HARDWARE BASED ACCELERATOR FOR DATABASE QUERY USING
M-TREE

CHAI KAH HIENG

UNIVERSITI TEKNOLOGI MALAYSIA

HARDWARE BASED ACCELERATOR FOR DATABASE QUERY USING
M-TREE

CHAI KAH HIENG

A project report submitted in partial fulfilment of the
requirements for the award of the degree of

Master of Engineering (Computer and Microelectronic Systems)

Faculty of Electrical Engineering
Universiti Teknologi Malaysia

JUNE 2018

11

ACKNOWLEDGEMENT

First of all, I would like to express the deepest appreciation to my supervisor
Muhammad Nadzir Marsono for continuously giving me advice, support, guideline
and supervise on this project. Besides, I would like to thank my coursemates and
colleagues in Intel for their supports and assistance in this project. In addition, I would
like to express my appreciativeness to my parents and friends for giving me mentally

support.

v

ABSTRACT

Fast indexing is an indexing methods that sort the database and enable content
to be accessed quickly. Fast query is part of fast indexing which able to perform the
query within a narrow range to reduce the query time. In fast query, machine learning
has played an important role on automate the tasks. In state-of-the-art, fast query
algorithm are built using software where the performance of the query process is based
on the performance of the general-purposed CPU. Besides, the total query time is
linearly proportional to the data size where the difficulty of fast query is increasing as
the data size increase which result in longer query time. Thus, a hardware accelerator
for fast query is proposed in this work. M-tree is a fast indexing algorithm using tree
data structure. M-tree data structure is constructed based on metric space and relied on
triangle inequality which offer efficient range and k-nearest neighbor (k-NN) queries.
The hardware accelerator is implemented using Xilinx’s Vivado Design Suite which
targeted on FPGA platform. The hardware accelerator is coded using System Verilog
HDL. The hardware accelerator is focusing on the fast query algorithm. The hardware
accelerator is designed to be generic which could be implement on different FPGA
board. The hardware accelerator has been evaluated by running the comparison on the
performance with the existing work which is the M-tree algorithm running in software.
The hardware accelerator is able to achieve significant speedup at approximatly 1000
times on the performance of query process compare to the M-tree running in software.
The overall performance of the hardware accelerator for several scenario also shown

the speedup compare to software based fast query.

ABSTRAK

Pengindeksan cepat adalah kaedah pengindeksan yang menyusun pangkalan
data dan membolehkan kandungan dapat diakses dengan cepat. Pertanyaan pantas
adalah sebahagian daripada pengindeksan cepat yang dapat melakukan pertanyaan
dalam jarak sempit untuk mengurangkan waktu permintaan. Dalam pertanyaan pantas,
pembelajaran mesin telah memainkan peranan penting dalam mengautomasikan tugas-
tugas. Algoritma pertanyaan cepat-cepat yang dibina menggunakan perisian di mana
prestasi proses pertanyaan adalah berdasarkan prestasi CPU yang dirancang secara
umum. Selain itu, jumlah masa pertanyaan secara linear berkadaran dengan saiz
data di mana kesukaran permintaan cepat semakin meningkat kerana peningkatan
saiz data yang menyebabkan masa pertanyaan yang lebih lama. Oleh itu, pemecut
hardware untuk pertanyaan pantas dicadangkan dalam kerja ini. M-tree adalah
algoritma pengindeksan cepat menggunakan struktur data pokok. Struktur data M-
tree dibina berdasarkan ruang metrik dan bergantung kepada ketidaksetaraan segitiga
yang menawarkan jawapan yang cekap dan k-terdekat jiran terdekat (k-NN). Penderas
perkakasan dilaksanakan menggunakan Xilinx’s Vivado Design Suite yang disasarkan
pada platform FPGA. Penderas perkakasan dikodkan menggunakan Sistem Verilog
HDL. Penderas perkakasan memfokuskan pada algoritma pertanyaan pantas. Penderas
perkakasan direka untuk menjadi generik yang boleh dilaksanakan pada papan FPGA
yang berbeza. Penderas perkakasan telah dinilai dengan menjalankan perbandingan
prestasi dengan kerja yang sedia ada yang merupakan algoritma M-tree yang berjalan
dalam perisian. Puncak perkakasan boleh mencapai kelajuan maksimum kira-kira
1000 kali pada prestasi proses pertanyaan berbanding dengan pokok M yang berjalan
dalam perisian. Prestasi keseluruhan pemecut perkakasan untuk beberapa senario juga

menunjukkan kelajuan berbanding dengan permintaan cepat berasaskan perisian.

CHAPTER

TABLE OF CONTENTS

TITLE

DECLARATION
ACKNOWLEDGEMENT
ABSTRACT

ABSTRAK

TABLE OF CONTENTS
LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

INTRODUCTION

1.1
1.2
1.3
1.4

Problem Background
Problem Statement
Objective and Scope

Organization

LITERATURE REVIEW

2.1
2.2

2.3

2.4

Introduction to Fast Query

M-tree

2.2.1 Data structure

2.2.2 Range Queries algorithm
Related Works

2.3.1 Performance of M-tree queries
2.3.2 Speedup for M-tree queries
Chapter Summary

METHODOLOGY

3.1

Proposed work
3.1.1 ASM Chart
3.1.2 Functional block diagram

vi

PAGE

il
11

v

vi
viii

iX

AW N = =

— 00 J O L W

13
14

15
15
16
16

3.1.3 Data structure

3.14 Operation

3.1.5 Synthesized design
3.1.5.1 Elaborated design
3.1.5.2 Utilization

3.1.5.3 Power consumption

3.2 Experimental setup
33 Chapter Summary
4 RESULTS AND DISCUSSION
4.1 Results of proposed work
4.1.1 Simulation results

4.1.2 Performance evaluation

4.2 Results Comparison
4.3 Chapter Summary
5 CONCLUSION
5.1 Project accomplishment of objectives
5.2 Future Works
REFERENCES

Vil

16
19
19
20
20
21
21
22

23
23
23
24
25
28

29
29
29

31

viil

LIST OF TABLES

TABLE NO. TITLE PAGE

4.1 Tabulated comparison results for number of query data 26

4.2 Tabulated comparison results for level of tree 26

FIGURE NO.

