fossil Fuel). (2004).
 European Union Fifth Framework Programme for Research & Development.
 Project No. ENK-CT-1999-00010. Summary report.
- Ghosh, D. and Halim, M. F. A. (2010). Geophysical Issues and Challenges in Malay Basin and Adjacent Basins from an E & P Perspective. *The Leading Edge*, 436-449.
- Gibson-Poole, C. M., Edwards, S., Langford, R. P., Vakarelov, B. (2006). Review of Geological Storage Opportunities for Carbon Capture and Storage (CCS) in Victoria, ICTPL Consultancy Report Number ICTPL-RPT06- 0506. *The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)*. Adelaide, Australia.
- Gibson-Poole, C. M., Svendsen, L., Underschultz, J., Watson, M. N., Ennis-King, J., Ruth, P. J. V., Nelson, E. J., Daniel, R. F., Cinar, Y. (2008). Site Characterisation of a Basin-scale CO₂ Geological Storage System: Gippsland Basin, Southeast Australia. *Environment Geology*. 54, 1583-1606.
- Goh, M. (2015, November 28). Malaysia Pledges to cut CO₂ Emissions Intensity by 45% by 2030. *Channel News Asia*. Retrieved June 1, 2016 from <u>http://www.channelnewsasia.com/news/asiapacific/malaysia-pledges-to-cutco2-emissions-intensity-by-45-by-2030-8232684.</u>
- Goodman, A., Bromhal, G., Strazisar, B., Rodosta, T. (2013). Comparison of Methods for Geologic Storage of Carbon Dioxide in Saline Formations. *International Journal of Greenhouse Gas Control.* 18, 329 – 342.
- Goodman, A., Hakala, A., Bromhal, G., Deel, D., Rodosta, T., Frailey, S., Small, M.,
 Allen, D., Romanov, V., Fazio, J., Huerta, N., McIntyre, D., Kutchko, B.,
 Guthrie, G. (2010). U.S DOE Methodology for the Development of Geologic
 Storage Potential for Carbon Dioxide at the National and Regional Scale. *International Journal Greenhouse Gas Control.* 5, 952-965.
- Gorecki, C.D., Sorensen, J.A., Steadman, E., Harju, J.A. (2009). CO₂ Storage Risk Minimization through Systematic Identification and Assessment of Faults: A Williston Basin case study. *Energy Procedia*. 1, 2887–2894.

- Guyot, F., Daval, D., Dupraz, S., Martinez, I., Menez, B., Sissman, O. (2011). CO₂ Geological Storage: The Environmental Mineralogy Perspective. *Comptes Rendus Geoscience*. 343, 246 – 259.
- Han, W. S., McPherson, B. J. (2009). Optimizing Geologic CO₂ Sequestration by Injection in Deep Saline Formations Below OII REservoirs. *Energy Conversion and Management*. 50, 2570–2582.
- Hasbollah, D. Z. A. and Junin, R. (2015). A Preliminary Basin-scale Evaluation Framework of Potential Sedimentary Basins in Malaysia for Carbon Dioxide Sequestration. *Chemical Engineering Transactions*. 45, 1537-1542.
- Hashim, H., Douglas, P., Elkamel, A. & Croiset, E. (2005). Optimization Model for Energy Planning with CO₂ Emission Considerations. *Industrial and Engineering Chemistry Research.* 44, 879–890.
- Hawkes, C. D., Bachu, S., McLellan, P. J. (2005). Geomechanical Factors Affecting Geological Storage of CO₂ in Depleted Oil and Gas Reservoirs. *Journal of Canadian Petroleum Technology*. 44, 52 – 61.
- Hendriks, C.A., Graus, W., van Bergen, F. (2004). Global Carbon Dioxide Storage Potential and Costs. *Ecofys/TNO*. 71.
- Hermanrud, C., Andresen, T., Eiken, O., Hansen, H., Janbu, A., Lippard, J., Bolas, H. N., Simmenes, T. H., Teige, G. M. G., Ostmo, S. (2009). Storage of CO₂ in Saline Aquifers Lessons Learned from 10 years of Injection into the Utsira Formation in the Sleipner Area. *Energy Procedia*. 1, 1997 2004.
- Ho, K. F. (1978). Stratigraphic Framework for Oil Exploration in Sarawak. *Bulletin* of the Geological Society of Malaysia. 1-14.
- Holloway, S. (2007). Carbon Dioxide Capture and Geological Storage. *Phil. Trans. R. Soc. A.* 365, 1095-1107.
- Holloway, S., Savage, D. (1993). The Potential for Aquifer Disposal of Carbon Dioxide. *Energy Convers. Manage*. 34 (9–11), 925–932.
- Houghton, R. A. (2010). How well do we know the flux of CO₂ from land-use change? *Tell us B*. 62, 337–351.
- Hovorka, S.d., Benson, S.M., Doughty, C., Freifeld, B.M., Sakurai, S., Daley., T.M., Kharaka, Y.K., Holtz, M.H., Trautz, R.C., Seay Nance, H., Myer, L.R., Knauss, K.G. (2006). Measuring permanence of CO₂ storage in saline formations: the Frio experiment. *Environ. Geo. Sci.* 13, 105 121.
- Hsu, C. W., Chen, L. T., Hu, A. H., Chang, Y. M. (2012). Site Selection for Carbon

