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ABSTRACT 

 

 

 

Architecture and urban design disciplines very much adhere to the use of 

representations as a tool to aid decision making process. As it is almost impossible to 

replicate environments in full-scale, both physical and digital representations are 

therefore restricted by the notions of scale and level of details. These notions are now 

challenged by the emergence of virtual reality (VR) technology, which allows 

architects to work with full-scale virtual environments (VEs). However, the 

taxonomy of architectural representations in VR is not properly defined as 

discussions in academia are mostly concerned about creating realistic impressions of 

space, rather than the operational side of different architectural detailing. Thus, in 

recognizing the operational dimensions of VEs in VR, it is vital to examine the 

influence of different architectural detailing on the legibility of VEs. This study 

aimed to suggest a guideline for users’ experience of architectural detailing in a VE 

for a large-scale urban simulation. This study was executed as an experimental 

simulation study. In a total of N=96 respondents were divided into four different 

treatments with n=24 respondents in each VE with a unique level of architectural 

detailing. They answered the questionnaire surveys and drew cognitive maps after 

completed navigating within the VEs using VR. Analysis methods used were 

primarily of content analysis, Kruskal-Wallis H test, and one-way ANOVA. The first 

analysis phase was environment-specific and the second phase was route and point-

specific. In the third phase, the findings from previous phases were triangulated. The 

most and the least legible VEs were established as per different abilities of 

interpreting VEs. The operational dimensions of the VEs were established based on 

the deconstructed architectural detail components namely ‘geometric extrusion’ and 

‘distinction’ as the factors influencing legibility of VEs. The operational dimensions 

of each VE were synthesized based on various criteria derived from the abilities of 

interpreting VEs. Based on the statistically significant results, the criteria were 

reduced to ‘understanding VE’ and ‘recalling VE’, in that order. In conclusion, there 

are some influences of architectural detailing on legibility but only in regards to the 

two criteria. The operational dimensions were also established for each criterion, 

which was learned from the cognitive knowledge data. Firstly, is for tasks within one 

viewpoint. Secondly, is for linear navigation and lastly is for full-fledged virtual 

exploration. This thesis also proposed two main guidelines for the user experience of 

architectural detailing in urban VE to be used by architects and users in the 

associated domain. 
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ABSTRAK 

  

 

 

Disiplin senibina dan rekabentuk bandar sangat bergantung kepada 

penggunaan representasi sebagai alat dalam membantu proses pengambilan 

keputusan. Disebabkan mereplika akan suatu persekitaran berskala penuh dikira 

hampir mustahil, maka representasi fizikal dan digital terhad oleh tanggapan skala 

dan peringkat keperincian tertentu. Kemunculan teknologi realiti maya (VR) telah 

mencabar tanggapan tersebut kerana arkitek kini mungkin boleh memanfaatkan 

penggunaan model persekitaran maya (VE) berskala penuh. Namun, taksonomi VE 

berskala penuh sebagai representasi senibina masih belum ditakrifkan dengan baik 

kerana perbincangan akademik hanya menekankan aspek gambaran realistik suatu 

ruang di dalam model VE dan bukannya dari sisi pengendalian yang berdasarkan 

peringkat keperincian senibina. Demi menilai aspek pengendaliannya, maka kajian 

ke atas pengaruh peringkat keperincian senibina yang berbeza ke atas kebolehbacaan 

model VE adalah penting. Kajian ini bertujuan untuk mencadangkan garis panduan 

bagi pengalaman pengguna terhadap keperincian senibina di dalam simulasi VE 

bandar berskala besar. Kajian ini berbentuk simulasi eksperimental. Sebanyak N=96 

responden telah menyertai kajian dan dibahagikan kepada empat perlakuan berbeza, 

dengan n=24 responden di dalam setiap perlakuan. Setiap perlakuan mempunyai 

peringkat keperincian senibina yang berbeza. Mereka telah menjawab soalan 

kajiselidik serta melukis peta kognitif setelah memandu arah di dalam model VE 

melalui VR. Kaedah analisis utama yang digunakan adalah analisis kandungan, ujian 