1.1
2.1
2.2
2.3
24
2.5
2.6
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

LIST OF FIGURES

TITLE

Prediction of data growth rate toward 2020 [1]
Euler diagram of an example data set [2]
Constructed M-tree from example data set [2]
M-Tree data structure of example data set [3]
Prune condition for non-leaf nodes [3]

Prune condition for leaf nodes [3]

Pseudo-code of M-tree range queries algorithm [4]
Top level view of the hardware accelerator

ASM chart

Functional block diagram of hardware accelerator
Data of nodes in memory module

Data of routing object in memory module

Data of object in memory module

Elaborated design

Utilization summary report

Power report

Simulation results for query with range
Simulation result for single query

Number of query data vs number of clock cycle
Level of tree vs number of clock cycle

Results of the M-tree query using software
Summary of system’s load inforamtion
Comparison of HW and SW for number of query data
Comparison of HW and SW for level of tree

X

PAGE

O 00 3 O\ =~

10

15
17
18
18
18
18
20
20
21
23
24
24
25
26
26
27
27

Al
ASIC
CPU
CU
DU
FIFO
FPGA
HDL
10T
1P
k-NN
SMP

LIST OF ABBREVIATIONS

Artificial intelligent
Application-Specific Integrated Circuit
Central Processing Unit

Control Unit

Datapath Unit

First-in-First-Out
Field-Programmable Gate Array
Hardware Description Language
Internet of Things

Intellectual Property

k-Nearest Neighbor

Symmetric multiprocessing

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Big data, artificial intelligent (AI) and internet of things (IOT) had become
the hot areas in current trend and lead to the rapid growth of data size [S]. There
are many sources that predict the growth of data toward 2020. However, most of the
predictions are in broad agreement that the size of the digital data will become twice
on every two years which will result in 50 times on data growth from 2010 to 2020
[6]. According to a Cisco forecast, total data center traffic is projected to hit 15.3
zettabytes, or 15.3x10"21 GB, by the end of 2020 [7]. In addition, overall growth
rate of human generated data is approximately 10 times faster than traditional business
data, and machine data is increasing much more rapidly at 50 times of current growth

rate. One of the perdition on data growth is shown in Figure 1.1.

Database could be consist of different types of information. Furthermore,
database could having huge amount of similar data under one categorize. However,
there is only certain data is needed for each kind of event and the remaining data might
be redundant or non-related. Hence, linear query which is the basic query method that

searching throughout the entire database and looking for the matching information has

G < 10X
faster growth
R Q than traditional
" business data

4.4ZB 44.4ZB

Business data

Figure 1.1: Prediction of data growth rate toward 2020 [1]

been widely used to pick up the wanted data. With the exponential grow of data size
along with current trend, linear query is no longer sufficient for current situation as the
searching will took longer time [8]. As the processing on redundant data will introduce
unnecessary run time during the data processing. In addition, the performance of the
data processing will be further reduced due to the limitation on data retrieval rate of
current disk type where accessing unnecessary data entries will consume the bandwidth
of data retrieval rate and require longer access time of data from memory. Therefore,

the need of fast query for the database entries has been magnified.

There are multiple query algorithms such as M-tree have been developed by
researcher in software which is able to reduce the query time significantly. In query
algorithm, machine learning has played an important role. Machine learning is a
method of data analysis that using algorithms to learn from data and build the analytical
model automatically without being explicitly programmed [9]. The basic concept of
the query algorithm is trying to narrow down the searching area and thus improve
the query time. While the database size is continue to growth, the difficulty is also

increasing. Therefore, acceleration for fast query is needed for incoming demand.

In recent years, field-programmable gate array (FPGA) has been widely used.
Field-programmable gate array (FPGA) is an integrated circuit that designed to be
configured by a user after manufacturing. FPGA became the platform that allow the
user to design, develop, and test the prototype of integrated circuit. Hence, there
is possible to archive hardware acceleration. Hardware acceleration is the use of
hardware to perform some functions more efficiently than running in software on a
general-purpose CPU. One of the example is Application-Specific Integrated Circuit
(ASIC) which is an integrate circuit that being designed to perform specific application

and able to provide better performance compare to software.

1.2 Problem Statement

Database query algorithm has been developed to reduce the query time.
However, the total query time is linearly proportional to database size [10]. The larger
the size of database, the longer the query time. In state-of-art, the query algorithm
is mostly rely on the tree data structure which is able to eliminate the searching on
unnecessary data and improve the query time. However, the level of tree is increasing

when the database size increase and causing the difficulty of query increase. In

practical, this is unable to be change. Thus, acceleration is needed to speed up the

query process.

Besides, the total query time also proportional to the query size [11]. As the
number of queries increase, the query time increase. During the event that required to
retrieve multiple data such as the data within a range or data with similarity, the query
process will invoke the search on the all the data that match the searching criteria which
increase the query time. This also the event that is unchangeable, so the acceleration is

needed.

Furthermore, performance of query using software is relied on computation
unit [12]. In state-of-art, query algorithms are developed in software and software is
relying on computation unit to perform the tasks. Thus, device with good computation

unit is needed to observe good performance while performing query using software.

1.3 Objective and Scope

In this project, a hardware accelerator is being design and developed to perform
the fast query of database. The M-tree query algorithm has been studied and translated
into hardware architecture. Besides, the performance of the designed hardware

accelerator has been evaluate and comparison with software is done.

The objective of this work is to develop a hardware based accelerator for
database queries using M-tree range search algorithm to accelerate the query process.
The designed hardware accelerator is needed to provide the speedup compare to the

software while performing the query.

Besides, the work is also developed to accelerate the query of multiple data.
The designed hardware accelerator is needed to have the ability to perform the multiple

query in once. Furthermore, the speedup of the multiple query is required.

In addition, this works is proposed to eliminated the dependency on
computation unit for the query process. The hardware accelerator is designed to be a
separate hardware unit such that the query process no need to rely on a general-purpose
CPU.

The scope of this project is focusing on the architecture design of hardware
accelerator. The hardware accelerator is implemented using System Verilog Hardware
Description Language (HDL) for FPGA platform. The proposed work will focus on
fast query for database only. Besides, the proposed work is developed using the range
search algorithm based on M-tree Queries. In addition, the proposed work is limit the
node capacity of the M-tree data structure to two. Moreover, One dimensional fixed

point numerical data set is used in this project.

