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ABSTRACT 
 
 
 
 

Downstream processing of antibiotics conventionally involves filtration, 
solvent extraction, and crystallization.  Formation of stable emulsion during 
conventional solvent extraction of antibiotics causes high solvent consumption and 
low product yield.  Recently, reverse micelle extraction has been investigated for the 
extraction of proteins and dyes.  Reverse micelle extraction has the advantages of 
easy operation, high selectivity, mild operating conditions, short extraction time, 
preserved protein activities, reduced emulsion formation, and safer solvents, as well 
as having the potential for scale up, continuous operation, and solvent recycling.  
Most researchers use chemical surfactants for their reverse micelle extraction.  In this 
study, sophorolipids biosurfactant was used for the first time for formation of reverse 
micelles to extract antibiotics.  Application of biosurfactant can further improve 
reverse micelle extraction in terms of sustainability and environmental friendliness.  
Experiments were conducted to explore the reverse micelle extraction of amoxicillin 
and erythromycin.  Solution pH was found to be the most dominant factor during 
both reverse micelle extraction of amoxicillin and erythromycin.  Strong attractive 
electrostatic interactions between antibiotics and sophorolipids at solution pH below 
the isoelectric point of antibiotics allow more antibiotics to be extracted during 
forward extraction but fewer antibiotics to be released during backward extraction.  
Attractive electrostatic interactions which diminished at solution pH higher than the 
isoelectric point of antibiotics reduced forward extraction efficiency but promoted 
backward extraction efficiency.  Both amoxicillin and erythromycin are very 
sensitive to surrounding pH and will degrade at solution pH outside of their stable 
pH ranges.  Minimum amount of KCl was needed for the reverse micelle extraction 
of both amoxicillin and erythromycin.  High KCl concentration hindered both 
forward and backward extraction of antibiotics.  Sophorolipids is crucial in enabling 
the transfer of antibiotics into the isooctane organic phase.  Increasing sophorolipids 
concentration increases the amount of antibiotics been extracted.  Mass transfer 
studies showed that reverse micelle extraction of amoxicillin and erythromycin can 
be completed in very short time.  Overall mass transfer coefficients of backward 
extraction was lower than that of forward extraction for both amoxicillin and 
erythromycin indicating that backward extraction is more difficult than forward 
extraction process.  Comparisons between amoxicillin and erythromycin showed that 
erythromycin has better equilibrium partitioning and larger calculated overall mass 
transfer coefficients compared to amoxicillin.  There may be some differences on the 
behaviours of amoxicillin and erythromycin during the reverse micelle extraction 
process.  This reverse micelle extraction method was found to be more efficient in 
extracting erythromycin compared to amoxicillin.  Furthermore, the study also 
confirmed that the quality of palm oil based sophorolipids is comparable to those of 
commercial sophorolipids.   
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ABSTRAK 
 
 
 
 

