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ABSTRACT 

 

 

 

 

Pseudomonas fluorescens (P. fluorescens) is a denitrification bacterium that 

able to convert nitrate compounds into nitrogen gas. This process is always slow due 

to limitation of organic sources that are present in wastewater treatment plant. The 

efficiency of P. fluorescens as a nitrate removal strongly depends on the physiological 

status of cells and the amount of microorganism added to the treatment plant. 

Therefore, the objectives of this study are to optimize the culture medium in shake 

flask and to develop cultivation strategy for the biomass production of P. fluorescens 

in a pilot scale 16-L bioreactor. The medium composition was first optimized using 

one factor at time (OFAT) and response surface methodology (RSM) methods, which 

the Box-Behnken experimental design was employed.  Analysis of variance 

(ANOVA) showed significance of findings for each factors with high coefficient of 

determination (R2) of 95.58 %. The optimum medium composition of biomass 

production was composed of: sucrose, 8.0 g L-1; yeast extract, 3.0 g L-1; di-potassium 

phosphate, 2.0 g L-1; and magnesium sulfate heptahydrate, 1.5 g L-1. This medium 

gave biomass of 3.28 g L -1 (about 57.6 % higher compared to un-optimized medium). 

After this step, the optimized medium was used to cultivate the cells in batch mode 

with and without pH control in a 16-L stirred tank bioreactor. It was found that 

controlling the culture pH at 7.2 during cultivation increased biomass by 39.56 %. In 

addition, a series of constant feeding strategy in combination with a control pH 7.2 

was carried out to increase the biomass production. Both sucrose and full medium 

feeding were applied, and both yielded biomass of 8.46 g L -1 and 14.98 g L -1, 

respectively. Under constant feeding strategy of full medium, nutrients were consumed 

after 10 hours of feeding. Therefore, a gradual increase of medium feeding rate was 

applied to increase the biomass. The highest biomass obtained using increased rate 

feeding strategy was 33.5 g L -1. In conclusion, the medium optimization accompanied 

by bioprocess optimizations in terms of pH control and applying fed batch cultivation 

strategy in the 16-L bioreactor enhanced the growth rate and biomass production of P. 

fluorescens. 
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ABSTRAK 

 

 

 

 

        Pseudomonas fluorescens (P. fluorescens) adalah bakteria yang dapat menukar 

sebatian nitrat kepada gas nitrogen melalui proses pendenitratan. Proses ini adalah 

perlahan kerana kehadiran sumber organik yang terhad di dalam loji rawatan 

kumbahan. Kecekapan P. fluorescens untuk menyingkirkan nitrat sangat bergantung 

kepada fisiologi sel dan jumlah mikroorganisma yang berada di dalam loji rawatan 

kumbahan. Oleh itu, objektif kajian ini adalah untuk mengoptimumkan media kultur 

dalam kelalang kon dan strategi pembangunan dan pengeluaran biojisim P. fluorescens 

dalam bioreaktor yang berkapasiti 16-L. Komposisi media dioptimumkan dengan 

menggunakan teknik ubahan faktor satu per satu (OFAT) dan kaedah statistik tindak 

balas permukaan (RSM) di mana eksperimen Box-Behnken digunakan. Analisis 

varian (ANOVA) menunjukkan kepentingan penemuan bagi setiap faktor dengan 

pekali tinggi penentuan (R2) sebanyak 95.58 %. Nilai optimum untuk menghasilkan 

biojisim terdiri daripada: sukrosa, 8.0 g L-1; ekstrak yis, 3.0 g L-1; dipotasium fosfat, 

2.0 g L-1; dan magnesium sulfat heptahidrat, 1.5 g L-1. Media ini memberikan biojisim 

3.28 g L -1 (peningkatan kira-kira 57.6 % berbanding media yang belum 

dioptimumkan). Selepas langkah ini, media yang telah dioptimum digunakan untuk 

pengkulturan dalam dua keadaan iaitu; dengan kawalan pH dan tanpa kawalan pH di  

dalam tangki bioreaktor 16-L. Hasil pemerhatian mendapati dengan mengawal pH 

media pada 7.2 semasa proses fermentasi ini telah meningkatkan biojisim sebanyak 

39.56 %. Seterusnya, kaedah suap kelompok berskala tetap pada pH 7.2 telah 

digunakan untuk meningkatkan penghasilan biojisim. Kaedah pengkulturan suap 

kelompok telah dilakukan dengan menggunakan sukrosa dan media lengkap telah 

menghasilkan biojisim masing-masing 8.46 g L -1 dan 14.98 g L -1. Semasa kaedah ini 

dijalankan, didapati bahawa nutrisi bagi media lengkap adalah terhad selepas 10 jam 

fermentasi. Oleh itu, pemberian media lengkap ditambah secara beransur-ansur telah 

dilaksanakan sebagai strategi suap kelompok. Biojisim bagi kaedah ini mencapai hasil 

sebanyak 33.5 g L -1. Sebagai kesimpulannya, penghasilan biojisim bagi P. fluorescens 

dapat dicapai melalui kaedah pengoptimuman media dengan kawalan pH dan strategi 

suap kelompok di dalam bioreaktor 16 L. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Research Background 

 

 

In natural environment Pseudomonas fluorescens is present as a soil micro-

organism that living in symbiosis with plants where it promotes the growth of fungi 

and providing nitrogen source for plant roots (Roca and Olsson, 2001). P. fluorescens 

is able to utilize NO3 as an electron acceptor in place of O2 and some others is an 

obligate aerobe. Physiological and genetic features of Pseudomonas make it a 

promising agent for utilization in biotechnology, agriculture and environmental 

bioremediation applications. Thus P. fluorescens show a significant role in the 

bioremediation of nitrogen cycle especially in denitrification steps (Hayat et al., 2010). 