1.4 Organization

The report is organized with 5 chapters. Chapter 1 provide the introduction of
the project including background, problem statement, objective, and scope. Chapter
2 reviews the related literature review on state-of-the-art of query algorithm and other
related works. Chapter 3 describe the methodology for the overview of proposed work,
hardware accelerator architecture, query operation, and experimental setup. Chapter
4 elaborates the simulation results of the proposed work, comparison to the existing
work, and discussion. Chapter 5 concludes the project accomplishment and discuss on

the future works.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to Fast Query

Fast query is part of fast indexing which is used for the purpose of improving
the query time. In order to perform fast query, data indexing needed to be done in
advance. Data indexing is the process which create the index for the data based on the
similarity and the indexed data will be the input for fast query. Fast query is the process
that perform the query of information in a narrow range of data set without accessing

unnecessary data which reduce the query time significantly.

Most of the fast query algorithm rely on the tree data structure such that fast
query is able to pruned the sub-tree whenever the searching criteria is not met. By
pruning the sub-tree, unrelated data will be excluded from the search, and thus the
searching area could be narrow down. By narrow down the searching area, the query
efficiency is improved as the searching only happen on minimal entries. In addition,
this technique eliminate the accessing to the unnecessary data where there is no extra

accessing time being introduced.

There are multiple type of fast indexing algorithm has been developed such as
B-tree, R-tree, and M-tree. Different fast indexing algorithm using different method to
perform the indexing and the query M-tree has been chosen to be using in this project
as M-tree offer better performance over others fast indexing algorithm. Besides, M-
tree is much convenient will implementing in the hardware as the algorithm is based

on the metric space.

\

Figure 2.1: Euler diagram of an example data set [2]

2.2 M-tree

M-trees are tree data structures for indexing multi-dimensional information
which is developed in software by Ciaccia, P., Patella, M. and Zezula. M-tree is being
constructed based on metric space and is relies on the triangle inequality. Metric space
is the distance function that define the distance between each pair of elements. Triangle
inequality is a theory state that the the sum of the lengths of any two sides of any
triangle must be greater or equal to the length of another side. By using these two
methods, the database could be expressed in Euler diagram based on the distance of
each element as shown in Figure 2.1. From the Euler diagram in Figure 2.1, there are
parents sets and sub-sets. Then, M-tree could be built by sorting the sets into a tree

structure as shown in Figure 2.2.

As the data is being indexed by sets which having a covering radius, M-tree
offer efficient range and k-nearest neighbor (k-NN) queries. Besides, M-tree is able to
handle multi-dimensional data because the algorithm is having independent distance
function where the distance function could be change to support different dimensional

data set without affecting the flow of algorithm.

PEEEY

/

B

)
loe]
—

Figure 2.2: Constructed M-tree from example data set [2]

2.2.1 Data structure

M-tree consist of four main components which are non-leaf nodes, leaf nodes,
routing object and object. Non-leaf nodes is a set of routing object and leaf nodes is
a set of object. Routing object is having sub-components including feature value of
routing object, covering radius, distance from parent object, and pointer to covering
tree. Object is having the sub-components including feature value of object, object

identifier and distance from parent object.

The example of M-tree data structure is shown in Figure 2.3. All the routing
objects on the top level of tree is forming a non-leaf node. Then, each of the routing
object is pointing to the non-leaf nodes in next level that consist of the routing objects
under it’s covering radius. The routing objects will continue pointing to the nodes in
next level until the pointer is point at the leaf nodes which is the set of objects. Finally,

the objects are pointing to the object identifier which is the actual content of the object.

For each routing object, the feature value of routing object, covering radius,
distance from parent object, and the pointer are being stored in the data structure. This
is same for the object where the object identifier and the distance to parent are being
stored in the data structure. With the information that stored in the data structure, the

query process could be performed.

Covering
radius

Distance
to parent

[oJao] - JeJlofeol - [T [T]
/ .

[o]70]oo] » ||°s|1-0l;|/ ||°4|1-0|1-5|\woZIz-OIO-OI-\IL{I‘ [[T

[o,]0.0] 05| 1.0] o] 0.6”

Lo o woedos]| [odoe[o]ro][ere] [ofooles]zo] T]

Figure 2.3: M-Tree data structure of example data set [3]

2.2.2 Range Queries algorithm

A range query is perform the search and return all the items within the specified
range. The M-tree range query algorithm is working in the way that prune all the
entries that does not match the search criteria and only perform the search for all non-
pruned entries. In order to prune the entries, triangle inequality is used to perform the

check. According to triangle inequality, Equation (2.1) could be written.

d(Op, Q) < d(0,,0p) + d(0,,Q) @1

where Op is parent object, O, is routing object, and () is query object. Then, the

equation could be re-write into Equation (2.2).

Equation (2.2) shows that the distance between the routing object and the query
object is greater or equal to the differences of the distance between parent object and
query object and the distance between routing object and parent object. By considering

the covering radius, the relationship between the routing object and query object will be

Figure 2.4: Prune condition for non-leaf nodes [3]

achieved only if the minimum requirement is met such that the sum of both covering
radius is equal to the distance between the routing object and query object. Thus,
the searching criteria between the routing object and query object could be written in
Equation (2.3).

Therefore, M-tree range query is using the Equation (2.3) to check the validity
for the entries in non-leaf node. In this event, M-tree will prune all the sub-tree that
does not fulfill this condition. Figure 2.4 illustrated the situation that the routing object
does not fulfill the condition where the routing object could be safely pruned from the

search.

|d(Op, Q) — d(O,,0p)| <7(Q) +r(O,) (2.3)

In addition, The relationship between the routing object and the query object
is achieved only if the sum of both covering radius is greater or equal the distance
between the object and routing object. Thus, the valid searching criteria for the routing
object could be expressed in Equation (2.4). Figure 2.5 illustrated the situation that the
object does not fulfill the condition where the object could be safely pruned from the

search.

Hence, the condition checking for the non-leaf node is done in two stages for all
the routing objects in the node. In first stage, Equation (2.3) is used to perform quick
checking and prune the unrelated sub-tree. Then, Equation (2.4) is used to perform

detail checking in second stage.

10

Figure 2.5: Prune condition for leaf nodes [3]

d(0y, Q) <r(Q) +r(0y) 24)

Once the routing object is fulfill the condition and the range search is arrived at
the leaf nodes of the M-tree which content the objects, there is require another checking

to validate whether the object is a valid query object.