Pemprosesan hiliran antibiotik konvensional melibatkan penapisan, 
pengekstrakan pelarut, dan penghabluran.  Pembentukan emulsi antibiotik yang stabil 
dalam penggunaan pengekstrakan pelarut konvensional menyebabkan penggunaan 
pelarut yang tinggi dan hasil produk yang rendah.  Pengekstrakan misel balikan telah 
dikaji untuk pengekstrakan protein dan pencelup.  Pengekstrakan misel balikan 
mempunyai kelebihan operasi yang mudah, kememilihan yang tinggi, keadaan 
operasi yang sederhana, masa pengekstrakan yang pendek, pemeliharaan aktiviti-
aktiviti protein, pembentukan emulsi yang kurang, penggunaan pelarut yang selamat, 
mempunyai potensi untuk penggandaan skala, operasi secara berterusan, dan kitar 
semula pelarut.  Kebanyakan penyelidik menggunakan surfaktan kimia untuk 
pengekstrakan misel balikan.  Dalam kajian ini, biosurfaktan soforolipids telah 
digunakan untuk kali pertama untuk pembentukan misel balikan bagi mengekstrak 
antibiotik.  Penggunaan biosurfaktan dapat meningkatkan lagi pengekstrakan misel 
balikan dari segi kelestarian and mesra alam.  Eksperimen telah dijalankan untuk 
mengkaji pengekstrakan misel balikan pada amoksisilin dan eritromisin.  Faktor 
paling dominan semasa pengekstrakan misel balikan amoksisilin dan eritromisin 
adalah pH larutan.  Interaksi tarikan elektrostatik antara antibiotik dan soforolipids 
pada pH larutan yang lebih rendah daripada takat isoelektrik antibiotik membolehkan 
lebih banyak antibiotik diekstrak semasa pengekstrakan ke hadapan tetapi 
berkurangan semasa pengekstrakan ke belakang.  Interaksi tarikan elektrostatik 
berkurangan pada pH larutan yang lebih tinggi daripada takat isoelektrik antibiotik 
yang mengurangkan kecekapan pengekstrakan ke hadapan tetapi meningkatkan 
kecekapan pengekstrakan ke belakang.  Kedua-dua antibiotik adalah sangat sensitif 
terhadap pH persekitaran dan akan mengalami degradasi pada pH di luar julat pH 
stabil.  Amaun minimum KCl adalah diperlukan untuk pengekstrakan misel balikan 
bagi kedua-dua antibiotik.  Kepekatan KCl yang tinggi menghalang pengekstrakan 
misel balikan antibiotik.  Soforolipids adalah diperlukan untuk membolehkan 
pemindahan antibiotik kepada fasa organik isooktana.  Peningkatan kepekatan 
soforolipids juga akan meningkatkan jumlah antibiotik yang diekstrak.  Kajian 
pemindahan jisim menunjukkan bahawa pengekstrakan misel balikan amoksisilin 
dan eritromisin boleh disiapkan dalam masa yang amat singkat.  Pekali pemindahan 
jisim keseluruhan pengekstrakan ke belakang yang lebih rendah daripada 
pengekstrakan ke hadapan menunjukkan bahawa pengekstrakan ke belakang adalah 
lebih sukar daripada pengekstrakan ke hadapan.  Kajian ini menunjukkan bahawa 
eritromisin mempunyai keseimbangan pembahagian dan pekali pemindahan jisim 
keseluruhan yang lebih baik daripada amoksisilin.  Kaedah pengekstrakan misel 
balikan dalam kajian ini adalah lebih cekap untuk mengekstrak eritromisin 
berbanding dengan amoksisilin.  Tambahan pula, kajian ini juga mengesahkan 
bahawa kualiti soforolipids berasaskan minyak kelapa sawit adalah setanding dengan 
soforolipids komersial.   
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CHAPTER 1  
 
 
 
 

INTRODUCTION 
 
 
 
 

1.1 Research Background 

 

 Antibiotics started to gain popularity since the introduction of germ theory of 

disease in the late 1800s.  Throughout the centuries, various antibiotics were 

produced and commercialized.  Several common antibiotics nowadays are penicillin 

G, amoxicillin, and erythromycin.  During the complex bioprocesses of antibiotics 

production, there are three stages that need to be considered.  Firstly, the seed culture 

should be optimized for higher antibiotic yield and large scale production (Zou et al., 

2011).  Secondly, the main fermentation should be optimized by adjusting 

appropriate factors such as raw materials’ concentrations, temperature, pH of culture, 

and aeration to obtain higher production.  Thirdly, downstream processing is required 

to separate the desired products from other impurities.  Downstream processing of 

antibiotics contributes to a large portion of total production costs because the product 

streams from broth have large volume but low concentration of antibiotics (Li et al., 

2004b).  Conventional strategy for downstream processing of antibiotics involves 

filtration of broth to remove impurities especially surface active substances, solvent 

extraction, and crystallization to polish the product.   

 

 Reverse micelle extraction utilizes the special characteristics of reverse 

micelles formed by surfactant molecules in apolar solvent as a mean to selectively 

extract molecules which are oppositely charged with surfactant used from aqueous 

solution into the solvent.  Its advantages are easy to scale up, high selectivity, low 

energy consumption, possible continuous operation, and mild thermal operating 

conditions (Mohd-Setapar et al., 2009).  Reverse micelle extraction consists of two 
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steps: forward extraction and backward extraction.  During forward extraction, target 

molecules are transferred from aqueous solution into an organic phase through 

reverse micelles.  During backward extraction, target molecules loaded in reversed 

micelle phase are released into a fresh aqueous phase for recovery.  In some cases, 

only forward extraction is carried out to remove unwanted substances from water 

without the need of recovery. 

 

 Reverse micellar system is widely studied for downstream processing of 

biotechnology products.  Various bio-molecules such as penicillin G (Mohd-Setapar 

and Mohamad-Aziz, 2013), nattokinase (Liu et al., 2004), chitosanases (Chen et al., 

2006), polyphenol oxidase (Imm and Kim, 2009), β-glucosidase (Hemavathi et al., 

2010), lipase (Gaikaiwari et al., 2012a), and laccase (Peng et al., 2012) were 

effectively recovered using reverse micelle extraction.  Various modifications were 

also studied to improve this method in term of effectiveness and environmental 

friendliness.  For instance, mixed reverse micellar system was studied by Norazimah 

Mohamad-Aziz et al. (2013) to extract amoxicillin. The result showed reduced 

surfactant consumption compared to when single surfactant system was used.   