Dioxide Geological Storage using Analytic Network Process. *Separation and Purification Technology*. 94, 146 – 153.

- Hutchison, C. S. (1989). Geological Evolution of South-East Asia: Oxford Monograph on Geology on Geophysics. Oxford: Clarendon Press. 13.
- IEA (IEA Greenhouse Gas R & D Programme). (2009). Development of storage coefficient for carbon dioxide storage in deep saline formations. IEAGHG. Summary Report.
- IEA (International Energy Agency). (2012). CO₂ Emissions from Fuel Combustion 2012. Paris: Organisation for Economic Co-operation and Development.
- IEO (International Energy Outlook). (2016). Malaysia Crude Oil Production from 2015 to 2016. Retrieved February 14, 2017, from http://www.tradingeconomics.com/ malaysia/crude-oil-production.
- IPCC (Intergovermental Panel on Climate Change). (2001). *Impacts, Adaptation and Vulnerability*. Canada: IPCC.
- IPCC (Intergovermental Panel on Climate Change). (2005). Carbon Capture and Storage: Intergovernmental Panel on Climate Change Special Report. New York: Cambridge University Press.
- IPCC (Intergovermental Panel on Climate Change). (2007). Intergovernmental Panel on Climate Change Fourth Assessment Report. New York: Cambridge University Press.
- Iskandar, U. P., Usman, Sofyan, S. (2013). Ranking of Indonesian Sedimentary Basin and Storage Capacity Estimates for CO₂ Geological storage. *Energy Procedia*. 37, 5172 – 5180.
- Jalil, M. A. A., Masoudi, R., Darman, N. H., Othman, M. (2012). Study of CO₂ Injection and Sequestration in Depleted M4 Carbonate Gas Condensate Reservoir, Malaysia. *Carbon Management Technology Conference*. 7- 9 February. Florida, USA, 1 – 14.
- James, D. M. D. (1984). Regional Geological Setting: The Geology and Hydrocarbon Resources of Negara Brunei Darussalam. Brunei: Muzium Brunei. 34-42.
- JMG (Minerals and Geoscience Department Malaysia). (2011). *Seismotectonic Map of Malaysia*. Minerals and Geoscience Department Malaysia: Kuala Lumpur.
- Johnson, H. D., Kuud, T., Dundang, A. (1989). Sedimentology and Reservoir Geology of the Betty Filed, Baram Delta Province, Offshore Sarawak, NW

Borneo. Geol, Soc. Malaysia, Bulletin. 25, 119-161.

