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The demand for ultra-wideband (UWB) antennas increases rapidly with the 
magnified growth of the wireless systems aiming to support wireless and mobile services by 
simplifying the systems and to reduce the overall device dimensions, and costs. Vast efforts 
are offered to the development of UWB antennas that aim to improve the seamless 
integration with various handheld devices such as laptops, mobile phones, and vehicles such 
as airplanes, cars, and ships. Consequently, the mechanically flexible antennas are the most 
suitable for such requirements rather than the antennas based on rigid substrate technology. 
Hence, the antenna should be conformal and able to be conveniently conformed onto the 
device’s body surface or to be fabricated using the same material in which the devices are 
fabricated. Subsequently, in some scenarios, the flexible antenna should be optically 
transparent to overcome the visual impact of the massive use of the antenna in indoor and 
public areas. Low-cost antenna fabrication technologies are highly expected to take place in 
future UWB antenna requirements for more economical resource utilization. Generally, 
UWB systems require the antenna with high efficiency, however, maintaining a high 
efficiency while achieving extremely wide bandwidth in UWB system is a challenging task. 
Therefore, conduction and dielectric losses should be minimized in UWB antenna by using 
highly conductive and low dielectric loss materials. Metals are commonly used as antenna 
radiating elements because of their high conductivity. However, the poor mechanical 
flexibility of the metals limit their usage for flexible and conformal applications. The 
question arises if non-metallic flexible conductive materials having conductivity close to 
metals can be integrated into the flexible dielectric materials to replace metals. This thesis 
proposes fabrication techniques to integrate flexible conductive materials into flexible 
dielectric materials to fabricate transparent UWB antenna and Polymer Matrix Composite 
(PMC) antenna with improved performance for conformal applications. Moreover, the 
research evaluates a new low-cost instant printing technique to print UWB flexible antenna 
with good performance. A technique is proposed to integrate a transparent conductive fabric 
tissue into a transparent PDMS to fabricate a flexible and transparent UWB antenna with 
improved performance. The fabricated antenna exhibited an efficiency over 75% and a 
maximum gain of 4.5 dBi. Moreover, an integration process is proposed to fabricate a 
flexible PMC composite UWB antenna by integrating the conductive fabric tissue into E-
glass fiber mate using Vacuum Infusion Process (VIP). The technology is assessed by 
fabricating UWB antenna for conformal applications and the results showed high efficiency 
over 80% for the UWB antenna. Furthermore, a UWB antenna is printed instantly onto a 
Polyethylene Terephthalate (PET) substrate based on chemical sintering silver inkjet 
technology using ordinary inkjet printer and the measured results present over 80% of 
efficiency for antenna. 
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Permintaan terhadap antena ultra jalur lebar (UWB) meningkat dengan pesat seiring 