 

 Compared to chemical surfactant such as bis (2-ethylhexyl) sodium 

sulfosuccinate (AOT), very few studies were reported for the reverse micelle 

extraction of bio-molecules using biosurfactants.   Rhamnolipid, a type of 

biosurfactant was used by Peng et al. (2012) to extract laccase from C. versicolor.  

The use of biosurfactant provides a more environmental friendly operation.  Their 

study shows that significantly lower concentration of biosurfactant was needed for 

the extraction compared to chemical surfactants.  Examination on the effects of 

extraction conditions shows that the process is very similar to those using chemical 

surfactants.  The extraction yields final activity recovery of 91.1% and purification 

factor of 4.31 (Peng et al., 2012).  The solvent can also be reused for three times with 

minor drop in extraction efficiency.  This study shows that biosurfactants has the 

potential to replace the chemical surfactants in reverse micelle extraction of bio-

molecules. 

 

 Sophorolipids are biosurfactants commonly produced from non-pathogenic 

yeast Candida bombicola.  Different structures of sophorolipids can be obtained by 
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using different feed stocks and cell culture but they are basically divided into two 

types: lactonic form and acidic form.  These two forms have their own interesting 

features (Shah et al., 2005).  They can be tailored to meet specific needs making 

them quite flexible in applications.  Researchers also studied the use of low cost raw 

materials for production of sophorolipids to make them more competitive especially 

for cosmetics and pharmaceutical applications (Deshpande and Daniels, 1995; Felse 

et al., 2007).  Examination on sophorolipids surfactant characteristics reveals that 

they have better, if not similar properties compared to chemical surfactants (Van 

Bogaert et al., 2011).  Thus, they have the potential to replace chemical surfactants. 

 
 
 

 
1.2 Problem Statement 

 

 Conventionally, antibiotics are recovered through liquid-liquid extraction.  A 

lot of solvents were tested for the extraction but many of them are not suitable due to 

their high solubility in water or undesirable toxic properties (Kawasaki et al., 1996).  

One of the most commonly used solvent for antibiotics extraction to date is butyl 

acetate because it is biodegradable and has relatively low toxicity.  However, the 

high boiling point of butyl acetate is said to cause subsequent processing more costly 

(Manic et al., 2011).  Besides selecting a suitable solvent, the liquid-liquid extraction 

process itself also faces a major difficulty: formation of stable emulsion.  The 

emulsion is caused by the cell and finely dispersed surface active substances, 

especially protein and polysaccharides (Li et al., 2004b).  The emulsion makes the 

separation process harder.  It causes high solvent consumption and low product yield.  

In some cases, de-emulsifiers are added to prevent emulsion formation.  However, 

this will increase the production costs and bring negative impacts to the environment.  

Furthermore, adding de-emulsifier sometimes cannot eliminate entirely the emulsion.  

Conventional liquid-liquid extraction also takes long time (Le et al., 2001).  This 

prolonged contact of antibiotic molecules with organic solvent may cause 

irreversible damage to the antibiotic molecules, resulting in low activity recovery. 

 

 Reverse micelle extraction has great potential for the extraction of bio-

molecules as reported by various researchers.  High recovery, often more than 90%, 
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can be achieved.  The solvents and surfactants can be recycled and reused.  This 

makes reverse micelle extraction a cost saving method.  Besides that, it can be 

optimized easily by adjusting several parameters including pH, surfactant 

concentration, and salt concentration.  This makes it a relatively easy operation.  The 

structure of reverse micelles can effectively protect the antibiotics capped inside 

from direct contact with the solvents.  Therefore, less degradation occurs and activity 

recovery can be increased.  Reverse micelle extraction also takes significantly shorter 

time than conventional liquid-liquid extraction.  The surfactants used to form reverse 

micelles are mostly chemical surfactants such as AOT, sodium dodecyl sulfate (SDS), 

and cetylmethylammonium bromide (CTAB) due to their effectiveness. 

