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ABSTRACT 

 
 
 
 

In this study, the effects of organic solvents, heat treatment methods, post-
interfacial polymerization (IP) rinsing (prior to membrane heat treatment) and 
additives on the properties of thin film composite (TFC) membranes were investigated 
prior to the fabrication of thin film nanocomposite (TFN) membranes incorporated 
with inorganic nanomaterials. It was found that the preservation of substrate pore 
structures and the removal of excess monomers and organic solvent from the 
membrane surface are imperative to fabricate reproducible TFC membranes with 
consistently high water flux and salt rejection. The main findings from investigating 
the IP parameters are i) keeping the substrate at minimal heat exposure could prevent 
substrate pore collapse that potentially reduces the membrane water permeability, ii) 
rinsing membranes with pure n-hexane after IP resulted in membranes having higher 
pure water flux (PWF) without significantly decreasing solute rejection, iii) the 
membrane performances became practically the same after post-IP rinsing, regardless 
of the solvent used in the IP reaction and iv) membranes fabricated using 
triethylamine-camphorsulfonic acid-sodium dodecyl sulfate (TEA-CSA-SDS) 
additives exhibited higher PWF and salt rejection than the membranes fabricated in 
the absence of the additive. For the TFN membranes, it was found that nanomaterial 
structures (i.e., sizes and shapes) affect the separation performance of the resultant 
TFN membranes. Noticeably, titanium-based nanomaterial in spindle-like nanoporous 
structure (f-nTiO2) yielded membrane of better filtration performances than its tubular 
structure – functionalized titanate nanotube (f-TNT). Compared to TFN-f-TNT 
membrane, TFN-f-nTiO2 membrane possessed greater water flux (4.26 vs. 3.36 
L/m2·h·bar), NaCl (98.04 vs. 97.28%) and boron rejection (54.82 vs. 48.86%). 
Ultimately, the incorporation of nanomaterial into membrane selective layer was found 
to improve membrane water flux at the expense of NaCl and boron rejection in 
comparison to the TFC membranes. Surface coating of TFN membranes with 
polyvinyl alcohol (PVA) was found to be effective to recover membrane solute 
rejection, with slight reduction in water flux. The synergic effect of nanomaterial 
incorporation and PVA coating resulted in improved membrane water flux without 
trading off its solute rejection. 
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ABSTRAK 

 
 
 
 

Dalam kajian ini, kesan-kesan pelarut organik, kaedah rawatan haba, 
pembilasan pasca pempolimeran antara muka (IP) (sebelum rawatan haba) dan bahan 
tambahan terhadap sifat membran komposit filem nipis (TFC) telah dikaji sebelum 
penghasilan membran nanokomposit filem nipis (TFN) yang mengandungi bahan nano 
bukan organik. Ia didapati bahawa pemeliharaan struktur liang substrat dan 
pengeluaran monomer dan pelarut organik yang berlebihan daripada permukaan 
membran adalah penting bagi menghasilkan membran TFC yang boleh direproduksi 
dan mempunyai kebolehtelapan air dan penolakan garam yang tinggi dan konsisten. 
Antara penemuan utama dalam kajian parameter IP ialah i) pendedahan substrat pada 
rawatan haba yang minimum boleh mengelakkan keruntuhan liang substrat yang 
berpotensi mengurangkan kebolehtelapan air membran, ii) pembilasan membran 
dengan n-heksana tulen selepas IP menghasilkan membran yang mempunyai 
kebolehtelapan air tulen (PWF) yang lebih tinggi tanpa mengurangkan penolakan 
pelarut, iii) prestasi membran menjadi sama selepas pembilasan pasca IP, tidak kira 
jenis pelarut yang digunakan semasa reaksi IP dan iv) membran yang dihasilkan 
menggunakan bahan tambahan triethylamine-camphorsulfonic acid-sodium dodecyl 
sulfate (TEA-CSA-SDS) mempunyai PWF dan penolakan garam yang lebih tinggi 
berbanding membran yang dihasilkan tanpa bahan tambahan. Bagi membran TFN, 
didapati bahawa struktur nanomaterial (i.e., saiz dan bentuk) mempengaruhi prestasi 
membran. Secara ketaranya, representasi bahan nano berasas titanium dalam bentuk 
gelendong berliang (f-nTiO2) menghasilkan membran yang berprestasi lebih baik 
daripada representasinya dalam bentuk tiub (f-TNT). Berbanding dengan membran 
TFN-f-TNT, membran TFN-f-nTiO2 mempunyai kebolehtelapan air (4.26 vs. 3.36 
L/m2·h·bar), penolakan NaCl (98.04 vs. 97.28%) dan boron (54.82 vs. 48.86%) yang 
lebih tinggi. Akhirnya, penggabungan bahan nano ke dalam lapisan selaput membran 
dapat meningkatkan kebolehtelapan air membran tetapi menjejaskan penolakan NaCl 
dan boron. Penyalutan permukaan membran TFN dengan alkohol polivinil (PVA) 
didapati berkesan untuk memulihkan penolakan larut membran, dengan sedikit 
pengurangan pada kebolehtelapan air. Kesan sinergi daripada penggabungan bahan 
nano dan penyalutan dengan PVA dapat meningkatkan kebolehtelapan air membran 
tanpa menjejaskan penolakan larut. 
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CHAPTER 1 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1 Background Study 

