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ABSTRACT 

 

 

 

 

 Mercury (Hg(II)) is considered as one of the most noxious heavy metals due 

to its high toxicity and probability of bioaccumulation in human body. Adsorption is 

one of the most commonly used technique to treat Hg(II) in wastewater but it 

requires a two stage process where the toxic Hg(II) is not being converted into non-

toxic medium but need to be recovered. Thus photocatalytic process was introduced 

where the photocatalyst reacts by converting the toxins into toxic-free wastes; 

henceforth there is no necessity for additional disposal. In this study nano-sized 

maghemite (γ-Fe2O3) embedded in polyvinyl alcohol (PVA) and alginate matrix was 

used as photocatalyst to remove Hg(II). Besides being a photocatalyst, the γ-Fe2O3 

nanoparticles possess supermagnetism properties which enabled the beads to be 

easily recovered with the application of an external magnetic field. The influences of 

pH, initial concentration and photocatalyst dosage on Hg(II) removal were also 

investigated. The photocatalyst beads were then used for the reduction of Hg(II) in 

aqueous solution both under sunlight and away from sunlight. The synthesized 

maghemite nanoparticles were characterized using transmission electron microscopy, 

x-ray diffraction and vibrating sample magnetometer; and the size distribution of the 

beads were determined. The current results revealed that 96% of Hg(II) was reduced 

in four hours under sunlight. However, when the experiment was done in the dark, 

the percentage of Hg(II) reduction achieved was only 5%. The low reduction rate 

was due to the minimal absorption activity of Hg(II) onto the beads surface. In 

addition, the maximum Hg(II) reduction was found at pH 11 whilst the photocatalyst 

dosage was kept at 16% (v/v). An 8% (v/v) dosage of maghemite nanoparticles 

loading was found to be capable only to reduce until 67% of Hg(II), while Hg(II) 

reduction performance was not significantly improved when 24% (v/v) of 

photocatalyst dosage was used. Excessive addition of catalyst dosage increased the 

active sites on the beads surface but it also blocked some sunlight illumination as the 

voluminous load of photocatalyst clogged the reaction region thus reducing the 

photon availability to be absorbed. At a fixed optimum parameters, it was revealed 

that increasing the initial concentration of Hg(II) degraded the reduction capability 

because the photons path length into the solution reduced as concentration of Hg(II) 

increased. Field emission scanning electron microscopy images and energy dispersive 

x-ray showed that the beads possessed significant porosity structure that greatly 

supported mass movement of Hg(II) inside the beads. The maghemite embedded 

PVA-alginate beads towards reduction of Hg(II) strongly fitted Langmuir-

Hinshelwood kinetics model with correlation coefficient, R
2
 value of 0.9771. In 

conclusion, this study proved that the γ-Fe2O3-PVA-alginate beads are applicable in 

reducing and treating Hg(II) in water. 
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ABSTRAK 

 

 

 

 

 Raksa (Hg(II)) dianggap salah satu daripada logam berat paling berbahaya 

disebabkan sangat bertoksik dan kebarangkalian bioakumulasi di dalam badan 

manusia. Penjerapan adalah salah satu teknik yang selalu digunakan untuk merawat 

Hg(II) dalam sisa air tetapi ia memerlukan proses dua peringkat di mana Hg(II) 

bertoksik tidak ditukar kepada bahan tidak bertoksik tetapi perlu untuk diperoleh 

semula. Oleh itu proses fotopemangkin telah diperkenalkan di mana fotomangkin 

bertindak balas dengan menukarkan toksin kepada sisa bebas daripada toksik; 

sekaligus tiada keperluan untuk pelupusan tambahan. Di dalam kajian ini, maghemit 

bersaiz nano (γ-Fe2O3) yang telah dimasukkan ke dalam polivinil alkohol (PVA) dan 

matriks alginat telah digunakan sebagai fotomangkin untuk menyingkirkan Hg(II). 