pertumbuhan besar sistem tanpa wayar bertujuan untuk menyokong perkhidmatan tanpa 
wayar dan mudah alih dengan meringkaskan sistem dan mengurangkan dimensi dan kos 
keseluruhan peranti. Usaha meluas diberikan untuk pembangunan antena UWB yang 
bertujuan untuk menambah baik persepaduan selanjar dengan pelbagai peranti bimbit seperti 
komputer riba, telefon mudah alih, dan kenderaan seperti kapal terbang, kereta, dan kapal. 
Oleh itu, antena yang mudah lentur secara mekanikal adalah paling sesuai untuk keperluan 
tersebut berbanding antena berasaskan teknologi substrat tegar. Maka, antena harus bersifat 
menyebentuk dan dapat disesuaikan dengan mudah ke atas permukaan badan peranti atau 
dibuat dengan menggunakan bahan yang sama seperti peranti tersebut. Selanjutnya, dalam 
beberapa senario, antena yang fleksibel perlu lutsinar secara optikalnya untuk mengatasi 
kesan visual penggunaan antena secara besar-besaran di kawasan tertutup dan awam. 
Teknologi fabrikasi antena berkos rendah dijangka akan memenuhi keperluan antena UWB 
masa depan untuk penggunaan sumber yang lebih ekonomi. Umumnya, sistem UWB 
memerlukan antena dengan kecekapan tinggi, namun, mengekalkan kecekapan yang tinggi 
ketika mencapai lebar jalur yang sangat luas dalam sistem UWB adalah tugas mencabar. 
Oleh itu, pengaliran dan kehilangan dielektrik harus diminimakan dalam antena UWB 
dengan menggunakan bahan yang sangat konduktif dan bahan yang kehilangan dielektriknya 
rendah. Logam biasanya digunakan sebagai elemen pemancaran antena kerana pengalirannya 
yang tinggi. Walau bagaimanapun, kelenturan mekanikal logam yang lemah menghadkan 
penggunaannya untuk aplikasi mudah lentur dan menyebentuk. Persoalan timbul jika bahan 
konduktif mudah lentur bukan-logam yang mempunyai pengaliran yang hampir sama dengan 
logam dapat dipersepadukan ke dalam bahan dielektrik mudah lentur untuk menggantikan 
logam. Tesis ini mencadangkan teknik fabrikasi untuk mensepadukan bahan konduktif yang 
mudah lentur ke dalam bahan dielektrik yang mudah lentur untuk memfabrikasikan antena 
UWB lutsinar dan antena Komposit Matriks Polimer (PMC) dengan prestasi yang 
dipertingkatkan untuk aplikasi menyebentuk. Selain itu, kajian ini menilai teknik percetakan 
segera berkos rendah baharu yang digunakan untuk mencetak antena mudah lentur UWB 
dengan prestasi yang baik. Teknik ini dicadangkan untuk mensepadukan tisu fabrik 
konduktif yang lutsinar ke dalam PDMS lutsinar untuk memfabrikasi antena UWB yang 
mudah lentur dan lutsinar dengan prestasi yang lebih baik. Antena yang difabrikasi 
menunjukkan kecekapan melebihi 75% dan gandaan maksimum 4.5 dBi. Selain itu, proses 
persepaduan dicadangkan untuk memfabrikasi antena UWB komposit PMC yang mudah 
lentur dengan mensepadukan tisu fabrik konduktif ke dalam pasangan gentian E-kaca 
menggunakan Proses Infusi Vakum (VIP). Teknologi ini dinilai dengan memfabrikasi antena 
UWB untuk aplikasi menyebentuk dan keputusannya menunjukkan kecekapan tinggi 
melebihi 80% untuk antena UWB. Tambahan lagi, antena UWB dicetak segera ke atas bahan 
Polietilena Tereftalat (PET) berdasarkan teknologi inkjet perak pensinteran kimia 
menggunakan pencetak inkjet biasa dan hasil yang diukur menunjukkan kecekapan melebihi 
80% untuk antena. 
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  CHAPTER 1