- Juanes, R., Spiteri, E. J., Orr, F. M. and Blunt, M. J. (2006). Impact of Relative Permeability Hysteresis on Geological CO₂ Storage. *Water Resources Research*. 42.
- Kartikasurja, D. O. (2008). Study of Produced CO₂ Storage into Aquifer in an Offshore Field Malaysia. SPE Asia Pacific Oil & Gas Conference and Exhibition. 20 – 22 October. Perth, Australia, 1 – 16.
- Kikuta, K., Hongo, S., Tanase, D., Ohsumi, T. (2005). Field test of CO₂ injection in Nagaoka, Japan. In *Proceedings of the 7th Intl. Conf. On Greenhouse Gas Control Technologies*. September. Vancouver, Canada, 1367 – 1372.
- King, T. K. (2012). Effects of Syn-depositional Tectonics on Platform Geometry and Reservoir Characters in Miocene Carbonate Platforms of Central Luconia , Sarawak. *International Petroleum Technology Conference*. 7 – 9 February. Bangkok, Thailand, 1 – 17.
- Kingston, D. R., Dishroon, C. P. and Williams, P. A. (1983). Global Basin Classification System. American Association of Petroleum Geologists Bulletin. 67, 2175-2193.
- Kolios, N. Koutsinos, S., Kougoulis, C.H., Arvantis, A., Karydakis, G. (2005). Geothermal Research in Thessalioniki Basin. I.G.M.E Report.
- Kosa, E. (2014). Sea-level Changes, Shoreline Journeys and the Seismic Stratigraphy of Central Luconia, Miocene-present, Offshore Sarawak, NW Borneo. *Marine and Petroleum Geology*. 59, 35 – 55.
- Kosa, E., Hafrez, A., Boey, K., Azhar, A., Wee, G. (2012). Sequence Stratigraphy of Clastic Overburden of the Miocene Carbonate Gas Province in Central Luconia, Offshore Sarawak, NW Borneo: Implications for Hydrocarbon – Retention Capacity. *International Petroleum Technology Conference*. 7 – 9 February. Bangkok, Thailand, 1 – 6.
- Koukouzas, N., Ziogou, F., Gemeni, V. (2009). Preliminary Assessment of CO2 Geological Storage Opportunities in Greece. *International Journal of Greenhouse Gas Control.* 3, 502 – 513.
- Lacombe, O., Lave, J., Roure, F., Verges, J. (2007). *Thrust Belts and Foreland Basins: From Fold Kinematics to Hydrocarbon Systems*. New York: Springer Berlin Heidelberg.
- Le Quéré, C., Jain, A. K., Raupach, M. R., Schwinger, J., Sitch, S., Stocker, B. D.,

Viovy, N., Zaehle, S., Huntingford, C., Friedlingstein, P., Andres, R. J., Boden, T., Jourdain, C., Conway, T., Houghton, R. A., House, J. I., Marland, G., Peters, G. P., Van Der Werf, G., Ahlström, A., Andrew, R. M., Bopp, L., Canadell, J. G., Kato, E., Ciais, P., Doney, S. C., Enright, C., Zeng, N., Keeling, R. F., Klein Goldewijk, K, Levis, S., Levy, P., Lomas, M. and Poulter. B. (2013). The Global Carbon Budget 1959–2011. *Earth System Science Data Discussions*. 5(2), 1107-1157.

- Lewis, D., Bentham, M., Cleary, T., Vernon, R., O'Neill, N., Kirk, K., Chadwick, A., Hilditch, D., Michael, K., Allinson, G., Neal, P., Ho, M. (2009). Assessment of the Potential for Geological Storage of Carbon Dioxide in Ireland and Northern Ireland. *Energy Procedia*. 1, 2655 – 2662.
- Lowell, J. D. (1985). *Structural Styles in Petroleum Exploration*. Tulsa: OGCI Publications.
- Madon, M. (2007). Overpressure Development in Rift Basins: An Example from the Malay Basin, Offshore Peninsular Malaysia. *Petroleum Geoscience*. 13, 169 – 180.
- Madon, M., Abolins, P., Jamaal Hoesni, M. & Bin Ahmad, M. (1999). Malay Basin.
 In: Petronas (ed.) The Petroleum Geology and Resources of Malaysia.
 Petronas, Kuala Lumpur, 173–217.
- Maldal, T., Tappel, I.M. (2004). CO₂ underground storage for Snohvit gas field development. *Energy*. 29, 1403-1411.
- Malek, R. (2009). Results of Due Diligence Study Phase 3.5 on Feasibility of Gorgon CO₂ Sequestration Petroleum in Western Australia. Australia: Western Australian Department of Mines and Petroleum. 13 -17.
- Mao, C., Yamada, Y., Matsuoka., T. (2014). A Preliminary Assessment of Geological CO₂ Storage in Cambodia. International Journal of Greenhouse Gas Control. 30,19-33.
- Marland, G. A., Boden, T. A. and Andres, R. (2003). Global, Regional, and National CO₂ Emissions. In Trends: A Compendium of Data on Global Change. Tenn, USA: Carbon Dioxide Information Analysis Centre.
- Meng, Q., Xi, J. (2014). Numerical Analysis of the Solubility Trapping of CO₂ Storage in Geological Formations. *Applied Energy*. 130, 581 – 591.
- Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., Aiken, T. (2010). Geological Storage of CO₂ in Saline Aquifers – A Review