H Kruskal-Wallis dan ANOVA satu arah. Fasa analisis pertama adalah khusus 

kepada persekitaran model VE dan fasa analisis kedua pula khusus kepada laluan dan 

titik. Dalam fasa ketiga, penemuan daripada analisis sebelumnya telah melalui proses 

penyegitigaan. Model VE dengan kebolehbacaan tertinggi dan terendah dikenalpasti 

berdasarkan kebolehan responden menginterpretasi model VE yang berbeza. Sisi 

pengendalian model VE telah dikenalpasti berdasarkan komponen keperincian 

senibina yang telah dirumuskan menjadi ‘penyemperitan geometri’ dan ‘penonjolan’ 

sebagai faktor utama dalam mempengaruhi kebolehbacaan model VE. Sisi 

pengendalian setiap model VE disintesiskan berdasarkan kriteria tertentu yang 

diambil daripada kebolehan menginterpretasikan model VE. Berdasarkan keputusan 

statistik yang signifikan, kriteria tersebut dikurangkan menjadi ‘memahami VE’ dan 

‘mengimbau VE’, dalam tertib tersebut. Kesimpulannya, terdapat beberapa pengaruh 

daripada peringkat keperincian senibina ke atas kebolehbacaan model VE tetapi 

hanya berkaitan dengan dua kriteria berkenaan. Sisi pengendalian model VE juga 

dikenalpasti untuk setiap kriteria berkenaan berdasarkan kepada data pengetahuan 

kognitif. Pertama, adalah untuk tugas dari dalam satu titik pandangan. Kedua, adalah 

untuk navigasi linear dan yang terakhir adalah untuk eksplorasi maya yang 

menyeluruh. Tesis ini juga telah mencadangkan dua garis panduan bagi pengalaman 

pengguna ke atas keperincian senibina di dalam bandar VE untuk digunakan oleh 

arkitek dan pengguna-pengguna lain dari bidang yang berkaitan. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background 

 

Virtual Reality (VR) is a technology as described by Steuer (1992) referring 

to a particular technological system that uses computer generated real-time animation 

displayed on a head-mounted stereoscopic visual output. It is controlled typically 

with a system of wired gloves and position tracker. Brooks (1999) defines a VR 

experience as whenever a user is being effectively immersed in a responsive virtual 

world. VR in this sense overrides human senses to be absorbed into believing to be in 

another set of ‘reality’, which often are in digital format. Original works on VR was 

done by Ivan Sutherland when he was at Harvard University (Myers, 1998).  He said 

in his lecture titled ‘The Ultimate Display’ in 1965, that the challenge for computer 

graphics is to create a virtual world that moves and responds to real time interactions, 

as well as feel, look and sound real (Brooks, 1999). This similar pursue towards 

achieving total immersive environment has become the main motivation for VR 

developers that today in delivering deliver real feeling, look and sound of an unreal 

environment. This is not too dissimilar from what Sutherland had come to predict. 

 

As in the late 1980s and early 1990s, VR devices were becoming more 

widespread and slowly occupying video arcades and research laboratories (Boyen, 

2009). However, the technology at that time was considered not capable enough in 

delivering a fully immersive environment due to limitations such as the weak display 
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and limited software capabilities (Drettakis et al.  2005; Halley-Prinable, 2013; 

Zachara & Zagal, 2009), apart from economic constraints (Kahaner, 1994).  

 

In a much recent development, capabilities of electronic components and 

software have been vastly improved. This has triggered the interest of innovators 

such as a man named Palmer Luckey to capitalize on the idea of improving the VR 

technology using components available in the generic technology of today  (Stein, 

2015).  The prototype uses MEMS sensing and video display technology that are 

already available in modern smartphones. High-fidelity VR contents and wide-angle 

viewing capability makes Oculus Rift’s level of immersion better than its 

predecessors (Lavalle et al. 2014). Since then, giant technological corporations, as 

well as other small companies, have invested their interests in developing similar VR 

products for the masses.  The biggest change in current VR technology is the rapid 

improvements on software capabilities (Halley-Prinable, 2013). As the software 

development is more advanced, the physicality of recent VR devices has fairly 

preserved a similar design as the previous hardware, as shown in Fig. 1.1. Almost all 

VR hardware designs are becoming similar which most of the available VR products 

in the market have retained similar method of displaying the VEs. The position 

reorganization is made possible usually by gyroscopes and accelerometers (Boas, 

2013), which is almost similar to all VR products from different companies. 