 

 

 

INTRODUCTION  

1.1 Research Background 

It is worthwhile to note that the sparks radiated by Hertz experiments using a 

wideband loaded dipoles represent the first generated UWB signals. However, due to 

the lack of resources at that time, the wideband energy could not be retrieved 

effectively, therefore the discovered communication setup was abandoned. Later, the 

radar, sensing, and military communications applications were developed by 

applying impulse radio technologies during the 1960s and 1970s. Nevertheless, the 

“Ultra Wideband” term found for the first time by the United State U.S department 

of defense in 1989.  During the 1990s, the UWB systems started to receive a wide 

interest with the improvement in digital signal processing. In 2002, the interset in 

UWB system greatly increased when the Federal Communications Commission 

(FCC) (the frequency regulating body of the United States) decided to release the 

approving report the use of UWB devices to operate a number of unlicensed 

frequency bands [0-960 MHz], [3.1-10.6 GHz], and [22-29 GHz]. Subsequently, 

several regulations were defined by various frequency regulatory bodies around the 

world [1]. 
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Unlike the conventional carrier wave system, UWB possess abundant unique 

characteristics which enables it to present an eloquent solution to the broadband 

wireless systems.   

Firstly, UWB system is a sort of base-band signal transmission process that 

has low cost and low complexities which arise from the fact that it does not modulate 

and demodulate a complex carrier waveform. Therefore, components such as filters, 

mixers, amplifiers and local oscillators are not required in UWB transmission.  

Secondly, the main aim of the UWB is to achieve very high capacity through 

the utilization of an ultra-wide bandwidth which can reach up to several Gbps in 

short distance from 1 to 10 m [2]. Therefore UWB plays a very important role in 

wideband technologies such as Wireless Personal Area Network (WPAN). It 

provides a reliable wireless connectivity between portable devices, computers, and 

consumer electronics via a short range. Furthermore, the high data rate feature 

enables a fast data exchange and storage between several UWB systems. 

Thirdly, the UWB concept is very attractive for the spreading systems since it 

facilitates optimal bandwidth sharing between various applications and systems. 

With a very high-frequency adaptive feature, the UWB systems are able to employ 

the various RF spectrum which enables it to prevent interference to other existing 

systems while using the entire spectrum. Moreover, the UWB systems nature is 

immune to the multipath and lossy media effect. The transmission of the UWB 

systems operates at extremely low level power. Therefore, UWB radio technologies 

operate at short-range to complements the long-range technologies such as cellular 

wide area communications, Wireless Fidelity (WiFi), and Worldwide Interoperability 

for Microwave Access (WiMAX). 

 Finally, UWB systems provide a highly secure and reliable connectivity 

solutions. This is because the UWB operates with a low power density which makes 

the signal comparable to noise signal thereby making it difficult to detect or 

intercept. 
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 With the increasing growth in wireless communication systems and services, 

factors such as high data rate, device form factor and cost has led to the increasing 

demand for wideband, multiband and UWB antennas. Many efforts are offered to 

integrate various types of conventional rigid antennas and flexible antennas into 

various handheld devices such as laptops, mobile phones, tablets in addition to the 

radio base stations and vehicles such as airplanes, cars, and ships. However, the 

mechanically flexible antennas are the most suitable for such requirements rather 

than the antennas based on rigid substrate technology such as printed circuit boards 

(PCB). Hence, the antenna should be conformal to the devices body surface or it 

should be fabricated using the same material with which the device is fabricated 

from. Furthermore, the antenna should be designed and fabricated based on highly 

conductive and flexible materials to be integrated with low loss flexible dielectric 

materials so that the antenna will gain high performance. The performance should 

not sacrifice under bending conditions when the antenna is bent. Therefore, new 

fabrication technologies are required to fabricate UWB antennas from the most 

common materials that consisting most of the things around us such as ploymer 

matrix composite (PMC) materials [3]. The PMC composite materials made of 

polymer material such as epoxy resine called matrix and a reinforcement material 

such as carbon fiber or glass fiber, are known as a future material that will be the 

rough material to fabricate different devices and things such as (electronic and 

electrical devices,  house’s structure, furniture, vehicles, medical tools and devices, 

trans, marine boats and ships, aircrafts and many other applications [4, 5]. 

Moreover, with the increase of wireless communication systems in indoor 

living spaces and public places, flexible optically transparent antennas are an 

attractive solution to reduce the visual impact of these systems. For example, the 

transparent antennas could be used for an indoor security system or in future 

transparent communication devices such as femtocell [6]. Consequently, the 

transparent antenna should be able to be conformed to different surfaces and shapes 

by fabricating the transparent antenna from flexible transparent materials.  
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The increasing demand for seamless integration of UWB systems with 

wearable microelectronis to provide low-cost high performance wearable systems. 

As such, new fabrication techniques should be developed to fabricate flexible UWB 

antennas using low-cost materials and low-cost fabrication process. In recent years, 

inkjet printing technologies have been investigated and evaluated to print antennas 

into flexible printable substrates and films. In addition, low-cost and the simplicity of 

the fabrication process is a key factor for the technology by instantly printing an 

antenna that is able to operate efficiently seconds after printing.  