Since there is no covering radius for the object, the equation of the condition
checking could be re-write into Equation (2.5) and Equation (2.6). Therefore, the
condition checking for the leaf node is similar to the non-leaf node but using the
Equation (2.5) and Equation (2.6).

|d(Op, Q) — d(O,, 0p)| < 7(Q) (2.5)

d(0,, Q) < r(Q) (2.6)

The pseudo code of M-tree range queries algorithm could be written as shown
in Figure 2.6 where Op, O,, and O; are parent object of node, routing object, and
object respectively. The inputs of the M-tree range queries are node of M-tree (N),
query object (Q), and search radius (r(Q)). Then, the output of the M-tree range queries
is all the objects that fulfill the searching criteria.

11

let O, be the parent object of node N;

if IV is not a leaf then {
for each entry((,) in N do {
if [d(0,, Q) = d(0,,0,) < r(Q) +r(0,) then {
Compute d(O,,Q);
if d(0,,Q) < r(Q) + r(O,) then
RangeSearch(*ptr(T(0:)),0,r(Q));

¥
else
for each entry(0;) in N do {
if |d(0,, Q) — d(0;,0,)] < r(Q) then {
Compute d(0;,Q);
if d(0;,Q) = v(Q) then
add oid(0;) to the result;

Figure 2.6: Pseudo-code of M-tree range queries algorithm [4]

In the pseudo code, there is separate into two parts which are the check for non-
leaf nodes and leaf node. For non-leaf node, all entries in the node will being checked
with the condition from Equation (2.3) and Equation (2.4). If both of the condition
are fulfilled, another RangeSearch is being triggered with the pointer to the next node.
For the leaf node, all entries in the node will being checked with the condition from
Equation (2.5) and Equation (2.6). If both of the condition are fulfilled, the object

identifier which is the actual content of the object is returned as the result.

2.3 Related Works

In order to have better data retrieval rate for current needs, fast query had
attracted researcher interest. Due to the different data type and complexity, many fast
indexing algorithm has been developed such as B-tree [13], R-tree [14], and M-tree
[4]. Different fast indexing algorithm is using different method to constructed the data
tree and different queries algorithm to perform the query. This project is focusing on

M-tree algorithm only. Hence, the related work on M-tree has been reviewed.

12

2.3.1 Performance of M-tree queries

The performance of the query process is the key to reduce the query time. There
is a many works has been done by researcher to evaluate the performance of the M-tree
query algorithm. The performance evaluation is usually done by comparing with others
query algorithm. In most of the work, there is showing that M-tree having the better
performance in query process compare to other query algorithm. In [4] stated that
M-tree is always efficient than R-tree even without optimization. Besides, [15] stated
that M-tree is having strong pruning power which allow fewer distance computation.
Hence, the query time is being reduced as the lesser distance computation is performed.
Furthermore, M-tree is efficient in distance computation which allow saving up to 40%

distance computation time [4].

M-tree is able to handle multi-dimensional while preserving the query
performance. There is the fact that the cost of distance computation increased as
the the number of dimensions increased [16]. The M-tree query algorithm is using
metric-based index which had efficiently reduce the I/O cost and number of distance
computation[16]. Thus, M-tree is able to perform well in multidimensional because of

the reduced distance computation.

M-tree is also efficient in range queries. Since M-Tree algorithm only requires
index access, the overall performance for the range query is good and remains fast even
as the query size increases [17]. Besides, the sensitivity of the range queries is higher in
M-tree when the data set is not uniform [4]. In [17], the paper shows that the variance
of the M-Tree performance is much smaller. Therefore, M-Tree queries performs the
best in low density areas. In addition, M-tree is able to have better performance for

larger range queries which has been demonstrated in [17].

However, the disadvantages of M-tree is that M-tree required higher CPU costs
compare to R-tree [4]. Besides, M-tree is required longer time to constructed the tree
compare to R-tree [16]. Futhermore, the total query time is longer as the size of data
set increase [18].

13

2.3.2 Speedup for M-tree queries

Along with the exponential grow of database size, current query algorithm
will no longer sufficient for future need due to the statement of the query time is
proportional to the database size [10]. Thus, speeding up the query process has became
one of the research area. There are several works has been done to speedup the current
M-tree algorithm. However, the existing works on speedup for M-tree are done in
software only. The existing works on speedup of M-tree has been done in two ways

which are parallelism technique and tree optimization.

The parallelism technique is running the M-tree algorithm in parallel and the
speedup could be achieved. The concept of the parallelism technique is eliminating
all the queuing process by running all process at the same time in parallel such that
the queue time could be removed. However, the parallelism technique is required
supported devices in order to achieve the speedup. In [19], shared memory parallelism
i1s used which required a Symmetric multiprocessing (SMP) machine to perform
parallelism processing. Besides, a CPU with parallelism ability is required to perform
parallel process [20]. However, the speedup offered by using parallelism is not
significant even more resources is required. In the work proposed in [19], there is

able to achieved 1.5~1.9 times speedup on the query process.

The another speedup is tree optimization. This technique is optimizing the
tree by reduce the complexity. The tree optimization is usually being done during
the construction of tree. The optimization algorithms are used to achieve the purpose
of reducing the volume of leaf nodes. There are several optimization algorithms has
been developed such as slim-down algorithm [21] and space partitioning [18]. The
slim-down algorithm is using a post-processing technique to redistributed the ground
objects between leaf-nodes. Space partitioning is partition the sub-sets of the M-tree.
By using the tree optimization, the query process could be speedup by approximately
100% with the reduced volume [22, 18].

However, there is not work has been done to speedup the M-tree algorithm
using hardware accelerator. This is possible due to the existing M-tree code was relied
on the object structure offer by object oriented programming which is much more easy
to coded in software. Furthermore, most of current applications that using M-tree are

running in software.

14

24 Chapter Summary

In summary, the M-tree query algorithm has been discussed including the basic
concept, data structure, and operation. Besides, the analytical prove of the M-tree
query algorithm is explained. In addition, the pseudo code of M-tree range queries has
been discussed. The related works on the M-tree algorithm has been discussed in this
section. The related work on the performance of M-tree algorithm has been reviewed.
Furthermore, the existing work on speedup for M-tree queries algorithm also being

discussed.

CHAPTER 3

METHODOLOGY

3.1 Proposed work

The proposed work is implementing the fast query into a hardware accelerator.
The top level view of the hardware accelerator is shown in Figure 3.1. The hardware
accelerator will required two inputs including the data set in M-tree data structure,
queries and queries range. Then, the output of the hardware accelerator is the matched

results.

