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ABSTRACT 

 

 

 

 

The installation of the fin stabilizers on the Semi Small Waterplane Area 

Twin Hulls (Semi SWATH) vessel reduces the disadvantages of its low restoring 

force. The important role of the fins in increasing the lift force on Semi SWATH 

brings the need for the hydrodynamic assessment, including the effect of fins on the 

Semi SWATH resistance. In this thesis, the resistance and wake wash of the Semi 

SWATH model with separation over length ratio, 0.35 and 0.30 were investigated. 

The investigation considers the fin stabilizers’ configurations, which change the 

induced drag and lift and flow pattern around the hulls. Numerical simulation was 

carried out to examine the mentioned criteria using the ANSYS CFX software with 

build in Reynolds Average Navier-Stokes (RANS) code in deep and shallow water 

conditions. Validation of the numerical result was based on the experimental result, 

which was performed in towing tank at the Universiti Teknologi Malaysia. It was 

discovered that the computational result showed up to 11% maximum average error. 

This error is larger as compared with other catamaran computational cases, which is 

mainly caused by the limitation of the computational tools in producing good 

computational grid and simulating the turbulence free surface flow in the complex 

hull form. It was concluded that the fins’ installation angle changes the pressure 

distribution and wave propagation around the hulls, which increases the total 

resistance up to 70.9% in deep water and 40.3% in shallow water by average. The 

resistance increment from shallow water effect for the hulls with 15º fin angle 

showed 56.5% reduction compared to the bare hulls case. An extended parametric 

study in shallow water concluded that the total resistance enlargement can be 

avoided by 27.7% from the appropriate hull and fin parameters, including smaller 

water depth, larger hull separation distance and small angle of fore fin stabilizers. 

The findings of the research can be a guideline for the modification of the fin 

stabilizer configurations for the catamaran and the extending application of Semi 

SWATH in shallow water region. 
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ABSTRAK 

 

 

 

 

Pemasangan sirip penstabil pada kapal Semi SWATH mengurangkan 

kelemahan dari aspek kuasa balikan yang rendah. Fungsi penting sirip penstabil 

dalam meningkatkan daya angkat Semi SWATH menyebabkan perlunya penilaian 

hidrodinamik termasuk kesan sirip terhadap rintangan kapal. Dalam tesis ini, 

rintangan dan corak aliran ombak pada model kapal Semi SWATH dengan nisbah 

jarak pemisah per panjang, 0.35 dan 0.30 telah dikaji. Kajian mengambilkira 

konfigurasi sirip penstabil yang mengubah daya seret dan daya angkat serta corak 

aliran bendalir di sekeliling badan kapal. Simulasi berangka telah dijalankan untuk 

menilai kriteria yang disebutkan menggunakan perisian ANSYS CFX dengan kod 

Reynolds Average Navier-Stokes (RANS) pada kondisi air dalam dan air cetek. 

Validasi bagi dapatan berangka adalah berdasarkan dapatan eksperimen yang 

diperoleh daripada ujian rintangan di tangki tunda yang berada di Universiti 

Teknologi Malaysia. Maksimum ralat purata yang dihasilkan daripada kaedah 

berangka adalah sebanyak 11%. Faktor utama nilai ralat yang lebih besar berbanding 

analisa berangka katamaran yang lain adalah limitasi kaedah berangka dalam 

penghasilan grid simulasi dan simulasi aliran turbulen pada permukaan air bagi kapal 

berekabentuk kompleks. Secara konklusi, sudut pemasangan sirip mengubah 

distribusi tekanan dan propagasi ombak di sekitar badan kapal dan meningkatkan 

rintangan total sehingga 70.9% pada kondisi air dalam dan 40.3% pada air cetek 

secara purata. Peningkatan rintangan yang disebabkan kesan kedalaman air yang 

terhad bagi kapal dengan sudut sirip 15º berkurang sebanyak 56.5% berbanding kes 

kapal tanpa sirip. Kajian parametrik lanjutan pada kondisi air cetek merumuskan 

sebanyak 27.7% peningkatan rintangan keseluruhan dapat dielakkan berdasarkan 

modifikasi sirip dan badan kapal yang sesuai termasuk mengurangkan kedalaman air, 

meningkatkan jarak pemisah badan kapal, dan mengurangkan sudut sirip penstabil 

hadapan. Hasil kajian ini boleh menjadi panduan dalam mengubah konfigurasi sirip 

penstabil bagi katamaran dan meluaskan operasi Semi SWATH di kawasan air cetek. 
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INTRODUCTION 