 

 

Figure 1.1: Similar HMD designs in Oculus Rift DK2, Project Morpheus and HTC 

Vive (Image source: PCMag.com; http://venturebeat.com/2016/01/12/htc-vives-

year-of-uncertainty/; http://www.extremetech.com/gaming/178867-sonys-project-

morpheus-prototype-is-a-hit-bodes-well-for-the-future-of-virtual-reality ) 

 

The competition of creating more capable VR system has become one of the 

major pursues in technological development recently. As this may lead to more 

discoveries in terms of its practical prospects ahead, this leaves a myriad of existing 
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and new potential studies pertaining VR system and contents. From the earlier 

version of VR products and up until today, the technology is heavily anchored to 

gaming and entertainment purposes. VR functionalities are slowly being adapted into 

activities that otherwise were at all unthinkable before. Film production, website 

building, and product manufacturing are just some real-world, non-gaming activities 

that are slowly adapting VR technology. Many studies were done in hoping for 

discovering possible practical uses of VR from various perspectives. This is an 

advantage for both the academia and technological community, as principally the 

performance and usability limit of the VR technology is still unknown.  

 

As architectural practice is much involved in spatial evaluations, VR is set to 

be more relevant as a mean of architectural or insofar, territorial representation. As 

the decision making in the practice often involves representations that would 

eventually require much time and cost, the need of recognizing VR as a valid 

architectural representation tool has become more profound. A virtual environment 

(VE) in VR can be perceived as the second set of reality that users can interact with, 

whether they are a small or a large environment. Similarly, the nature of architectural 

practice itself has no standard of how small or how big does a design decision 

making should take place. Architects have the liberty to metaphorically construct 

anything as VEs and this is not just limited to small spaces. A VE in VR in this sense 

may be treated as a tool to assess small architectural space or even an urban scale 

environment. The optimal operational dimension of VR, therefore, should be learned 

through the small concerns such as architectural details to larger components such as 

the aggregate of buildings in an urban scale VE. 

 

VR system relies heavily on the computing power, which will later affect the 

fluidity and fidelity of the VE representations. Apart from this, the concern of 

perfecting the VEs realism and richness in VR has always been the primary concern 

among industry players as well as academics. However, as highlighted by Balfour 

(2001), appropriating the tool for the pursue towards creating a richer and realistic 

hypothetical VE than the real one is simply idiotic. Furthermore, this thesis argues 

that a VR system should not be more than just an operational representation tool to 

evaluate space and the environment it represents. This requires the concerns 

regarding VR as a tool for urban scale architectural representation should be viewed 



4 

from the system’s operational side for architectural purposes. Researchers should not 

neglect the importance of architectural details in VEs while maintaining the best 

quality and fluidity of the VEs in VR. 

 

Using a conventional way of constructing a 3D model of the VEs, this study 

examined the influence of the different levels of architectural detailing on 3D 

buildings upon the legibility of the VEs itself. In other words, this study is based on 

the concern of leveraging the level of architectural detailing in creating a workable 

VE as a form of large-scale urban representation in VR. Through this, VR, therefore, 

can be envisioned to be an operational representation tool for architecture and urban 

design by appropriating the most legible level of architectural detailing in VEs for 

architectural design and evaluation. 

 

 

 

1.2 Statement of Problem 

 

For ages, architects have been using scale representations such as models to 

aid design process (Stavrić, 2013). It is an economical solution considering 

constructing buildings may take years to complete and unexpected circumstances and 

decisions could come into play in the interim. Using representations in the form of 

scale models, in particular, allows architects to manage the risks of possible errors 

and discrepancies in the final design product. However, the operational use of these 

models may vary depending on the scale and the level of details (Stavrić, 2013). The 

selection of scale generally depends on the actual size of objects, the size of the 

workspace and the project stage that is to be illustrated. Another critical 

consideration for scale models is the selection of the level of details. Reducing the 

scale of models thus will increase the level of details and vice versa, to the level of 

their geometric primitives. As presented in Table 1.1, a highly detailed model of a 

house on a scale of 1:25 may be useful for an interior design study as it bears a 

realistic resemblance to the real house. A 1:1000 scale model of a city environment 

may be represented in prismatic blocks and is often monochromatic, as it is laborious 

to produce huge models with architectural details and colour and therefore, deemed 

as not effective enough for gathering valid information.  
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Table 1.1: Common type of scale models (Stavrić, 2013). 