The M-tree query algorithm is being studied and translated into System
Verilog. In order to develop the hardware accelerator flawlessly, pre-work has
been done including ASM chart and functional block diagram. After that, the
hardware accelerator is being coded in Xilinx’s Vivado Design Suite uisng System
Verilog Hardware Description Language (HDL). The entire system of hardware
accelerator including the memory and FIFO modules are being coded without using
the Intellectual property (IP) provided by Xilinx. The purpose of not using the IP
provided by Xilinx is to develop the hardware accelerator in generic such that there is

able to implement in other tools such as Altera’s Quartus.

Hardware accelerator
for fast query

|

(Queries and Range ’

Data set in M-tree
data structure

J — E— [Matched ResuItsJ

Figure 3.1: Top level view of the hardware accelerator

16

3.1.1 ASM Chart

Before designing the hardware accelerator architecture, the ASM chart has
been drawn to provide a overview of the system flow as shown in Figure 3.2. The
ASM chart shows the state of the control unit for the entire query flow. Besides, the
required internal signal to control the data unit has been listed for each state in the
ASM chart.

3.1.2 Functional block diagram

The functional block diagram of the hardware accelerator has been drawn as
shown in the Figure 3.3. The main components of the hardware accelerate is the control
unit (CU) and datapath unit (DU). Control unit is the unit to control the datapath to
perform the tasks. The datapath unit is the unit that perform the operation of the tasks.
The range search unit is located inside the datapath unit which perform the condition
checking for the query.

According to the M-tree structure, there is needed to have 3 memory modules
to store information of nodes, routing objects, and objects. M-tree query algorithm is
calling the function while inside the function itself to continue the search for the next
non-leaf node until the reaching the leaf node. This method is difficult to implement
exactly the same into the hardware. Thus, the alternative way is using the queuing

mechanism where First-in-First-Out (FIFO) module is needed.

3.1.3 Data structure

For the M-tree in software which is written using object oriented programming,
the data of nodes, routing objects and objects are store as a object. In order to using
M-tree algorithm in hardware, the data structure in the hardware accelerator is being
designed to similar to the data structure shown in 2.3. The address of the nodes, routing
objects and the object is being used as the pointer. With the node capacity limit of two,
the node data is storing the address of two routing objects as shown in Figure 3.4.
Besides, the data of routing object is consist of object value, covering radius, distance
to parent, and the address of node as shown in Figure 3.5. The object memory is storing
the actual object data as shown in 3.6.

1
node_addr_sel<=0;
r_obj_sel<=1;
v 51

r_obj_sel<=0;

S4

i 52

update_addr <= 1;

node_addr_sel<=1;
r_ob sel<=1;

F

o_read <=1
node_addr_sel<=2;
obj sel<=1;

Figure 3.2: ASM chart

17

\
' \
i
= |
| fifo_empty =] ut- |
' \
! \
| N 4 |
g |4 = \
| \% 'S -‘:L & = ?I |
! S e \
[LTe] $ 4 |
| ivl |
L AVIV] ; |
| q Range_search DU I
' - !
' \
' \
! T | 1 \
! s 8 4 2 \
! 55 b 5, 2 ‘
| £ = 2 ey g |
| b
| ; |
| fifo_wri data_out—m-
: fifo_read——m| fifo MEM (node) MEM (routing object) MEM (object) (—object_dat |
\
|
\
PO e —————— |
Figure 3.3: Functional block diagram of hardware accelerator
MSB LSB
Address of routing object 2 Address of routing object 1
Figure 3.4: Data of nodes in memory module
MSB LsB
Object Covering radius Distance to parent Address of node
Figure 3.5: Data of routing object in memory module
MSB LsB

Actual object data

Figure 3.6: Data of object in memory module

18

19

3.1.4 Operation

Before the query start, the data set in the form of M-tree data structure is needed
to be input into the system memory. By assert the wr_tree signal, CU will trigger the
write mode and will write the data from the bus n_data, ro_data, and o_data into the
memory modules. Once the M-tree data set is being store into the memory, the system

is ready to perform the query.

To perform the query, data need to be provide to the bus q and r_q which is the
query object and the query object range respectively. The query process will be start is
the start signal is assert. The hardware accelerator will start the searching from the top
level of M-tree. First node address will be passing to the DU and the node data will be
read from the node memory module. Since each node data is consists of two routing
object address, the search is done in two states. For the first routing object address,
the DU read and passing the first routing object data to the range search and perform
the condition checking. Address of the node will be store into the FIFO if the routing
object is meeting the searching criteria. At next state, DU will read the second routing
object data. In this state, the node will become the next search if the node address is
successfully returned by the range search module. During the two searching state, the
range search module will assert obj_out signal to the CU if any object is found and
matching to the searching criteria. When CU receive the obj_out signal from range
search module, an out signal is asserted and the hardware accelerator will output the
actual object data. This two states will continue until the the second state does not
return any node address. Then, the system will check on the FIFO buffer. If the FIFO
is not empty and having the node address in queue, the system will read the node
address and repeating the two search state until the FIFO buffer is empty. Finally the

query flow is end and a done signal is asserted.

3.1.5 Synthesized design

The designed hardware accelerator has been synthesized using Xilinx’s Vivado
Design Suite. The synthesis is done based on the evaluation board with the model
name of ZYNQ-7 ZC702 which is developed by Xilinx. The tool able to generate and
view the elaborated design which is the netlist view of the design. Besides, the details

reports are also generated such as the utilization and the power consumption.

20

000

0

B &558E
Q0 0000

oo

0o

Figure 3.7: Elaborated design

Resource Utilization Available Utilization %

LUT 448 53200 0.84
LUTRAM 318 17400 1.82
FF 79 106400 0.07
BRAM 0.50 140 0.36
10 160 200 80.00
BUFG 1 32 313

Figure 3.8: Utilization summary report

3.1.5.1 Elaborated design

An elaborated design of the hardware accelerator has been generated as shown
in the Figure 3.7. The elaborated design is generated by Xilinx’s Vivado design Suite
which is based on the written System Verilog code. The generated elaborated design is
desired as it is similar to the functional block diagram which has been drawn in Figure
3.3.

3.1.5.2 Utilization

The summary of the utilization of the designed hardware accelerator is shown
in Figure 3.8. From the report, there is only little resources are being used from the
evaluation board expect the 10. The utilization of LUT, LUTRAM, FF, BRAM, and
BUFG are 0.84%, 1.82%, 0.07%, 0.36%, and 3.13% respectively.The IO utilization is
large due to the input bus of memory data which are n_data, ro_data, and o_data. This
could be further optimize by changing the reading method to bit by bit. However, the

overall utilization of the designed hardware accelerator is good.