Selain bertindak sebagai fotomangkin, partikel bersaiz nano γ-Fe2O3 ini memilik sifat 

superkemagnetan yang membolehkan manik itu mudah diperoleh semula dengan 

menggunakan medan magnet luaran. Pengaruh daripada pH, kepekatan awal dan dos 

fotomangkin terhadap penyingkiran Hg(II) juga telah disiasat. Manik fotomangkin 

ini kemudiannya digunakan untuk merawat Hg(II) di dalam larutan air di bawah 

sinaran matahari dan tanpa cahaya matahari. Partikel bersaiz nano maghemit yang 

ditelah disediakan telah dicirikan dengan menggunakan mikroskopi pancaran 

elektron, pembelauan sinar-x dan magnetometer sampel getaran; dan taburan saiz 

manik telah ditentukan. Keputusan menunjukkan bahawa 96% Hg(II) telah dirawat 

dalam empat jam di bawah sinaran matahari. Walau bagaimanapun, apabila 

eksperimen dilakukan di dalam gelap, peratusan penurunan Hg(II) hanya mencecah 

5%. Kadar penurunan yang rendah adalah disebabkan oleh aktiviti penyerapan Hg(II) 

yang minima ke atas permukaan manik-manik. Selain itu, didapati bahawa 

pengurangan maksima Hg(II) adalah pada pH 11 di mana dos fotomangkin 

digunakan pada 16% (v/v). Dos maghemit zarah nano pada 8% (v/v) hanya mampu 

mengurangkan sehingga 67% Hg(II) sementara prestasi penurunan Hg(II) tidak 

banyak berubah apabila 24% (v/v) dos fotomangkin digunakan. Penggunaan 

berlebihan dos pemangkin akan menambah ruang aktif di permukaan manik, tetapi ia 

juga akan menghalang kemasukan cahaya matahari kerana fotomangkin yang 

berlebihan menyumbat kawasan tindakbalas sekaligus mengurangkan penyerapan 

foton. Pada parameter optimum yang telah ditetapkan, didapati dengan meningkatkan 

kepekatan awal Hg(II), keupayaan penurunan merosot kerana jarak laluan foton di 

dalam larutan berkurangan setelah kepekatan Hg(II) ditingkatkan. Imej mikroskopi 

pengimbas pancaran medan elektron dan tenaga serakan sinar-x menunjukkan 

bahawa manik memiliki struktur berliang ketara yang membantu pergerakan jisim 

Hg(II) di dalam manik. Manik-manik PVA-alginat berisi maghemit menuju kepada 

penurunan Hg(II) melengkapi model kinetik Langmuir-Hinshelwood dengan pekali 

korelasi, R
2
 bernilai 0.9771. Kesimpulannya, kajian ini membuktikan bahawa manik 

γ-Fe2O3-PVA-alginat boleh digunakan dalam mengurangkan dan merawat Hg(II) di 

dalam air. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview 

 

 

On 1956, an irresponsible release of methylmercury by a chemical company 

into the sea caused a deathly syndrome in Japan. This severe mercury poisoning 

which is called Minamata disease had haunted the Japanese people for 36 years as 

acute effects continued to rise. Some of them experienced hearing and speech 

damage, hands and feet numbness, insanity, paralysis, effect on the foetus in the 

womb and even death (Zhang et al., 2004). 

 

 

 In Malaysia, mercury wastes are mainly originate from agricultural pesticides 

and they also emerge from the chlorine-alkali industry. Moreover, mercury is used as 

a catalyst in the chemical and petrochemical industries, used in electrical apparatus, 

cosmetics, thermometers, gauges, batteries, painting and coating industries, mining, 

extractive metallurgy and many other industries (Parham et al., 2012). This 

environmental pollution stimulates concerns about the dangers posed to human 

being, thus numerous efforts have been taken to handle this problem, essentially 

aiming at cost effectiveness. Hence, Malaysian Department of Environment (DOE) 
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sets tolerance limit release for Hg(II) at 0.005 mg/L for standard A and 0.05 mg/L for 

standard B. 