Type of scale model Scale 

Detail model 2:1 or 1:1 

Interior/ furniture model 1:25 

Conceptual/ development model 1:50, 1:100, 1:200 or 

with no specific scale 

Exhibition model, model of 

constructed objects 

1:100, 1:200 

Site model 1:250 or 1:500 

City/ landscape model 

Small environment 

Large environment 

 

1:250 or 1:500 

1:1000 or 1:2500 

 

The practice of using representations historically contributed to the existence 

of the discipline itself (Losciale, Lombardo, & De Luca, 2012). Architects from the 

earlier days until now still build scale models to actualize ideas through smaller and 

therefore, manageable pieces of information. Architects have always relied on 

representations in communicating design intents to the stakeholders, and sometimes 

representations are central to architects to establish intimate wanderings through 

one’s thoughts as a dialogue in the design process (Aroztegui, Solovyova, & Nanda, 

1997). As it is impossible to foresee implications of the decision taken during the 

design process, representations play a critical role for architects in the decision-

making process before taking a stake in the end product. Architects often work with 

2D representations and would eventually utilize 3D format of representations such as 

isometric and perspective drawings to explain the designs even further. All these 

physical representations either in the form of drawings or models are always 

inadequate in some areas as compared to the digital representations.  

 

Frequently produced in smaller scales, physical models are not suitable 

agencies for allowing architects to gain spatial experience. Thus, digital 3D models 

are used by architects and urban designers to explore virtual spaces. The scale of 

digital models, however, are not accessible in computing and digital models often 

worked on through interchangeable scales as a scale translation from the VE 

displayed on the screen to the real world has to be made by the user (Richardson, 

Montello, & Hegarty, 1999). Metaphorically, all digital models exist within the 

digital realm are in a full-scale, it is just what is being displayed to the users may not. 

Additionally, in the end, they are going to be viewed as 2D representations through 
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the computer screens or to be printed on the physical outputs such as papers. This 

pushes architects or the system itself to reduce the level of detailing in the 3D models 

as per what the computer screens can display or depending on the size of the physical 

outputs they intent to produce on. Either physical or digital format, the level of 

details and scale remain as two factors distinguishing the operational quality of one 

representation to another. 

 

In the architectural design process, 3D buildings are usually built with an 

optimal level of detail. Whereas for a larger scale environment such as a city 

environment, highly detailed representations are rarely, if not impossible to be built 

in full-scale. As for the scale models of cities and urban areas, physical models are 

typically small that it is unlikely for certain vital information to be obtained from 

studying one. It might also be uneconomical, laborious and just nearly impossible to 

build physical models in full-scale with adequate detailing.  

 

In a recent development, the vision of making VR be available and affordable 

to the masses has paved the way to the so-called second wave of VR revolution 

(Stein, 2015). VR is therefore sought to be more capable and advanced, as it could 

present the VEs in full-scale through a more intuitive and immersive manner. Digital 

reinterpretation of the reality itself may trigger some interesting subjects within the 

architectural realm.  As architecture and urban design are major fields involved with 

the concerns regarding spatial assessments of small to large environments, VR 

system is envisioned to be a capable tool that may aid these assessments at many 

levels.   

 

VR systems of today can potentially allow large, full-scale VEs to be 

explored while maintaining the merit of architectural details. A Higher number of 

polygons and meshes are required in preserving architectural details on 3D buildings, 

and this, in turn, demands the diminution of the quality of VEs. Some techniques are 

already introduced by scholars in reducing the complexity of models in VEs to 

increase their performance. As highlighted by Gao (2013), commonly used 

techniques are mesh simplification and through using model simplification 

algorithms. These techniques, however, are mainly putting emphasis on the fidelity 
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of the model while ignoring the importance of architectural characteristics and 

principles. 

 

Studies with the objectives of pursuing legible VEs are commonly from the 

computer graphics point of view. The entire field of computer graphics has grown 

out of the tension between realism and speed, between fidelity and frame rate, 

between rich, highly detailed VE and smooth animation (Luebke, et al., 2003). Many 

studies are governed by the concern of how complex and realistic VEs should be 

presented, or at least, perceived. Attentions were given to pursue the aesthetic 

qualities of VEs towards creating more complex, therefore more realistic looking 

VEs. Thus, techniques such as photogrammetry are widely used as a reliable method 

to record parts of reality into a 3D model, but this approach often neglects the 

geometric quality of architectural details. 