 
 

Mankind has long been relying on natural freshwater resources for water 

supply. In ancient time, mankind withdrew water from the nature (i.e., rivers, lakes 

and groundwater aquifers) for domestic uses and irrigation purposes. Today, although 

the practice of sourcing water from the nature remains unchanged, the amount of water 

withdrawn has certainly increased, given i) the need to supply an appreciable amount 

of water to the industrial and manufacturing sectors, in addition to domestic uses and 

irrigation purposes as well as ii) the need to meet the needs of the ever-growing world 

population. In view of this, it may be reasonable to assume that the total water 

withdrawal from the nature will continue to rise in the future. 

 
 

To put things into perspective, Wada and Bierkens (2014) estimated and 

projected the trends for total global water withdrawal, sectoral water consumption as 

well as groundwater abstraction from the 1960s to the 2100s, as shown in Figure 1.1. 

It can be seen that the total water withdrawal has increased remarkably from the 1960s 

until 2010, which is in line with the increase in sectoral water consumption. Moreover, 

it is projected that the sectoral water consumption and total water withdrawal will 

continue to rise, with no sign of levelling off until 2100.
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Figure 1.1: Estimated and projected trends of total blue water withdrawal, sectoral 

blue water consumption and total groundwater abstraction over the period from 1960 

to 2100 (Wada and Bierkens, 2014). 

 
 

Nonetheless, it is worth noting that freshwater supplies from the nature are 

finite, as only 0.007% of the total water on Earth is readily accessible by mankind. 

Additionally, it is also interesting to note that only 30% of the extracted water goes 

back directly into the surface waterways or groundwater, whereas the balance is either 

lost or consumed, thereby requiring wastewater treatment (Kürklü et al., 2017). Under 

these circumstances, when the water withdrawal rate is approaching the nature’s self-

replenishing rate, it may lead to an increase in water stress worldwide. Figure 1.2 

depicts the water stress by country as projected by Luo et al. (2015) based on a series 

of reported and modelled global datasets. It clearly shows that more than half of the 

countries worldwide may experience critical water stress by year 2040 due to high 

water withdrawal and consumption rates. 

 
 

In addition to high water withdrawal, the occurrence of climate change, as well 

as the pollution of freshwater sources due to anthropogenic activities are generally 

perceived as the contributing factors that will greatly reduce freshwater availability in 

years to come. In this regard, key players in the water industries should opt for more 

promising methods to augment the supply of freshwater, one of which is to tap on the 

unconventional water source – the ocean. 
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Figure 1.2: Water stress by country (Luo et al., 2015). 

 
 
 
 
1.2 Saline Water Desalination 

 
 

Over the years, there are two main technologies developed to desalinate saline 

water, which are the thermal and membrane technologies. These technologies have 

been proven to successfully remove >99% of salt from saline water, hence 

demonstrating the practicability of converting saline water into freshwater. For thermal 

technologies such as multi-stage flash and multi-effect distillation, desalination is 

achieved by heating saline water in a series of low pressure chambers and condensing 

water vapor into pure water. On the other hand, membrane technologies such as 

nanofiltration (NF) and reverse osmosis (RO) produce freshwater by pressurizing 

saline water through a series of thin sheet membranes that are capable of filtering out 

dissolved salts while allowing water molecules to pass through. 

 
 

Although both methods are capable of desalinating saline water, membrane 

technologies are currently preferred over the thermal technologies. This is due to the 

recent cost hike in energy production, which renders thermal technology a costly 

method for freshwater production. Furthermore, extensive research in membrane 
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development has greatly reduce the cost for saline water desalination using membrane 

technologies. As of 30th June 2015, there are a total of 18,426 desalination plants 

installed across 150 countries worldwide, producing a sum of 22.9 billion US gallons 

of freshwater to support the usage of more than 300 million people (International 

Desalination Association, 2015). It is worth nothing that out of the total desalination 

plants installed, >60% are operating based on the RO technology (Figure 1.3). 