Oxidation of ammonia to nitrate is known as nitrification and reduction of nitrate to 

nitrogen gas via nitrite is known as denitrification (Kim et al., 2008). Because of the 

variability and unique characteristic of bacteria in wastewater treatment, the most 

effective treatment solution is to be specific. As the present of denitrifying bacteria is 

ubiquitous in wastewater treatment, thus it is the most environmental friendly method 

and could provide assuring chance of nitrate waste treatment (Yang et al., 2011).   

 

Currently, the process for nitrogen removal in wastewater treatment plants is 

substantive based on the natural process of nitrifying and denitrifying microorganism 

(Takaya et al., 2003). However, from the schematic cycle of the microorganisms it is 

still not sufficient due to the complexity in the environment such as uneven distribution 



 2 

of dissolve oxygen (DO) and inadequate amount of substrate (Patureau et al., 2000). 

Most of the researcher have found groups of heterotrophic nitrification and aerobic 

denitrification microorganisms, such as Paracoccus denitrificans (formerly known as 

Thiosphaera pantotropha), Alcaligenes faecalis, Pseudomonas stutzeri, Microvirgula 

aerodenitrificans and Bacillus isolated from soils and wastewater treatment (Joo et al., 

2006).  

 

 

Globally, treatment by microorganisms has received wide attention due to their 

efficiency (Jechalke et al., 2010; Perelo, 2010). Unfortunately, the natural process is 

slow before the clean water is discharge to the environment. These may cause from 

the low amount of biomass from denitrifying bacteria and the condition inside 

treatment plant may inhibit their growth. It is believed that P. fluorescens required a 

substantial study on improving the growth kinetic and further understanding and high 

cell mass production. The high yield of P. fluorescens biomass is generally depends 

on well-defined condition type of carbon source, nitrogen source and minerals 

necessity. Further investigation is needed to figure out the effect of each chemical 

ingredient on P. fluorescens growth kinetic. According to the analysis by Roca and 

Olsson (2001) reaction of P. fluorescens could be quantified. Glucose is mainly 

converted through glycolysis pathway, succinate and citrate through the Tricarboxylic 

Acid cycle whereas acetate is used as a gluconeogenic substrate. Moreover according 

to Chawla et al., (2009) nitrogen source favors the biomass production for bacteria. 

This is because the nature of these substrates has the ability and characteristic in 

metabolism of microorganism. There are various type of nitrogen source such as yeast 

extract, soy flour, corn steep powder, peptone and a few inorganic nitrogen sources. 

Even though complex media would give significant support to enhance the growth and 

production of biomass but the necessities of economic value, knowing the entire 

chemical composition and to have purification of product make chemically defined 

medium is important for industrial use.  
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1.2 Problem Statement 

 

 

Pseudomonas fluorescens is an effective denitrification bacterium in wastewater. 

It can utilize nitrate and convert to nitrogen gas. The higher cell mass of denitrification 

bacteria, the more of nitrate will be utilize. However, the studies of biomass production 

from P. fluorescens are very limited. There is little information available about 

medium composition for cell mass production. Most researchers are either focused on 

genetic enrichment of denitrifying activities or production of secondary metabolites. 

Therefore, it is important to determine the optimum cultivation medium for high cell 

mass production of P. fluorescens particularly the requirement for the most effective 

carbon and nitrogen source. It is also important to look for new chemically defined 

medium or semi-defined medium to produce high cell density of P. fluorescens. In 

addition, dissolve oxygen and pH condition could be the limiting growth factors for P. 

fluorescens. Thus, further studies on cultivation strategy are needed to increase 

biomass production. 

 

 

 

1.3 Objective 

 

 

The main objective of the present work is to develop an optimum culture medium 

and cultivation strategy for biomass production of P. fluorescens as nitrate removal 

microorganisms in wastewater treatment. 
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1.4 Scopes of Research 

 

The scopes of the research are: 

 

a) Media screening for high cell mass production of P. fluorescens. 

b) Media optimization for high cell mass production of P. fluorescens using one 

factor at time (OFAT) and statistical approaches (RSM). 

c) Batch cultivation of P. fluorescens in a 16-L pilot scale stirred tank bioreactor 

for high cell mass production under controlled and uncontrolled pH condition. 

d) Fed-batch cultivation of P. fluorescens in a 16-L pilot scale stirred tank 

bioreactor for high cell biomass production. 
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