 

 

Mercury is considered as one of the most noxious heavy metals 

acknowledged by mankind, due to high toxicity and probability of bioaccumulation 

in body. It forms different salts with anionic mechanisms in water and can change 

from one form to another in various diverse aquatic environments (Parham et al., 

2012). Some severe and chronic signs caused by mercury poisoning are metallic 

taste, inflammation in mouth, kidney collapse and excessive salivation (Parham et 

al., 2012).  

 

 

Many methods have been used to remove Hg(II) from wastewater such as ion 

exchange, precipitation as sulphide, membrane filtration, ion exchange, 

electrodeposition, coagulation, reverse osmosis, electro-deposition, ultrafiltration and 

adsorption (Li et al., 2008). One of the techniques that is most widely used to date is 

adsorption. Adsorption method is chosen because of its high efficiency, availability 

of different adsorbents, sorbent materials can be generated and recycled, easy 

handling and most importantly cost effectiveness (Xiong et al., 2009). Unfortunately, 

a secondary method need to be introduced to desorb the heavy metals before 

disposing the adsorbents. 

 

 

 In a recent study, maghemite nanoparticles (γ-Fe2O3) were proven as an 

excellent adsorbent for removing heavy metals due to the vast surface area which 

improves the adsorption, many methods to synthesize maghemite and at the same 

time, it is commercially available. Also, easy separation of metal and magnetic 

adsorbent from treated water, and ultimately, no secondary waste will be produced 

(Tuutijärvi et al., 2009). 
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By applying external magnetism to the magnetic particles, excellent 

disintegration will be accomplished (Hu et al., 2005). Accordingly, studies have been 

initiated by combining magnetic separation with biosorption technique. This method 

is well known of treating many heavy metals in wastewater in a short time, while no 

contaminants will be formed (Rocher et al., 2008). In addition, several studies have 

recorded positive results; encapsulation of maghemite nanoparticles (γ-Fe2O3) in 

sodium alginate were used to remove Pb(II) and to reduce Cr(VI) to less toxic 

Cr(III), γ-Fe2O3 was incorporated into PVA and alginate matrix photocatalyst to 

reduce Cr(VI) to Cr(III) and was used to removal of Cs
+ 

from radioactive waste 

water (Idris et al., 2010, 2012; Majidnia and Idris, 2015). Likewise, Cu(II) was also 

successfully removed by maghemite nanoparticles doped with cobalt entrapped in 

PVA-alginate beads (Wong et al., 2014). 

 

 

The maghemite nanoparticles (γ-Fe2O3) which are embedded in binding 

materials such as alginate which has been used to encapsulate magnetic particles to 

form into beads, can be recycled (Ngomsik et al., 2006, 2009). Being hydrophilic, 

biodegradable, inexpensive, non-toxic, naturally available and with existence of 

binding sites contribute from its carboxylate functions, have favour alginate over 

other materials. On the other hand, Liu et al. (2008) has found that drug delivery 

ferrogels with magnetic-stimuli performance is very much influenced on the 

concentration of PVA. PVA is nontoxic, inexpensive, robust and possesses an 

uncomplicated chemical structure which allows alteration to be made by executing a 

chemical reaction, and it is combined with alginate to reduce PVA’s agglomeration. 

 

 

Besides that, there are various semiconductor materials that are chosen in 

photocatalytic practice, for example titanium dioxide (TiO2), zinc oxide (ZnO), WO3 

(tungsten oxide) and polyoxometalate anions (POM). Based on Ullah and Dutta 

(2008) findings, these semiconductors have individual band gap in ultraviolet (UV) 

region, thus aiding photocatalysis with radiance from UV emission. 
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1.2 Problem Statement 

 

 