of the Experience from Existing Storage Operations. *International Journal of Greenhouse Gas Control.* 4, 659 – 667.

- Mohd Tahir, I., Shahrul, A. A., Rudolph, K. W. (1994). Structural and Sedimentary Evolution of the Malay Basin. AAPG International Conference and Exhibition. 21-24 August. Kuala Lumpur, Malaysia, 78, 1148.
- Morley, C. K. (2002). A Tectonic Model for the Tertiary Evolution of Strike-slip Faults and Rift Basins in SE Asia. *Tectonophysics*. 347, 189 – 215.
- MOSTE. (2000). *Malaysia Initial National Communication*. Kuala Lumpur: Ministry of Science, Technology and the Environment.
- Murphy, R. W. (1975). Tertiary Basins of Southeast Asia. *Proceedings of the South East Asian Petroleum Exploration Society.* 2, 1-36.
- National Energy Balance. (2014). Energy Commission Malaysia. Summary Report.
- Noad, J. (2001). The Gomantong Limestone of Eastern Borneo: A Sedimentological Comparison with The Near-contemporaneous Luconia Province. *Palaeo*, 175, 273 – 302.
- Okui, A., Tsuji, K., Imayoshi, A. (1997). Petroleum System in the Khmer Trough, Cambodia. Proceedings of the Petroleum Systems of SE Asia and Australasia Conference, 365 – 379.
- Petroconsultants. (1996). *Petroleum Exploration and Production Database*. Geneva, Switzerland: Petroconsultants, Inc.
- PETRONAS. (1999). The Petroleum and Resources of Malaysia. Kuala Lumpur: PETRONAS.
- Rahman, M. H., Pierson, B. J., Wan Yusoff, W. I. (2012). Classification of Microporosity in Carbonates: Examples from Miocene Carbonate Reservoirs of Central Luconia, Offshore Sarawak, Malaysia. *International Petroleum Technology Conference*. 7 – 9 February. Bangkok, Thailand, 1 – 12.
- Ramírez, A., Hagedoorn, S., Kramers, L., Wildenborg, T., Hendriks, C. (2009). Screening CO₂ Storage Options in the Netherlands. *Energy Procedia*. 1, 2801–2808.
- Ramli, M. N. (1986). Stratigraphy and Palaeofacies Development of Carigali's Operating Areas in the Malay Basin, South China Sea. *Geological Society Malaysia*. 22, 153 – 187.
- Rey, J., Galeotti, S. (2008). *Stratigraphy Terminology and Practice*. Paris: Editions Technip.