21

Total On-Chip Power: 4.812W
Junction Temperature; 80.5°C
Thermal Margin: 4.5°C (0.4 W)
Effective 3JA: 11.5 "CIW

Fower supplied to off-chip devices: OW

Confidence level: Low

Figure 3.9: Power report

3.1.5.3 Power consumption

The power report also been generated by the Xilinx’s Vivado Design Suite
after synthesis as shown in Figure 3.9. The estimated total on-chip power is 4.812 W
where the power consumption low. Hence, this is possible to implement the hardware
accelerator on the small device that require low power. Besides, the estimated junction
temperate is 80.5 °C which is the highest operating temperate that could introduced by

the device.

3.2 Experimental setup

The hardware accelerator is implemented using the tool named Vivado Design
Suite by Xilinx. Xilinx’s Vivado Design Suite is a powerful tool that allow the user
to design, synthesize, and simulate the hardware design. Besides, the design of the
hardware accelerator is is targeted on FPGA platform. This is because FPGA allow the
user to design, develop, and test the prototype of integrated circuit without fabricate
the chip.

The hardware accelerator is coded using System Verilog Hardware Description
Language (HDL). Besides, A test bench has been coded in System Verilog to validate
the functionality of the designed hardware accelerator. The designed hardware
accelerator is being synthesize and simulated using Xilinx’s Vivado Design Suite.
The simulation is done using the test bench and the performance of the hardware
accelerator is being evaluate. Since different devices offer different clock speed, so
the measurement will be happen on the number of clock cycles needed to perform the
query. Hence, the total number of clock cycles for the hardware accelerator to perform
a query is observed to evaluate the performance. In addition, the total query time could
be calculated by multiply the clock speed with the total number of clock cycles.

22

In order to test the designed hardware accelerator, one dimensional fixed point
numerical data set is used. The data set is pre-proccessed into M-tree data structure

using software and then being used as the input for the designed hardware accelerator.

3.3 Chapter Summary

In summary, this chapter described the research methodology for the proposed
work. The work done while develop the hardware architecture has been shown.
Besides, overview, flow, and operation of the proposed solution is discussed. The
implemented design has been synthesized and the reports are shown and discussed.
Besides, the experimental setup such as the tools, platforms, input, measurement

metric, and the validation setup also covered in this chapter.

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results of proposed work

The developed hardware accelerator is being simulated using Xilinx’s Vivado
Design Suite. The test bench has been coded to perform the simulation. In the test
bench the clock speed is set to 100 MHz which having the period of 10ns.

4.1.1 Simulation results

The simulation is done with different query condition including the single
query and query with range. A simple data set is used in the simulation which is
consist of 1,2,3,4,5,6,7,8,21,22,23,24,25,26,27. The simulated results for query with
range is shown in Figure 4.1. From the Figure 4.1, the query object is 5 with the range
of 1 and the hardware accelerator is successfully output the correct query data that met
the criteria. Figure 4.2 shows the simulated result with single query. The query object
is 22 in Figure 4.2 and the hardware accelerator is able to return a correct query data.
Hence, the functionality of the hardware accelerator is correct as expected results are
obtained. Besides, the simulation also shown that the hardware accelerator is able to

process one routing object with 1 clock cycle only.

1 rst
1 start
1& done
& out

& wr_tree
> g data_out31:0]
> M q[r.0]
> W r_gl7:0]

Figure 4.1: Simulation results for query with range

24

I rst
Ul start
\& done
18 out

1 wr_tree
> W data_outj31:0]
> ™ a[7:0]
> W r_q[70]

Figure 4.2: Simulation result for single query

4.1.2 Performance evaluation

The performance of the hardware accelerator is being evaluated. As the
time scale for different devices will be different, number of clock cycle is used for
performance evaluation. The graph of number of query data vs number of clock cycle
has been plotted as shown in Figure 4.3. From the Figure 4.3, there could be observe
that the total query time is increasing as the number of the query data increase. This is

showing the hypothesis that the total query time is proportional to the number of query.

On the other side, the graph of level of tree vs number of clock cycle has been
plotted as shown in Figure 4.4. Different level of tree also represent the different
database size where larger the database size, larger the level of tree. In Figure 4.4,
there is also observed that the total query time is increasing when the level of tree is
larger. This is showing the hypothesis that the total query time is linearly proportional

to the database size.

Number of query vs clock cycle
20

15

10

Number of query data

18.5 245 26.5 36.5 46.5
Number of clock cycle

Figure 4.3: Number of query data vs number of clock cycle

25

Level of tree vs clock cycle

-

8.5 12.5 18.5
Number of clock cycle

Level of tree
o =2 N W kB O

Figure 4.4: Level of tree vs number of clock cycle

4.2 Results Comparison

In order to verify value of the designed hardware acceleration, the comparison
with the M-tree in software is done. The M-tree in software is written in python and
developed by Paolo Ciaccia et al. which has been presented in their paper [23]. The M-
tree software is running in a work station system equipped with Intel(R) Xeon(R) CPU
E5-2620 v3 with the clock speed of 2.40GHz. Same data set has been used as the input
for the M-Tree in software to achieve apple-to-apple comparison. In addition, the node
capacity is limited to two such that it is similar to the designed hardware accelerator.
Figure 4.5 shows the results of the M-Tree running in software for different number of
query data. Three test cases are carried out by the M-tree in software and total query
time for each test case is displayed. Besides, the M-tree software also doing the same

for different level of tree.

The results are being tabulated in Table 4.1 and Table 4.2. The speedup of the
hardware accelerator compare to the software also being calculated. The speedup of
the query is more than 1000 times. The speedup is significant which could be due to
several reason. The possible reason is that the general purpose CPU is loaded with
OS and running multiple background programs that occupied the CPU bandwidth.
By checking the system’s load information as shown in Figure 4.6, the CPU is being
loaded at 82%. This situation has best demostrated one of the problem statement of this
project where performance of query using software is relied on computation unit [12].
Besides, the object oriented programming is relatively slow as its consuming more
resource [24]. In addition, the hardware accelerator is simulated in a ideal condition
with the clock speed of 100 MHz.