 

The problem with deciding the level of details in representations is mainly 

controlled by the scale, other than the question of production capability, time and 

cost (Hudson-Smith, 2007; Kobayashi, 2006). Therefore, deciding on what scale 

must go concurrently with determining the level of details. In an urban scale VE, the 

question of the level of details and scale can be more ambiguous, as there are no 

rules on dictating how to detail a VE this large should be built. For architectural 

decision making purposes, it is more logical for a higher level of architectural details 

to be preserved. Additionally, as other cues such as smell and touch are less possible 

to be recreated in VEs, the information expected to be properly displayed in VR are 

primarily of visual cues alone. As the actual environment is messy and complex, the 

relevant components that should be preserved in VEs are left with the visual cues 

containing the architectural characteristics of the buildings, thus the notion of 

legibility has to become relevant for this study. 

 

The full-scale VEs in VR will require a high level of details as visual 

information in VR should be delivered sufficiently, especially for architectural and 

urban study assessment. Thus, the VEs should be made legible visually and 

cognitively.  It is also important for the disciplines to learn about the operational 

level of different level of details. This ambiguous boundary of defining how detail 

buildings in VEs should be represented while maintaining the operational side of the 
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representations for VR has become the gap that needs to be defined. As discussed by 

Oxman (2008), “One way in which the clarification of the uniqueness of digital 

design media can be established is to define a taxonomy for digital design models,”. 

This study is a continuation of this process, induced by the belief that the concern of 

defining the taxonomy for VEs with different detailing should be primarily based on 

architectural attributes rather than polygons, mesh numbers and textures. Thus, the 

term ‘architectural detailing’ (referring to different levels) and ‘architectural details’ 

(referring to certain detail components) are deemed to be more appropriate to be used 

rather than the traditional term of ‘level of details’. 

 

 

 

1.3 Aim and Objectives 

 

The research aimed to suggest a guideline for the user experience of 

architectural detailing in a VE for large-scale urban simulation. This expands the 

possibility of VEs in VR to become a valid urban scale architectural representations. 

This study was centralized on the notion of legibility of the VEs, achieved through 

these objectives: 

 

1. To measure differences in the degree of legibility of all VEs; 

2. To evaluate the influence of different levels of architectural detailing upon 

the degree of legibility of VEs; 

3. To compare the differences in cognitive knowledge of respondents from all 

VEs. 
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1.4 Primary Hypotheses 

 

The primary null and alternative hypotheses that have been established for 

this study are as follows: 

 

1. Null Hypothesis/ H0 – The level of architectural detailing on 3D buildings 

has no observable influence on the degree of legibility of the VEs; 

2. Alternative Hypothesis/ Ha – The level of architectural detailing on 3D 

buildings influences the degree of legibility of the VEs. 

 

 

 

1.5 Scope of Research 

 

The scope of research was set to describe the boundaries and limitations for 

this study, which was limited to these parameters: 

1. Concerns were only limited to outdoor space legibility evaluation, not 

including the internal spaces of 3D buildings in the VEs; 

2. The study utilized VR system as a tool and not focusing on the technicality 

of VR technology extensively; 

3. The study did not compare the VEs representation with the reference site; 

4. Only the data from the respondents who have not been to the reference site 

were considered for analysis; 

5. Explorations within VEs during the data collection process were limited to 

certain paths as free explorations would only contribute to data 

redundancies and other unnecessary circumstances. However, a certain 

degree of freedom in explorations was allowed as discussed later in Chapter 

3. 
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1.6 Outline of Research Methodology  

 

To be elaborated in Chapter 3, the research methodology is the backbone of 

this study. Prior to the data collection, it is also vital to explain the research 

methodology briefly as to highlight the basic structure of how this study was 

executed. In warranting more valid and diverse findings, the research has the data 

taken through combined research strategy from both quantitative and qualitative 

approaches, within the post-positivist system of inquiry. This study is mainly of an 

experimental simulation study, with the primary data are of perception, cognitive and 

observation data. Thus, questionnaire surveys were used extensively as one of the 

main research instruments, combined with the data gathered from observations and 

cognitive maps drawn by the respondents. These were all done through respondents 

from different VEs with different level of architectural detailing. Overall, there were 

six main stages of work accomplished in completing this thesis accordingly as 

illustrated in Fig. 1.2. 
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Figure 1.2: General outline of this study. 