 Many techniques were developed to treat wastewater; among them were 

absorption and photocatalyst reduction. Parham et al. (2012) used altered magnetic 

iron oxide nanoparticles with 2-mercaptobenzothiazole as an adsorbent for Hg(II) 

removal and results revealed a complete removal of mercury ions within 4 minutes, 

and the modified magnetic iron oxide nanoparticles can be reutilized three times 

without decreasing adsorption efficiency. However, in adsorption, the impurities are 

being absorbed into the bioadsorbents but then again are not being converted into 

non-toxic medium. Thus photocatalytic process was introduced where the 

photocatalyst reacts by converting the toxins into toxic-free wastes; henceforth there 

is no necessity for additional disposal. Recently, magnetic nanoparticles iron oxide 

(γ-Fe2O3) was used as a photocatalyst and it has an excellent efficiency in converting 

hazardous metal ion such as chromium(VI) to chromium(III) (Idris et al., 2010, 

2011). The photocatalyst reaction comes from electrons couples which 

photoproduction from the valence and conduction ranges, with absorption of UV 

radiation with energy equivalent or greater than the range. However the use of γ-

Fe2O3 was never applied for the removal of Hg(II).  

 

 

Thus in this study, maghemite nanoparticles (γ-Fe2O3) which is the 

photocatalyst is embedded in the alginate-PVA matrix is used to treat wastewater 

containing Hg(II). Photocatalytic experiments will be performed in the dark and 

under sunlight and several some parameters such as pH, photocatalytic dosage, initial 

feed concentration were investigated.  

 

 

 

 

 

 

 

 



5 

 

1.3 Objectives  

 

 

 The main objective of this study is to remove Hg(II) from aqueous solution 

using maghemite γ-Fe2O3 embedded in PVA-alginate. In order to focus on this 

objective, the following need to be addressed:  

 

 

i) To prepare the γ-Fe2O3 PVA-alginate beads 

ii) To study its physicochemical properties 

iii) To test the performance of the catalyst on removal of Hg(II) 

iv) To study the kinetics of the photocatalytic reaction 

 

 

 

 

1.4 Scope of The Study 

 

 

 In order to achieve the objectives mentioned, the encompassed work includes 

the following: 

 

 

i) The maghemite nanoparticles were synthesized using the coprecipitation 

 method and then embedded in the PVA-alginate matrix. 

ii) The synthesized maghemite nanoparticles were characterized using TEM 

 (Transmission electron microscopy), XRD (X-ray diffraction) and VSM  

(Vibrating Sample Magnetometer); and the size distribution of the beads were 

determined. 

iii) The photocatalytic experiments were then performed in darkness and  

sunlight, using maghemite nanoparticles and without using maghemite  

nanoparticles. 

iv) The photocatalytic experiments were performed at various pH ranging from 2 

until 13. 



6 

 

v) The influence of photocatalyst dosage on Hg(II) removal was determined; 

where maghemite γ-Fe2O3 dosages were varied at 8%, 16% and 24%. 

vi) Hg(II) initial concentration was determined and varied at 25 ppm, 50 ppm, 75 

ppm and 100 ppm. The effect of Hg(II) initial concentration on the Hg(II) 

removal was analysed. 

vii) Hg(II) elements in the beads before and after the experiment was analysed 

with CVAAS (Cold-vapour atomic absorption spectrometry). 

viii) Kinetic analysis of photoreduction was determined for the optimum 

photocatalytic. 

 

 

 

 

1.5 Significance of The Study 

 

 

  Earlier studies (Idris et al., 2010, 2012) have used ferrophoto gel beads with 

embedded maghemite nanoparticles in the photocatalyst process to treat Cr(VI). 

López-Muñoz et al. (2011) used TiO2 in his photocatalyst study, while other 

techniques on Hg(II) removal on the other hand did not apply photocatalytic process. 

Parham et al. (2012) removed mercury from wastewater with magnetic iron oxide 

nanoparticles modified with 2-mercaptobenzothiazole using adsorption process. Thus 

in this study, effectiveness of γ-Fe2O3 embedded PVA-alginate beads in removal of 

Hg(II) using photocatalytic process is investigated for the first time. 
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