26

limit=1

limit=1 3

limit=1

limit=4

limit=4

mirm_

min_] ty=2 " limit=16

min_] by== " limit=16

[=d 4 test_word= limit=16 time=(

Figure 4.5: Results of the M-tree query using software

Number of query data | M-tree in Software | M-tree in hardware accelerator ‘ Speedup ‘

1 0.326ms 185ns 1762x
4 0.369ms 245ns 1506x
8 0.443ms 315ns 1406x
16 0.508ms 465ns 1092x

Table 4.1: Tabulated comparison results for number of query data

Level of tree | M-tree in Software | M-tree in hardware accelerator ‘ Speedup ‘

3 0.196ms 85ns 2305x
4 0.233ms 125ns 1864x
5 0.481ms 185ns 2600x

Table 4.2: Tabulated comparison results for level of tree

7 oup B0 days
El

Figure 4.6: Summary of system’s load inforamtion

27

Total query time vs number of query

€ 1

s 0.1 1 4 8 16
=

S 0.01

=) 0.001

£ 0.0001

> 0.00001

® 0.000001

S 0.0000001

_.g Number of query data
}_

Figure 4.7: Comparison of HW and SW for number of query data

Total query time vs level of tree

- 1
g 0.1 3 o 5
g 0.01

S o0.001

© 0.0001

£

= 0.00001

& 0.000001

& 0.0000001

©

g 1E-08

= Level of tree

Figure 4.8: Comparison of HW and SW for level of tree

To have better view of the speedup offer by the hardware accelerator compare
to software, a comparison graph has been plotted as shown in Figure 4.7 and Figure
4.8. Figure 4.7 shows the differences of M-tree running in hardware ans software for
total query time against number of query. Figure 4.8 shows the differences of M-tree
running in hardware ans software for total query time against level of tree. In both
plots, there could be observed that hardware accelerator is having better performance
compare to the software where the total query time is shorter. Thus, the proposed
hardware accelerator is successfully provide the acceleration on the performance

toward the software.

28

4.3 Chapter Summary

In summary, this chapter discussed on results obtained from the simulation.
The functionality of the hardware accelerator has been verified which is able to perform
the correct operation. Besides, the performance of the hardware accelerator has been
evaluated. In order to obtain the speedup, comparison between existing works has
been done. The hardware accelerator is able to provide significant speedup compare to
M-tree algorithm running in software. The discussion on the speedup also being done

in this chapter.

CHAPTER 5

CONCLUSION

5.1 Project accomplishment of objectives

Fast query is important for current era as data retrieval rate could affect the
performance of devices. With the rapid growth of database size, the performance of
the devices will be impacted. Thus, hardware accelerator for fast query is a way to
maintain the performance of the devices for current trend. In this project, a hardware
based accelerator for fast database query has been proposed. The proposed work has
demonstrated that query process could be accelerate by hardware accelerator. The
acceleration are observed for both situation including the Besides, the functionality
of the hardware accelerator has been verified that could perform the same with the
software. Furthermore, the hardware accelerator could be implement for varies devices
as it is a separate hardware unit which does not rely on a general-purpose CPU. Hence,
the hardware accelerator is well suit for the IOT devices. In conclusion, the objectives

of the project are achieved.

5.2 Future Works

There is several works could be done in the future to improve the current
proposed hardware accelerator. One of the future works is the improvement on the
hardware accelerator to allow customization of node capacity. In current proposed
hardware accelerator, the node capacity has been limited to two which will only have
two pointer for each node. This will causing the the level of tree become larger if the
database size is increased. By allow the ability to customize the node capacity, the

M-tree could be wider and much optimized for large database.

The second future work is the improvement for the hardware accelerator to

30

support for multi-dimensional data set. The data set used in the proposed work is fixed
to one dimensional fix point data set. In order to fully utilize the feature of M-tree
in handling muti-dimensional data, different distance function could be develop and
implement into the hardware accelerator. By having different distance function unit
in the hardware accelerator, user could use control signal to switch between different

distance functions to select the distance function based on the needs.

Besides, another future works is implementing the M-tree build into the
hardware accelerator. In current project, the scope is focusing on the fast query such
that there is require a ready built M-tree data as input. By implement the M-tree build
function into the hardware accelerator, there is allow the input of raw data into the

hardware accelerator.

10.

REFERENCES

insideBIGDATA. The Intelligent Use of Big Data on an Industrial Scale.
Technical report. 2017.

Guhlemann, S., Petersohn, U. and Meyer-Wegener, K. Reducing the Distance
Calculations when Searching an M-Tree. Datenbank-Spektrum, 2017. 17(2):
155-167. ISSN 1610-1995. doi:10.1007/s13222-017-0258-5. URL https:
//doi.org/10.1007/s13222-017-0258-5.

Zezula, P., Amato, G., Dohnal, V. and Batko, M. Similarity Search: The
Metric Space Approach. Advances in Database Systems. Springer US.
2010. ISBN 9781441939722. URL https://books.google.com.sqg/
books?id=6AdZcgAACAAJ.

Ciaccia, P, Patella, M., Rabitti, F. and Zezula, P. Indexing Metric Spaces with
M-tree. PROC. QUINTO CONVEGNO NAZIONALE SEBD. 1997. 67-86.

Perrone, M. P. Keynote speaker I: Big data transforming industries. 2015

11th International Conference on Innovations in Information Technology (IIT).
2015. XXVII-XXVII. doi:10.1109/INNOVATIONS.2015.7381493.

Team, E. The Exponential Growth of Data, 2017.
URL https://insidebigdata.com/2017/02/16/
the-exponential-growth-of-data.

Cisco. Global Cloud Index: Forecast and Methodology, 2015-2020. Technical
report. 2017.

Nguyen, X.-T., Nguyen, H.-T. and Pham, C.-K. An FPGA approach for
fast bitmap indexing. IEICE Electronics Express, 2016. 13(4): 20160006—
20160006. doi:10.1587/elex.13.20160006.

Samuel, A. L. Some Studies in Machine Learning Using the Game of
Checkers. IBM Journal of Research and Development, 1959. 3(3): 210-229.
ISSN 0018-8646. doi:10.1147/rd.33.0210.

Ozturk, O. and Ferhatosmanoglu, H. Effective indexing and filtering for

similarity search in large biosequence databases. Third IEEE Symposium on

https://doi.org/10.1007/s13222-017-0258-5
https://doi.org/10.1007/s13222-017-0258-5
https://books.google.com.sg/books?id=6AdZcgAACAAJ
https://books.google.com.sg/books?id=6AdZcgAACAAJ
https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data
https://insidebigdata.com/2017/02/16/the-exponential-growth-of-data

11.