- Rijks, E. J. H. (1981). Baram Delta Geology and Hydrocarbon Occurence. *Geol. Soc. Malaysia Bulletin.* 14, 1-18.
- Riley, N. (2010). *Geological Storage of Carbon Dioxide*. U.K: Royal Society of Chemistry.
- Robinson, K. (1985). Assessment of Undiscovered Conventionally Recoverable Petroleum Resources in Tertiary Sedimentary Basins of Malaysia and Brunei. *Geol. Soc. Malaysia Bull.* 18, 119-131.
- Sengul, M. (2006). CO₂ Sequestration A Safe Transition Technology. SPE 98617, Proceedings of the International Conference on Health, Safety, and Environment in Oil and Gas Exploration and Production. 2-4 April. Abu Dhabi, UAE.
- Shahab F. (2008). GIS Basics. New Delhi: New Age International.
- Sharliza N. M. S., Zainura Z. N., Haslenda, H., Zaini, U., Juhaizah, T. (2011). Projection of CO₂ Emissions in Malaysia. *Environmental Progress and Sustainable Energy*. 30(4), 658-665,
- Shukla, R., Ranjith, P., Haque, A., Choi, X. (2010). A Review of Studies on CO2 Sequestration and Caprock Integrity. *Fuel*. 89, 2651 2664.
- Soltanzadeh, H. (2009). Geomechanical Analysis of Caprock Integrity. PhD Thesis, University of Saskatchewan.
- Star, J. & Estes, J. (1990). Geographic Information Systems An Introduction. New Jersey: Prentice-Hall. 147-148.
- Szulczewski, M.L., MacMinn, C.W., Herzog, H.J., Juanes, R. (2012). Lifetime of Carbon Capture and Storage as a Climate-change Mitigation Technology. *Proc. Natl. Acad. Sci. U.S.A.* 109, 5185–5189.
- Torp, T.A., Gale, J. (2004). Demonstrating storage of CO₂ in geological reservoirs: The Sleipner and SACS projects. *Energy*. 29, 1361-1369.
- US-DOE-NETL. (2008). Carbon Sequestration Atlas of the United State and Canada,
 2nd ed. U.S. Department of Energy National Energy Technology Laboratory
 Office of Fossil Energy
- US-DOE-NETL. (2010). Site Screening, Selection and Characterization for Storage of CO₂ in Deep Geologic Formations. United State Department of Energy: National Energy Technology Laboratory.
- US-DOE-NETL. (2012). The United States 2012 Carbon Utilization and Storage Atlas, 4th ed. U.S. Department of Energy – National Energy Technology

Laboratory – Office of Fossil Energy

- USGS (U.S. Geological Survey). (2008). Circum-Arctic Resource Appraisal: Estimates Undiscovered Oil and Gas North of the Arctic. U.S. Fact Sheet. 2008-3049.
- Vahrenkamp, V. C. (1998). Miocene Carbonates of the Luconia Province, Offshore SarawaK: Implication for Regional Geology and Reservoir Properties from Strontium-isotope Stratigraphy. *Geological Society Malaysia*. 42, 1 – 13.
- van Vliet, A., Krebs,W.N. (2009). The Middle Miocene Unconformity (MMU) in North Luconia, deepwater Sarawak: how unconformable is the unconformity? *War. Geol.* 35, 131-133.
- Verdon, J. P., Kendall, J. M., Stork, A. L., Chadwick, R. A., White, D. J., Bissell, R.
 C. (2013). Comparison of Geomechanical Deformation Induced by Megatonne-scale CO₂ Storage at Sleipner, Weyburn and In Salah. *Earth, Atmospheric and Planetary Sciences*.
- Wei, N., Li, X., Wang, Y., Dahowski, R. T., Davidson, C. L., Bromhal, G. S. (2013).
 A Preliminary Sub-basin Scale Evaluation Framework of Site Suitability for Onshore Aquifer-based CO₂ Storage in China. *International Journal of Greenhouse Gas Control.* 12, 231-246.
- Wells, R.K., Xiong, W., Giammar, D., Skemer, P. (2017). Dissolution and surface roughening of Colombia river flood basalt at geologic carbon sequestration conditions. *Chemical Geology*. 467, 100-109.
- World Bank. (2013). Annual Report 2013: Trend of CO₂ Emission in Malaysia compared to Neighboring Countries up to 2010. Tennessee, United States: Carbon Dioxide Information Analysis Center, Environmental Sciences Division. Retrieved May 3, 2015 from <u>http://data.worldbank.org/indicator/</u><u>EN.ATM.CO2E.PC?locations=MY</u>.
- Ziadat, F.M., Mazahreh, S.S., Oweis, T.Y., Bruggeman, A. (2006). A GIS-based approach for assessing water harvesting suitability in a Badia benchmark watershed in Jordan. *In Fourteenth International Soil Conservation Organisation Conference: Water Management and Soil Conservation in Semi-Arid Environments.*