1.2 Problem Statement 

Due to high data rate, low power and short distance in indoor environment, 

UWB systems are increasingly being considered for various wireless wearable 

applications such as flexible microelectronics, wearable devices, and portable 

electronic gadgets [7, 8]. However, maintaining high radiation efficiency is 

mandatory to ensure the achievement of the required extremely low transmitted 

spectral power density for UWB applications and the excessive UWB antenna losses 

could significantly compromise the whole system functionality.  

The demand for wireless wearable applications is increased rapidly in the 

recent years leading to the employment of a huge amount of antennas in the indoor 

and public areas. This has increase the demand for flexible antennas that is able to fit 

into devices of various shapes and sizes, as well as being environmentally friendly to 

overcome the negative visual impact. Flexible UWB transparent antennas are 

expected to fulfill these requirements.  The flexible UWB antennas have been widely 

used in various applications, such as vehicle communication and navigation, 

integration with satellite solar cell panels and with glass for security concerns [9, 10]. 

However, the fabrication complexity, lossy nature and low efficiency of transparent 

conductive materials limit the amount of research conducted on such antenna for  
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UWB applications. Cost reduction and seamless integration is required for the 

integration of the flexible UWB antennas with handheld devices such as laptops, 

mobile phones, tablets, radio base stations and various vehicles. Therefore, flexible 

UWB antennas should be fabricated from or integrated with the materials that most 

of these devices are fabricated from. Polymer matrix composite (PMC) materials are 

expected to be the future materials, which will be used in a massive amount of 

applications [11]. Conductive materials such as carbon fiber composites (CFC) and 

carbon fiber fabrics have been used as radiating elements in PMC composite 

antennas. However, its low conductivity is negatively impacting the efficiency, gain 

and the overall antenna radiation performance [12]. Inkjet printing technology is 

another factor to be considered to achieve the low cost and seamless integration of 

antennas with microelectronic systems based on low cost substrates such as 

polymeric materials and papers. Several technologies have been proposed recently by 

using silver nanoparticles ink based onto a different flexible substrate such as Kapton 

polyimide [13], papers [14] and polyethylene terephthalate (PET) [15]. Most of the 

reported inkjet printing methods are based on thermal sintering, which requires long 

time process for ink thermal curing to achieve the highest conductivity. Moreover, 

the main bottleneck in inkjet-printed features on flexible polymeric substrates is the 

low softening point of the substrate or the amount of temperature that when reached 

the substrate material will melt or burned, which limits the processing temperature. 

The softening point of commonly used polymeric substrates, like PET or 

polycarbonate (PC), is lower than 150° C. Typically, colloidal suspensions of 

conductive materials need a sintering temperature higher than 200° C, which is hence 

not compatible with most polymeric substrates [16]. 

The use of highly conductive flexible materials as radiating elements can 

improve the low radiation efficiency due to high conduction losses in the flexible 

UWB transparent and PMC composite antennas. Consequently, a method is required 

to produce a flexible transparent antenna with improved radiation efficiency by 

integrating highly conductive flexible transparent material with low loss transparent 

and flexible dielectric material. Polymer material such as PDMS possess high optical 

transparency, mechanical flexibility, high ability for  
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integration with other materials and low tangent loss around (Ɛr = 2.85 at 10 GHz), 

can be used as a transparent substrate. Similarly, a fabrication method should be 

developed to integrate a high conductive material which is suitable for resin 

lamination to be embedded with the reinforcement fibers such as carbon fiber or 

glass fibers to produce a fully PMC composite antenna. Conductive fabrics can be 

good choice because it has high conductivity and the mesh style of the fabric will 

help in absorbing the resin and hence allow full lamination and integration with the 

PMC composites. The free sintering inkjet printing technologies in which the 

conductive ink can be cured in room temperature can provide a low cost, low 

processing time and seamless integration for flexible UWB antennas with 

microelectronic and wearable devices. 

In summary, the currently used transparent conductive films have poor 

conductivity which significantly affects the antenna radiation performance. 