 

 Recently, public concern regarding preservation of the environment is 

increasing.  Although chemical surfactants can give high extraction performance, 

their hard to degrade characteristic and toxicity cannot be ignored.  Therefore, it is 

desirable to replace the chemical surfactants with biosurfactants produced from 

renewable resources.  Sophorolipids are biosurfactants produced from yeast using 

renewable feed stocks.  They are readily biodegradable and have lower toxicity than 

chemical surfactants (Ma et al., 2012).  Their surfactant characteristics are 

comparable to those of chemical surfactants or even better by having lower critical 

micelle concentration (CMC).  Therefore in this study, sophorolipids will be used for 

the first time to extract antibiotics from aqueous solution.  Amoxicillin and 

erythromycin are among the most widely prescribed antibiotics (Center for Disease 

Dynamics, 2015).  Amoxicillin is commonly used to treat respiratory infection, ear, 

nose and throat infection, skin infection, and urinary tract infection caused by 

bacteria.  Erythromycin is usually used to treat respiratory tract infection, skin 

infection, and gastrointestinal infection caused by bacteria.  It is also often used as 

alternative antibiotics by people who are allergic to penicillin.  Amoxicillin and 

erythromycin are from different classes of antibiotics with their own characteristics.  

The effects of these differences in characteristics on reverse micelle extraction of 

antibiotics need to be investigated.  Thus, amoxicillin and erythromycin are chosen 

as target antibiotics for reverse micelle extraction in this study.   
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1.3 Objectives of the Study 

 

 The aim of this study is to investigate the potential of sophorolipids reverse 

micelle to extract antibiotics from aqueous solution.  This was completed through 

following objectives: 

 

Objective 1:  To study the reverse micelle extraction of amoxicillin and 

erythromycin using sophorolipids biosurfactant and factors affecting 

the extraction. 

 

Objective 2:  To investigate the significance of main factors and optimize the 

reverse micelle extraction of amoxicillin and erythromycin. 

 

Objective 3: To investigate the mass transfer behaviour of amoxicillin and 

erythromycin in their reverse micelle extraction using sophorolipids 

respectively. 

 
 
 
 
1.4 Scopes of the Study 

 

 In order to achieve the objectives of study, the scopes of research are outlined 

as followed: 

 

Scope 1: Conducting forward and backward extraction of amoxicillin and 

erythromycin utilizing sophorolipids reversed micelles.  Detailed 

scopes are: 

 

i) Using palm oil based sophorolipids to form reversed micelles for 

the extraction of amoxicillin. 

ii) Using commercial sophorolipids to form reversed micelles for the 

extraction of amoxicillin and erythromycin. 

iii) Changing aqueous phase pH, sophorolipids concentration, and 

salt concentration to study their effects on the extraction. 
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Scope 2: Using central composite design to study the significance of the factors 

and trends of extraction.  Detailed scopes are: 

 

i) Using statistical analysis to obtain appropriate empirical models 

for reverse micelle extraction of amoxicillin and erythromycin. 

ii) Using statistical software to obtain response surfaces for the 

reverse micelle extraction and study the effects of main factors. 

iii) Using response surfaces to find optimum regions for reverse 

micelle extraction of amoxicillin and erythromycin.   

 

Scope 3: Developing appropriate mass transfer equations to describe the reverse 

micelle extraction processes of amoxicillin and erythromycin. 

 

Scope 4: Comparing the reverse micelle extraction processes between 

amoxicillin and erythromycin. 

 
 
 
 
1.5 Significance of Research 

 

 The main contribution of this research is to show the potential of 

sophorolipids for liquid-liquid extraction of antibiotics.  Significance of affecting 

factors and trends of reverse micelle extraction of antibiotics using sophorolipids are 

revealed through this study.  This study also shed some light on the kinetic of the 

reverse micelle extraction, which will be useful for future design of the separation 

process.  The impacts of different antibiotic structures and characteristics on reverse 

micelles extraction can be seen through this research.  Sophorolipids, which are 

environmental friendly, will be a good replacement for chemical surfactants to 

extract antibiotics.  This should encourage more studies regarding biosurfactants for 

extraction of bio-molecules, promoting the development of greener processes.  At the 

same time, it will show the usefulness of palm oil based biosurfactants. 
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1.6 Chapter Summary 

 

 In this chapter, a brief introduction to the study is given.  The objectives, 

scopes, and significance of the research are also presented.  Detailed discussion 

regarding reverse micelle extraction, sophorolipids, antibiotics and downstream 

processing of antibiotics will be presented in Chapter 2.  The materials and 

equipment, as well as experimental procedures will be given in Chapter 3.  Results 

and analysis will be discussed in Chapter 4, Chapter 5, Chapter 6, and Chapter 7.  

Lastly, Chapter 8 will end the discussion with conclusions and recommendations. 
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