 
 

 
Figure 1.3: Distribution of total world installed capacity by technology (Burn et al., 

2015). 

 
 

Current state-of-the-art membrane desalination plants are utilizing thin film 

composite (TFC) membranes for saline water desalination via RO processes. This type 

of membrane was firstly introduced by Cadotte and his colleagues back in the 1970s 

(Cadotte et al., 1980) and has since made saline water desalination a feasible process 

worldwide. To date, TFC membrane serves as the benchmark for membrane 

development owing to i) its superior salt separating capabilities at a relatively high 

water permeability, ii) high pH, temperature and chemical tolerance, iii) high 

mechanical strength and iv) the possibility of optimizing the selective and support 

layers independently for desired performance enhancements. Nevertheless, further 

membrane improvements with respect to its water permeability (without jeopardizing 

its solute rejection capabilities), fouling and chlorine resistance are necessary to further 

improve the economics of the membrane desalination processes. 
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In the recent years, research spotlight for membrane development has been 

focused on the development of thin film nanocomposite (TFN) membranes that was 

introduced by Jeong and his colleagues back in year 2007 (Jeong et al., 2007). TFN 

membranes were reported to exhibit higher water permeability at similar salt rejection 

as the TFC membranes. Additionally, some TFN membranes were also demonstrated 

to exhibit better fouling and chlorine resistance. Albeit the enhanced separation 

performance of TFN membranes, there remains some rooms for improvements in its 

fabrication process as elucidated in the next sub-section. 

 
 
 
 
1.3 Problem Statements 

 
 

Both TFC and TFN membranes are fabricated using interfacial polymerization 

(IP) approach. In brief, IP process involves i) the contact and reaction of two 

monomers (an amine monomer (dissolved in water) and an acyl chloride monomer 

(dissolved in organic solvent)) atop a microporous support, thus forming the 

polyamide selective layer, followed by ii) membrane heat treatment to promote further 

membrane cross-linking and the removal of excess solvent. For the fabrication of TFN 

membranes, hydrophilic nanomaterials are commonly dispersed in the aqueous phase 

prior to the IP process. Nevertheless, it was demonstrated by Huang et al. (2013) that 

the dispersion of nanomaterial in the organic phase yielded membrane of better 

filtration performances in comparison to membrane formed by dispersing 

nanomaterial in the aqueous phase. However, the dispersion of hydrophilic 

nanomaterial in the organic solvent remains challenging owing to their 

incompatibilities. 

 
 

To improve the dispersion of hydrophilic nanomaterials in organic solvent, 

Emadzadeh et al. (2015) and Lai et al. (2016) replaced the commonly used organic 

solvent (n-hexane) with cyclohexane in the membrane fabrication process. According 

to the authors, nanomaterials tended to disperse better in organic solvents of higher 

boiling point and viscosity. In view of this, Isoparaffin-G, an organic solvent with 

viscosity and boiling point even higher than cyclohexane could potentially be used for 
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even better nanomaterial dispersion. However, the effects of organic solvents on the 

separation performances of TFC membrane must be studied prior to the fabrication of 

TFN membranes. This is because both the IP reaction and membrane heat treatment 

conditions are dependent on the properties of the organic solvent (i.e., surface tension, 

viscosity and boiling point). Therefore in the first part of this study, the effects of 

organic solvent are investigated by fabricating a series of TFC membranes using four 

different types of organic solvents. Alongside the study of organic solvent, membrane 

heat treatment methods, post-IP treatment (prior to heat treatment) and the usage of 

additives are also investigated. It is anticipated that highly reproducible TFC 

membranes could be fabricated and serve as a stable baseline for comparison with the 

TFN membranes in the second part of this study. 

 
 

For the fabrication of TFN membranes, some general basis for the selection of 

new nanomaterial in the fabrication of TFN membranes could be formulated with 

reference to the findings published in the literature. Generally, the nanomaterial should 

be i) highly hydrophilic, ii) negatively charged and iii) possessing pores or water 

channels. In addition to these criteria, it is worth noting that structure of the 

nanomaterial (i.e., size and shape) should also be taken into consideration. The effects 

of nanomaterial structure (same material with similar shapes but different sizes) on 

membrane performance was previously reported by Lind et al. (2009). Meanwhile, the 

effects of nanomaterial structure (considering same material with different sizes and 

shapes) on membrane performance, however, has not been discussed in the past. 