1.1  Background 

In conjunction with the changing needs of marine transportation, many 

advanced multihull designs have been developed nowadays. The recent design 

includes semi displacement hull, where the vessel displacement operated at high 

speed is not fully supported by the submerged hull due to the buoyancy reduction. A 

ship within this category, which is preferred as the marine transportation modes is 

the catamaran type. 

In the early 19th century, catamarans were widely used in the transportation 

system due to its large deck area. One of the highlights of their performance was low 

resistance and good stability in the high-speed conditions. Furthermore, their hull 

designs, which promote large dynamic motion with increasing ship speed, especially 

while running in the head seas condition are critical. The early development of high-

speed catamarans was focused on the passenger ferries. However, in recent years, 

catamarans are widely used as the multipurpose marine transportations including 

public transportation, industrial, military and commercials. 

The modern type catamaran such as Small Waterplane Area of Twin Hull 

(SWATH) possesses different features compared to the conventional ones. A 

SWATH designed by Frederick G. Creed, which was developed in a multihull with 

the torpedo-like underwater structure supporting the hull displacement was used for 

cruising and transportation purposes (Smith, 1982). Routa (1985) and Lang (1988) 
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also reported the SWATH applications for cruising, canal and harbour operations as 

well as the oceanography research vessel. 

From the design point of view, the small waterplane area of a SWATH 

ensures low wave response to the hull, which is important in evaluating the vessel 

seakeeping performance in all conditions. The small waterplane area ships can 

achieve similar seakeeping state as a monohull with 5-15 times larger displacement 

and twice the speed as compared to the previous seakeeping state (Dubrovsky, 2010). 

However, such criterion comes with a few drawbacks such as large resistance and 

power consumption caused by the large wetted surface area of the hull and difficulty 

in designing the machinery and propulsion system due to narrow space of the 

underwater structure (Medaković et al., 2013). Another drawback, which can affect 

the quality of the design is the large trim effect whereby the ship is exposed to larger 

forces.  

A hybrid design, which combines SWATH design in the fore and catamaran 

in the aft or known as Semi SWATH can become an alternative design. The design 

was generated after laborious research on the performance assessment of the 

SWATH and catamaran hull forms. The best approach in combining both hull 

designs was sought with the intention to subdue their weaknesses while giving 

emphasis to their operating power and motion responses. Among the disadvantages 

of the original designs include seakeeping problem in rough seas, speed loss at high 

speeds and high cruising power.  

The first hybrid design was suggested by Shack (1995) after reviewing the 

unsolved problems of a fast passenger vessel, including resistance, seakeeping, 

propulsion and comfortability. The Semi SWATH design was described for Seajet 

vessel, which adapts the high speed of catamaran and the optimal seakeeping of 

SWATH based on the minimum vessel stiff response to promote passengers’ 

comfort. A few years later, Holloway (2003) presented the benefits of combining 

both the catamaran and SWATH designs whereby the most highlighted one is a 

smooth ride in the various wave conditions and speeds.  
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The need of having an environmentally friendly coastal and inland waterways 

transportation such as passenger ferries has brought to the discussion towards the 

extended application of Semi SWATH, following previous use of catamaran and 

SWATH based on its smooth ride performance in the wavy open sea. The earlier 

study performed by Mat (2007) discussed the adaptability of Semi SWATH as the 

coastal passenger ferry. The proposed general arrangement is depicted in Figure 1.1. 

The finding discovered by Jupp et al. (2014) supports the extending application of 

Semi SWATH at the High Speed Craft (HSC) in the coastal region and inland 

waterways. The finding shows that the design of Semi SWATH ranked second and 

third for the vessel type criteria in term of technical and commercial respectively. 