 

 

 

1.6.1 Stage 1: Literature Review 

 

This is a preliminary stage of accumulating and reducing all the needed 

information discussing the related subject from a large body of literature sources 

(Groat & Wang, 2013). The sources were gathered from the works primarily 

discussing architectural representations, VEs, VR, computer graphics, the level of 

details, urban legibility, wayfinding and cognitive knowledge.  

 

 

 

 

Stage 2: Synthesis of theories/ Defining variables 

Research problems 

Stage 5: Data analysis 

Defining gap 

Stage 6: Results & discussions 

Synthesis/ Conclusions 

Stage 4: Data Collection 

Stage 1: Literature Review 

Stage 3: Method development 

VEs 3D modeling 

Level of Architectural Detailing Representations VR Urban VE legibility 

VE 4 VE 3 VE 2 VE 1 
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1.6.2 Stage 2: Synthesis of Theories and Definition of Variables 

 

From the knowledge and discourse in the previous stage, the theories were 

synthesized into becoming the basis for the ongoing discussion of this research. The 

variables for the data collection were developed based on the dimensions that have 

been established through the theories. The next stage of method development and the 

data collection process were mainly of proving these theories.  

 

 

 

1.6.3 Stage 3: Method Development 

 

The hypotheses were established and research objectives that have been 

discussed earlier developed into the operational guidelines. The theories formulated 

became the basis of how the 3D model of the VEs was constructed. The work of 

preparing the VEs went concurrently with the development of research method. 

Determining the level of architectural detailing was also established based on the 

formulated theories. The tactics for collecting data including the way the navigation 

simulation was strategized and the tasks are given to the respondents were also based 

on these theories.  

 

 

 

1.6.4 Stage 4: Data Collection 

 

Taking precedence from the methods used by scholars such as Lynch (1960) 

and Appleyard (1981), cognitive knowledge data were gathered through cognitive 

maps as the respondents attempted to recall urban elements in the VEs within the 

realm of VR they have experienced. As this study is of ‘between subjects’ tests, each 

respondent was assigned into a unique group and therefore each respondent was 

independent of another. This was to discourage the preconceived idea of a place that 

they may have recognized earlier. The questionnaire survey questions were 

completed by the respondents after they have completed the cognitive mapping 

exercise. 
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1.6.5 Stage 5: Data Analysis 

 

The data collected from the previous stage were analyzed separately in three 

primary phases. The first phase is the environment specific analysis of the 

quantitative data gathered from the questionnaire survey and observations. The 

second phase is the route and point-specific analysis using primarily qualitative 

cognitive knowledge taken from the cognitive maps, alongside the additional 

perception and observation data. Various analysis methods including statistics 

techniques were implemented. The results from the analysis stage are discussed in 

the third phase, which is the triangulation of the findings from the previous phases. 

 

 

 

1.6.6 Stage 6: Results & Discussions 

 

As the analysis of data is separated into three phases, the results from each 

phase are presented and discussed separately. At the end of this stage, the findings 

from both phases were triangulated, and the results of the triangulation were 

synthesized and presented as the conclusion. The established theories and hypotheses 

from the previous stages are the prelude to the conclusions in the final chapter. 

 

 

 

1.7 Significance of Study 

 

The architectural practice itself is an embodiment of multidisciplinary skills 

and talents. Architectural knowledge is stemmed from disciplines layered from 

anthropology, economy, engineering, history, geography, environmental psychology, 

philosophy etc. The assertion of new knowledge into an already rich discipline is, 

therefore, would not just empower the disciplines itself, but also encourage different 

disciplines to become mutually relevant over time. Thus, to study a new 

technological system into an already established concept of architectural 

representation can be a great commencement towards a total digitization of the 

concept generally, and the architectural practice mainly. In a long run, more efficient 
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society can be created and more sustainable approach towards implementing 

architectural ideas can be achieved.  

 

VR has begun to be used by architects as a representation tool. Through 

innovative integration technology, the architectural 3D software can now be 

supported with VR capabilities. At the same time, VR system itself can be acquired 

easily by the masses and the industry must keep up with this sophistication of the 

society. This inclusion of VR into architectural practice, especially as a form of 

representation should be validated through theories and empirical data. Evaluating 

the influence of architectural detailing upon the legibility of VEs will not only enable 

this validation but also will become the basic guidelines of which operational level of 

detailing should be achieved in any architectural representation in VR. This study 

will be one of the studies that touch on this matter, synthesized mainly from 

architectural and urban design knowledge and hoping to get to impeccably developed 

further. The taxonomy of architectural representations can be enriched to include VR 

as one of the tools apart from limited to just digital and physical models. This opens 

the way of how architects can contribute certain knowledge to the disciplines and 

technology that are not architecturally related. 