 
 

In the second part of this study, experimental works are planned systematically 

to investigate the effects of nanomaterial structure (different sizes and shapes) on 

membrane separation performance. Additionally, membrane surface coating is studied 

to minimize surface defects that is likely to occur following the incorporation of 

nanomaterials. In addition to membrane water flux and salt rejection, boron rejection 

of all TFC and TFN membranes are evaluated to study the practicability of utilizing 

TFN membranes for saline water desalination. 
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1.4 Objectives 

 
 

Looking at the research problems stated in the previous sub-section, the 

following objectives are formulated: 

 
 

1. To study the effects of organic solvents, heat treatment methods, post-

interfacial polymerization solvent rinsing and additives on the 

physicochemical properties and performance of TFC RO membranes for salt 

and boron removal. 

2. To investigate the effects of nanomaterial structures and surface coating on salt 

and boron rejection of TFN RO membranes. 

 
 
 
 
1.5 Research Scopes 

 
 

To achieve the objectives of this study, the following scope of works are 

planned: 

 
 

1. Fabricating TFC membranes via interfacial polymerization of MPD (2.0 wt/v%) 

and TMC (0.1 wt/v%) under three different heat treatment methods. These 

methods differ from one and another with respect to the total membrane 

surfaces exposed to heat treatment. In Method A, both the polyamide (PA) and 

substrate layer will be exposed to heat treatment. Comparatively, only the PA 

layer will be heat treated in Method B and C. 

2. Characterizing the membrane surface hydrophilicity and morphology of TFC 

membranes formed in (1) using contact angle goniometer, field emission 

scanning electron microscopy (FESEM) as well as filtration performance 

against 2000 mg/L single salt solution (NaCl and/or CaCl2) and 5 mg/L boric 

acid aqueous solution. 

3. Fabricating two series of TFC membranes using four types of organic solvents 

(n-hexane, n-heptane, cyclohexane and Isoparaffin-G) by adopting the best 

heat treatment method discovered in (2). The TFC membranes are fabricated 
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by keeping one series of the membranes rinsed with pure n-hexane (prior to 

post-IP heat treatment) while another series without post-IP rinsing.  

4. Fabricating TFC membrane by adding additives in the aqueous phase during 

membrane fabrication process for comparison with the best membrane 

obtained in (2). 

5. Characterizing physicochemical properties and filtration performance of TFC 

membranes fabricated in (3) and (4). 

6. Synthesizing nanoporous titanium oxide (nTiO2) and titanate nanotube (TNT) 

using solvothermal and hydrothermal methods, respectively, followed by 

surface functionalization using 1-(2-amino-ethyl)-3-aminopropyl 

trimethoxysilane. 

7. Characterizing the physicochemical properties of the synthesized 

nanomaterials using Fourier-transform infrared spectroscopy (FTIR), 

transmission electron microscopy (TEM) and X-ray diffraction (XRD). 

8. Fabricating TFN membranes by incorporating self-synthesized nanomaterials 

(at a fixed loading of 0.05 wt/v%) into membrane PA selective layer under the 

best IP conditions found in (5). Coating TFN membranes using 0.1 wt% 

polyvinyl alcohol (PVA) to heal possible defects formed following the 

incorporation of nanomaterials. 

9. Characterizing possible changes to membrane surface roughness, morphology, 

functional groups and hydrophilicity following the incorporation of 

nanomaterials using atomic force microscopy (AFM), FESEM, FTIR and 

contact angle measurements. Evaluating membrane filtration performance 

against 2000 mg/L NaCl and 5 mg/L boric acid aqueous solution. 
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1.6 Significance of the Study 

 
 

In the recent years, TFN membranes have been extensively studied for saline 

water desalination. Published research works have demonstrated improved membrane 

separation performances upon the incorporation of nanomaterials in the membrane 

selective layer. Nevertheless, there remains several challenges in the fabrication 

process of TFN membranes. These challenges and research gaps form the basis of this 

study. It is envisaged that the study on the role of nanomaterial structures would allow 

membrane researchers to form better basis for the selection of novel nanomaterial for 

TFN membrane fabrication. Also, it is anticipated that the study of TFC and TFN 

membrane fabrication conditions as well as membrane surface coating would 

contribute to the fabrication of TFN membranes with consistent and superior 

separation performances for saline water desalination, thereby reducing the cost of 

saline water desalination. Furthermore, this study would allow membrane researchers 

to understand the effects of nanomaterials incorporation in TFN membrane boron 

rejection and the practicability of utilizing TFN membranes in saline water 

desalination.
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