However, more research should be done to investigate the feasibility of such HSC in 

the coastal regions and inland waterways, especially due to the wake wash problem. 

These issues have encouraged engineers to perform deeper analysis on the crucial 

part of the vessel performance namely dynamic motion and hydrodynamic analysis.  

 

Figure 1.1: General arrangement of the Semi SWATH as the coastal passenger ferry 

(Mat, 2007) 

The dynamic motion analysis results from the Semi SWATH critically 

unstable motion due to the pitching moment, especially at the high-speed conditions. 

As such, a stabilizing system using the fin stabilizers is applicable to reduce the large 

pitching moment while at the same time increase the stability of the vessel against 

the moments generated by roll and yaw motions. However, Faltinsen (2006) 

emphasized the relationship between foil and ship resistance, lift and cavitation 

reduction. Therefore, the fin design and configuration should be analysed 

accordingly to ensure the effectiveness of producing appropriate moments to 

stabilize the vessel and acceptable resistance properties in the various conditions. As 

for the hydrodynamic analysis, more attention is given to calm water and shallow 
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water analysis, which is important to ensure Semi SWATH can be operated in 

various operating conditions. From the point of view of coastal and inland waterways 

operations (shallow water conditions), the focus is mainly on wake wash as it leads 

to bank effect and erosion. 

1.2  Problem Statement 

Discussion on the feasibility of Semi SWATH for coastal and inland 

waterways operations involves shallow water and calm water operating conditions 

where the effect of sea wave condition to the hull resistance is not affected much 

(Molland et al., 2008). The less available resources on the resistance properties of 

Semi SWATH compared to the seakeeping properties have been addressed by 

Vernengo et al. (2014). Hence, resistance analysis of Semi SWATH in both 

conditions is essential in the Semi SWATH design development. 

Based on the Semi SWATH operating performance, there is a need to study 

the effectiveness of its stabilising system in achieving the optimal hydrodynamic 

performance of multihull. The important hydrodynamic criteria for the proposed 

application of Semi SWATH in open sea, coastal region and inland waterways 

include resistance and wake wash. The previous research on Semi SWATH 

seakeeping as performed by Rahimuddin (2013) highlighted the importance of fin 

stabilizers to improve the lift force and damping force. The drag and lift effect from 

the fin stabilizer configuration including fin angle on the Semi SWATH resistance 

should be further analysed as varied characteristics from different fin angles 

influence the Semi SWATH resistance due to the difference in generated interference 

resistance and flow velocity around hulls. Furthermore, the stabilizing system tends 

to produce enlargement or reduction factor to the hull resistance, which depends on 

the factor of design and particular. 

The contributing factors to the resistance and wake wash of the Semi 

SWATH with fin stabilizers should be analysed, including the impact of generated 

wave, interference factor and existence of the appendages. The pressure distribution 
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and generated wave pattern analysis should be performed to determine the effect of 

fin stabilizers on the Semi SWATH resistance components. Accordingly, different 

appendages configuration effect should be investigated to discover the in-depth 

relationship between the fin stabilizers and the Semi SWATH resistance. 

This research focuses on the configuration of the installed fin stabilizers on 

Semi SWATH, which converged to the relationship between the anti-pitch fins 

configuration on Semi SWATH and the hull hydrodynamic factors, including hull 

trim condition and generated wave around the hulls. The research offers significant 

contribution as there is a minor discussion on the mentioned topic compared with 

seakeeping improvement. The finding of the research is useful to discuss the 

improvement factor of the available fin stabilizers design while the relationship is 

treated as the guideline for varying fins configurations methods according to fins and 

multihull effectiveness. 

1.3  Research Questions 

The research was conducted based on the following research questions: 

1. What is the contributing factors of the Semi SWATH resistance with fin 

stabilizer? 

2. How do the Semi SWATH hulls and fins configuration affect the hull 

resistance components? 

3. What is the fin stabilizers configurations effect on the Semi SWATH 

resistance and wake wash in deep water and shallow water conditions? 