 

This study defines operational levels that will be beneficial especially in 

maintaining architectural concerns related to computer graphics discourse. Software 

developers and 3D modelers can refer to the findings from this study to determine 

the optimal level of details for architectural purposes in future. Urban scale 

environments in VR with a high level of details may consume much work, time and 

cost, thus architects and urban designers can work within an optimal boundary set by 

this study. 

 

As the actual reality and VR are two dichotomous dimensions, evaluating the 

legibility of a VE in VR is not just critical for architectural representation, but it also 

opens broader philosophical stance on the reality itself. As the real environment is 

already complex and messy with details, the schematized representation of that 

reality in VR based on architectural knowledge will make architects and scholars 

recognize the concept of redundancy and adequacy of details. While this study 
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maintains the argument of schematization may influence the degree of legibility of 

VEs, it also highlights the operational side of it.  

 

Apart from this philosophical stance, this study is also relevant to urban 

theories in general. The adoption of new technology in the digital era will pave the 

way for architectural and urban design disciplines to be resonant to this technological 

development. There are numerous urban legibility studies done in the past decades, 

and digital intervention may change the way people evaluate these studies and 

architectural decision process as a whole. There were no possible means to 

manipulate building details in evaluating how far do architectural details can 

influence legibility of a large urban environment. This so far can only be done in VR, 

as it can simulate a full-scale environment where observers can navigate within it. 

This study explores this possibility and urban theories in future can be built upon the 

relevant findings. 

 

 

 

1.8 Organization of Thesis  

 

 

This thesis is divided into six main chapters. To highlight the direction of this 

thesis more clearly, the outline of each chapter as a precursor to the entire thesis are 

as follows: 

• Chapter 1: Introduction 

• Chapter 2: Literature Review 

• Chapter 3: Research Methodology 

• Chapter 4: Results of Experiment 

• Chapter 5: Discussion 

• Chapter 6: Conclusions 

 

The current chapter (Chapter 1) discusses the preliminary details and the 

direction of the thesis as an introductory discussion. The problems, especially 

regarding the emergence of VR technology and architectural representations, are 
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discussed as the background of this study.  The research gap is then discussed further 

in Chapter 2. Academic and other references especially relevant to the topics of VR, 

VEs, level of architectural detailing and cognitive study are discussed. The research 

method is discussed in Chapter 3, which presents the development of the research 

methodology including the system of inquiry, strategies and tactics as a preparation 

to proceed to the data collection stage to the next chapter. Chapter 4 presents the 

results from the data analysis while Chapter 5 discusses the findings from the data 

collection stage. The findings then used to confirm the theories that have been 

synthesized in the previous chapters, whether the level of architectural detailing has 

some influence to the legibility of VEs. After the findings were triangulated, the final 

chapter (Chapter 6) concludes the influence of the level of architectural detailing on 

the legibility of VEs, using the researcher’s own remarks. The synthesized 

operational dimension of the level of architectural detailing is also proposed and 

finalized into guidelines. 

 

 

 

1.9 Chapter Summary 

 

This chapter serves as the point of departure to the overall thesis. It presents 

the introductory background to the problems that lead to the formation of the 

research objectives, scope and hypotheses. The objectives and hypotheses are 

essential to compare and find differences between VEs which reflected through the 

different architectural detailing. Brief explanations of the research methodology and 

data collection stages involved are also presented in the introduction chapter. Based 

on the objectives, it is certain at this point this research would use combined method 

strategy to gather and analyze the data. The significance of this study is highlighted 

with the discussion focusing on its possible contributions to various parties. The 

significance of study was discussed in an optimistic tone that it requires further 

discussion and actual data analysis to support it. There is also a discussion on the 

outline of the research chapters that are expected to be in this thesis. The issues 

regarding VR technology and architectural representations are discussed with regards 

to the concern of the VE contents and architectural details. Thus, this study is likely 

to utilize VR system to simulate large-scale VEs for the data collection process. In 
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this chapter, these are only elementary discussions to establish the problems in 

setting out the framework. This study requires various references touching on the 

subject matter, thus the arguments and claims are discussed more thoroughly in next 

chapters. 
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