Therefore, integrating highly conductive transparent and flexible material with low 

loss transparent and flexible dielectric material can produce low loss transparent 

UWB antenna. In addition, the use of highly conductive materials to integrate with 

PMC composite materials will produce a fully PMC composite antenna with high 

radiation performance. Moreover, new inkjet printing technologies having superior 

features such as low cost, sintering free and high conductivity can produce a low 

cost, low processing time and seamless integration method to integrate the UWB 

antennas into various microelectronics and wearable devices. 

1.3 Research Objectives 

This research has the following objectives:  

i. To develop a method to improve the  radiation performance of the flexible 

transparent antenna by using highly conductive flexible transparent material 
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and to verify the method by fabricating a flexible transparent UWB antenna for 

conformal antenna applications. 

ii. To develop a method to improve the  radiation performance of the flexible 

PMC composite antenna by using highly conductive flexible material and to 

verify the method by fabricating a flexible PMC composite UWB antenna for 

conformal antenna applications. 

iii. To investigate the use of a chemically sintered low cost silver-nano ink for 

inkjet printing technology, to instantly print flexible UWB antenna.     

1.4 Scope of Work 

This study is limited to develop a method to integrate a highly conductive 

flexible material onto a flexible dielectric materials to produce a flexible antenna 

with significantly enhanced radiation performance in terms of efficiency and gain for 

conformal applications for UWB systems and future wireless networks. The study 

focused on flexible transparent antenna technology, flexible polymer matrix 

composite (PMC) antenna technology based on composite laminate material made of 

E-glass fiber mat and epoxy resin. Moreover, the study investigated the use a low 

cost chemicaly sintered silver-nano inkjet printing technology for printed flexible 

UWB antenna. The study focused on the conformal antenna case where the antenna 

is bent to a certain curved surface. 

CST microwave studio© software is used in designing the flexible antenna 

prototypes, testing, and optimization. Moreover, the bending test will be conducted 

by bending the antennas on a loss less surface such as flexible foam having dielectric 

constant and tangent loss closed to air. The study also includes measuring the 
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radiation performance of the antenna such as (S11, radiation pattern, gain, and 

efficiency). 

1.5 Research Contributions 

The research, major contributions are listed below:  

a. A Transparent and Flexible Fabric -Polymer Tissue Fabrication 

Technique for UWB Antenna 

In this contribution, the study has proposed a method to integrate a 

flexible transparent and highly conductive fabric tissue onto a PDMS 

substrate with a thickness of 2 mm to produce a transparent conductive film 

with very low sheet resistivity Rs = 0.089 ohm/sq compared to the 

conventional transparent conductive films such as indium tin oxide ITO and 

silver-coated polymer (AgHt) having sheet resistivity of (2-15) ohm/sq. Due 

to the high sheet resistivity of the conventional TCF, transparent antennas 

made of this kind of TCF suffer from high loss and thus exhibit low 

efficiency. Therefore, the low sheet resistivity of the produced TCF using the 

proposed method will help in reducing the losses and hence improve the 

antenna efficiency.  Then the method proposed a laser etching process to 

fabricate a flexible transparent UWB antenna precisely.  The fabricated UWB 

antenna exhibits an average measured radiation efficiency of 75% throughout 

the operating band, and shows a maximum gain of 4.5 dBi at 18 GHz and a 

stable radiation pattern. It performs well under bending conditions, as 

observed from the measured results. 

b. A Flexible Fabric/ E-glass Fiber PMC Composite Fabrication Technique 

for UWB Antenna 



   9 
 

   

A full flexible PMC composite antenna with high radiation 

performance is fabricated using highly conductive fabric as a radiating 

element compared to a reference antenna made of a metal conductor. The 

contribution of this technique is to improve the radiation efficiency of the 

composite antenna by integrating the composite dielectric material with a 

highly conductive material suitable for integration with composites. 