1.4  Research Objectives 

The study aimed at analysing the Semi SWATH performance, which 

considers the configuration of the fin stabilizers attached to the twin hulls. The 

objectives of the research were outlined as follows: 
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1. To determine the contributing factors of the Semi SWATH resistance with fin 

stabilizers. 

2. To examine the relationship between the configurations of fins and the Semi 

SWATH resistance components. 

3. To evaluate the effect of fin stabilizers configurations on the Semi SWATH 

resistance and wake wash in deep water and shallow water conditions. 

4. To assess the parameters of hull and fin stabilizer of Semi SWATH in 

shallow water resistance aspect. 

1.5  Research Scope 

The research is focused on two main components: fin stabilizers 

configuration based on its effectiveness and Semi SWATH performance in 

resistance. The important aspect to be considered is the influence of fin stabilizer in 

producing approximate lift and smooth flow at the same time maintaining good 

seakeeping and resistance criteria.  The scope of the research was outlined as 

follows: 

1. Vessel performance is commonly divided into calm water analysis and 

seakeeping response. As the seakeeping response of similar Semi SWATH 

has been covered in previous work, the current research focused on calm 

water analysis.  

2. The analysis was performed in deep water for the analysis of Semi SWATH 

at the designed speed condition and shallow water for analysis at Depth 

Froude number.  

3. The methods comprised the computational method using Computational 

Fluid Dynamic to simulate the problem and the experimental method to 

validate the simulation results.  

4. The main analysis focused on the resistance of the Semi SWATH with and 

without fin stabilizer at the designed speed and shallow water condition. 

Further details on the effects of fin stabilizers configurations on the Semi 

SWATH resistance components and hull generated waves are given by 
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analysing the effects of changing the aft fin angle, which considers the 

interference resistance and non-dimensional ratio of the fin stabilizers.  

5. The further parametric study, which involved the fin stabilizers 

configurations such as fin distance from seabed, fins installation angle and 

fins separation distance was performed in shallow water due to the critical 

effect of hull generated wave in this condition. 

1.6  Thesis Outline 

The research has been constructed in the most appropriate flow and 

procedure to study the effects of the fin stabilizers configuration on the resistance of 

the Semi SWATH. 

Chapter 1 described background, objectives and scopes of the research.  

Chapter 2 summarized reviews on the performance of the Semi SWATH and 

multihull characteristics, including resistance in the deep and shallow water. Reviews 

on the advanced marine vehicles, fin stabilizer characteristics, a method of 

hydrodynamic analysis and effect of appendages to resistance were elaborated as 

well. 

Chapter 3 justified the method chosen for the research work to achieve the research 

objectives. The main approaches used were the computational fluid dynamic 

simulation where validation was performed by the resistance test. Further work on 

the parametric study was described in the chapter. This chapter explained the basic 

theory and mathematical formulation for the approach used in the research, 

especially the force distribution of total hull resistance and the derived equation of 

computational model for fluid dynamic simulation. The chapter also described the 

mathematical equation behind the measurement of hull resistance, wave amplitude 

and hull motion during the experiment.  
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Chapter 4 described the computational fluid dynamic simulation modelling method 

in the ANSYS CFX software based on the developed mathematical model as well as 

the measurement of wave amplitude by wave probe and the prediction of hull heave 

and trim angle. Accordingly, validation method for the simulation model developed 

was discussed, including the resistance test in deep and shallow water.  

Chapter 5 presented the result of resistance components of the Semi SWATH bare 

hulls and hulls with changing aft fins angle in deep water at the designed speed. The 

results comprised the simulation results and experiment data, including the resistance 

and wave profile of the hulls at corresponding speed and the draft. 

Chapter 6 elaborated comparison between the resistance components of Semi 

SWATH in deep and shallow water conditions based on different aft fin angles. The 

results include simulation results and experiment data of the resistance and wave 

profile as well as trim and sinkage of the hulls at the corresponding speed and draft. 

The parametric study results were further exposed in the total resistance obtained via 

simulation of the total resistance in shallow water condition based on the selected 

varying parameters namely water depth, hulls separation distance and fin angle at 

fore and aft of the hull 

Chapter 7 finally concluded the current research and the recommendation of future 

works. 
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