12.

13.

14.

15.

16.

17.

18.

32

Bioinformatics and Bioengineering, 2003. Proceedings. 2003. 359-366. doi:
10.1109/BIBE.2003.1188974.

Ghosh, E., Ohrimenko, O. and Tamassia, R. Zero-Knowledge Authenticated
Order Queries and Order Statistics on a List. Malkin, T., Kolesnikov, V.,
Lewko, A. B. and Polychronakis, M., eds. Applied Cryptography and Network
Security. Cham: Springer International Publishing. 2015. ISBN 978-3-319-
28166-7. 149-171.

Nakanishi, K., Hochin, T. and Nomiya, H. Evaluation of Parallel Multi-
Dimensional Indexing System for Big Data Analysis. 2016 4th Intl
Conf on Applied Computing and Information Technology/3rd Intl Conf on
Computational Science/Intelligence and Applied Informatics/1st Intl Conf on
Big Data, Cloud Computing, Data Science Engineering (ACIT-CSII-BCD).
2016. 105-110. doi:10.1109/ACIT-CSII-BCD.2016.031.

Graefe, G. and Kuno, H. Modern B-tree techniques. 2011 IEEE 27th
International Conference on Data Engineering. 2011. ISSN 1063-6382.
1370-1373. doi:10.1109/ICDE.2011.5767956.

Li, H., Ju, S. and Chen, W. Design and Implementation of Generalized R-
Tree. 2008 International Symposium on Computer Science and Computational
Technology. 2008, vol. 1. 777-781. doi:10.1109/ISCSCT.2008.317.

Schubert, E., Zimek, A. and Kriegel, H.-P. Geodetic Distance Queries on R-
Trees for Indexing Geographic Data. Nascimento, M. A., Sellis, T., Cheng,
R., Sander, J., Zheng, Y., Kriegel, H.-P., Renz, M. and Sengstock, C., eds.
Advances in Spatial and Temporal Databases. Berlin, Heidelberg: Springer
Berlin Heidelberg. 2013. ISBN 978-3-642-40235-7. 146-164.

Viet, H. H. and Anh, D. T. M-tree as an index structure for time
series data. 2013 International Conference on Computing, Management
and Telecommunications (ComManTel). 2013. 146-151. doi:10.1109/
ComManTel.2013.6482381.

Shaw, K., Ioup, E., Sample, J., Abdelguerfi, M. and Tabone, O. Efficient
Approximation of Spatial Network Queries using the M-Tree with Road
Network Embedding. 19th International Conference on Scientific and
Statistical Database Management (SSDBM 2007). 2007. ISSN 1551-6393.
11-11. doi:10.1109/SSDBM.2007.11.

Zhou, X., Wang, G., Yu, J. X. and Yu, G. M+-tree: A New Dynamical
Multidimensional Index for Metric Spaces. Proceedings of the 14th

Australasian Database Conference - Volume 17. Darlinghurst, Australia,

19.

20.

21.

22.

23.

24.

33

Australia: Australian Computer Society, Inc. 2003, ADC *03. ISBN 0-909-
92595-X. 161-168. URL http://dl.acm.org/citation.cfm?id=
820085.820118.

Qiu, C,, Lu, Y., Gao, P, Wang, J. and Lv, R. A Shared Memory Parallel k-NN
Query Algorithm for M-tree. 2009 International Conference on Management
and Service Science. 2009. 1-4. doi:10.1109/ICMSS.2009.5305620.

Zezula, P., Savino, P., Rabitti, F., Amato, G. and Ciaccia, P. Processing M-
trees with parallel resources. Proceedings Eighth International Workshop

on Research Issues in Data Engineering. Continuous-Media Databases and
Applications. 1998. 147-154. doi:10.1109/RIDE.1998.658289.

Traina, C., Traina, A., Seeger, B. and Faloutsos, C. Slim-Trees: High
Performance Metric Trees Minimizing Overlap between Nodes. Zaniolo, C.,
Lockemann, P. C., Scholl, M. H. and Grust, T., eds. Advances in Database
Technology — EDBT 2000. Berlin, Heidelberg: Springer Berlin Heidelberg.
2000. ISBN 978-3-540-46439-6. 51-65.

Skopal, T., Pokorny, J., Kratky, M. and SnéSel, V. Revisiting M-Tree Building
Principles. Kalinichenko, L., Manthey, R., Thalheim, B. and Wloka, U., eds.

Advances in Databases and Information Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg. 2003. ISBN 978-3-540-39403-7. 148-162.

Ciaccia, P, Patella, M. and Zezula, P. M-tree: An Efficient Access Method for
Similarity Search in Metric Spaces. Proceedings of the 23rd International

Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc. 1997, VLDB ’97. ISBN 1-55860-470-7. 426—-435.

Popyack, J. L. Introduction to Computer Science Object Oriented
Programming: Disadvantages of OOP. https://www.cs.drexel.
edu/~introcs/Fal2/notes/06.1_0O0OP/Disadvantages.
html?CurrentSlide=2, 2012.

http://dl.acm.org/citation.cfm?id=820085.820118
http://dl.acm.org/citation.cfm?id=820085.820118
https://www.cs.drexel.edu/~introcs/Fa12/notes/06.1_OOP/Disadvantages.html?CurrentSlide=2
https://www.cs.drexel.edu/~introcs/Fa12/notes/06.1_OOP/Disadvantages.html?CurrentSlide=2
https://www.cs.drexel.edu/~introcs/Fa12/notes/06.1_OOP/Disadvantages.html?CurrentSlide=2

	DECLARATION
	ACKNOWLEDGEMENT
	ABSTRACT
	ABSTRAK
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Problem Background
	Problem Statement
	Objective and Scope
	Organization

	Literature Review
	Introduction to Fast Query
	M-tree
	Data structure
	Range Queries algorithm

	Related Works
	Performance of M-tree queries
	Speedup for M-tree queries

	Chapter Summary

	Methodology
	Proposed work
	ASM Chart
	Functional block diagram
	Data structure
	Operation
	Synthesized design
	Elaborated design
	Utilization
	Power consumption

	Experimental setup
	Chapter Summary

	Results and Discussion
	Results of proposed work
	Simulation results
	Performance evaluation

	Results Comparison
	Chapter Summary

	Conclusion
	Project accomplishment of objectives
	Future Works

	REFERENCES