Therefore, a thin sheet of a highly conductive fabric with high conductivity of 

2 ×105 S/m is embedded by infusion process in a thin composite laminate 

made of E-glass fiber mat and epoxy resin to produce a flexible conductive 

PMC composite film to be used for the fabrication of a UWB antenna with 

high radiation performance. The composite antenna made of the conventional 

conductive composite materials such as carbon fiber composite (CFC) and 

carbon fiber fabrics suffer from high losses and poor radiation efficiency due 

to the low conductivity of these materials which is about (3.5×102 S/m – 

3×104 S/m). In addition, the fabric mesh style of the conductive fabric makes 

it very suitable to be laminated with resin and thus seamless integration with 

composite material. Moreover, the fabrication technique proposes a laser 

etching method for precise antenna fabrication where the conductive fabric is 

embedded inside the resin; therefore, the laser will etch the unnecessary parts 

of the fabric without affecting the dielectric substrate. The fabrication 

technique is validated by fabricating a UWB antenna. The fabricated antenna 

exhibited a measured radiation efficiency reaches over 80% averaged value 

throughout the operating frequency band with a maximum gain of 3.1 dBi at 

5 GHz and stable radiation patterns. The composite antenna performs well 

under bending conditions as demonstrated by the measurements.  

 

c. A Low Cost Instant Inkjet-Printed Flexible UWB Antenna  

This contribution investigated low-cost silver–nano inkjet printing 

technology for seamless integration of the UWB antennas with printable 

electronics and systems. The investigated printing technology possesses 
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superior properties such as low cost, room temperature fast sintering and low 

processing time compared to the conventional silver–nano printing 

technology based on thermal sintering. A UWB antenna is printed onto a PET 

film and the printed traces are sintered instantly where the highest 

conductivity value achieved within few seconds without any further sintering 

process and without affecting the polymer substrate. The antenna elements 

are printed precisely using an ordinary inkjet printer. The antenna operates 

effectively in the 3.3 GHz - 12 GHz band. Its radiation efficiency reaches 

over 80% average value throughout the operating frequency band with stable 

radiation patterns. It exhibits highly flexible mechanical properties enabling it 

to be bent without sacrificing its performance. 

1.6 Thesis Outline 

This thesis is outlined in seven chapters. The first chapter presents the overall 

view of the project, which includes the research background, problem statement, the 

research objectives, the contributions to knowledge, the research scope, and the 

thesis organization.  

The second chapter reviews the literature. The chapter discusses structural 

aspects of the flexible antenna and the electrical characteristics of flexible materials. 

Also, the requirements and challenges of transparent, composite and inkjet printed 

antenna applications are presented. 

The methodology used to realize the proposed technologies and the antenna 

design are discussed in Chapter 3 initiated with the detail discussion of the research 

framework. The step by step fabrication technology which proposed in this research 

to fabricate flexible transparent antenna, flexible PMC composite antenna and the 

inkjet printed antenna is presented. In addition, the fabrication and measurement 
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procedures and tools used are demonstrated. The design specifications and 

parameters used to achieve the desired results are demonstrated. 

Chapter 4 discuss the validation of the flexible transparent antenna technique 

presented in chapter 3 through the design and fabrication of a UWB antenna. The 

antenna radiation performance has been evaluated via analysing the measurement 

and simulated results of the return loss, gain, efficiency and radiation patter. At the 

end of the chapter the achieved antenna performance results has been compared to 

the previous reported flexible transparent antenna radiation performance.   

Chapter 5 illustrate the validation of the flexible PMC composite antenna 

technique presented in chapter 3 by designing and fabricating a UWB antenna. To 

evaluate the antenna radiation performance, the measurement and simulated results 

of the return loss, gain, efficiency and radiation patter has been compared and 

analysed. At the end of the chapter the achieved antenna performance results has 

been compared to the previous reported flexible composite antenna radiation 

performance.  

Chapter 6 demonstrates the evaluation of a sintering free and instant inkjet 

printing technology for printed flexible UWB antenna applications. The technology 

assessment has been presented throughout the chapter by printing UWB antenna and 

discussing the performance results.   

Finally, the conclusion and the recommendations for further work are 

presented Chapter 7. The achievements of the research and future works 

recommendations are depicted. A list of the references and some appendices are 

documented at the end. 
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