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ABSTRACT 

Numerous types of thermoelectric materials with best thermoelectric 

performances have been explored such as bismuth-telluride (Bi2Te3), which is the most 

commonly found in the market, has a figure-of-merit close to one.  However, due to 

limited sources, highly toxic and expensive, the application of one-dimensional 

nanomaterial is proposed in thermoelectric micro-energy harvesting, which has been 

predicted to show improvement in thermoelectric properties.  Use of Silicon Nanowire 

Arrays (SiNWA) as thermoelectric material was reported to reduce thermal 

conductivity, κ, by a hundredfold compared to bulk Silicon (Si).  The properties such 

as heat flow, temperature difference, ΔT between hot and cold junctions and Seebeck 

voltage, Voc were evaluated concurrently for different lengths of p- and n-type SiNWA.  

This thesis reports the performance of SiNWA with two different lengths, 30 μm and 
50 μm, on both p- and n-type Si for thermoelectric energy harvesting, and followed by 

comparing the recorded performance to its bulk Si.  A simple and cost-effective 

technique, metal-assisted chemical etching (MACE), was used to fabricate SiNWA 

and the nanowires lengths were characterized.  An increase in thermal resistance 

reduces κ for Si, which is advantageous for a thermoelectric material. In this work, 

heat flow was noticeably decreased in SiNWA samples, resulting in a higher ΔT and 

Voc than in bulk Si.  A larger ΔT between junctions is also attainable in SiNWA by 

increasing nanowires length.  The results have shown that both p- and n-type SiNWA 

samples (50 μm) have achieved 95 % and 96 % increases in ΔT, respectively, relative 

to bulk Si samples.  In addition, as the length of nanowires increased, a longer time 

was required to reach a steady value of ∆T. The reduction on approximation values of 

κ by a hundred-fold which increases thermal resistance as well as Seebeck coefficient, 

S in the SiNWA samples. Improvement in SiNWA thermoelectric properties will 

expands the application of SiNWA thermoelectric micro-energy harvesters in various 

fields such as bio-medical, telecommunication, wireless technologies and others.   
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ABSTRAK 

Pelbagai jenis bahan termoelektrik dengan prestasi termoelektrik yang terbaik 

telah diterokai seperti bismut telurida (Bi2Te3) yang terdapat di pasaran dan memiliki 

angka-merit menghampiri nilai satu. Walau bagaimanapun, disebabkan bahan ini yang 

mempunyai sumber yang terhad, bertoksik tinggi dan mahal, bahan nano satu-dimensi 

dicadangkan untuk kegunaan dalam penuaian tenaga mikro termoelektrik yang mana 

telah diramalkan dapat menunjukkan peningkatan dalam sifat termoelektrik. 

Penggunaan jajaran nano-wayar silikon (SiNWA) sebagai bahan termoelektrik 

dilaporkan telah dapat mengurangkan daya pengaliran haba, κ, sebanyak seratus kali 

ganda berbanding Si pukal. Sifat-sifat seperti aliran haba, perbezaan suhu, ΔT diantara 

simpang panas dan sejuk serta voltan Seebeck, Voc telah dinilai secara serentak bagi 

SiNWA jenis p- dan n- bagi kepanjangan nano-wayar yang berbeza. Tesis ini 

melaporkan prestasi SiNWA dengan dua panjang nano-wayar yang berbeza iaitu, 30 

μm dan 50 μm bagi kedua-dua jenis p- dan n- Si untuk penuaian tenaga termoelektrik, 

dibandingkan dengan prestasi yang direkod oleh Si pukal. Satu teknik mudah dan kos 

efektif iaitu punaran kimia berbantu logam (MACE), telah digunakan untuk 

membentuk SiNWA dan panjang nano-wayar yang terhasil telah dikenalpasti. 

Peningkatan dalam rintangan haba dapat mengurangkan κ bagi Si, yang merupakan 

salah satu ciri terbaik bagi bahan termoelektrik. Dalam kerja ini, aliran haba ternyata 

berkurangan secara ketara bagi sampel SiNWA, yang berupaya untuk menghasilkan 

ΔT dan Voc yang lebih tinggi berbanding Si pukal. ΔT yang lebih besar antara simpang 

panas dan sejuk juga dapat dicapai dalam sampel SiNWA dengan menambahkan 

panjang nano-wayar. Hasil kajian menunjukkan bahawa kedua-dua sampel SiNWA 

(50 um) jenis p- dan n-, masing-masing mencapai 95 % dan 96 % peningkatan dalam 

ΔT, berbanding sampel Si pukal. Selain itu, semakin bertambah panjang nano-wayar, 

semakin lama masa yang diperlukan untuk mencapai nilai mantap bagi ΔT. Anggaran 

nilai κ di dalam kajian in berjaya dikurangkan sebanyak seratus kali ganda, di mana 

dapat membantu untuk meningkatkan rintangan haba dan nilai pekali Seebeck, S 

dalam sample SiNWA berbanding Si pukal. Kemajuan dalam sifat termoelektrik bagi 

bahan SiNWA dapat memperluaskan penggunaannya di dalam pelbagai bidang seperti 

bio-perubatan, telekomunikasi, teknologi tanpa wayar dan sebagainya.  
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Battery or button cells are the most common electrical energy source for low-

power and portable electronic applications such as smartphones, embedded devices, 

remote sensors and medical implants.  However, the limited lifespan of these energy 

sources affects device performance and the battery must be replaced periodically.  As 

an alternative, energy harvesting technologies that capture and convert energy 

available in the surroundings into usable electrical energy could give limitless 

operating life for low-power devices, eliminating batteries replacement that is 

expensive, impractical and risky.  There are various types of useful energy available 

in the environment such as light, kinetic, thermal and electromagnetic energy, which 

can be converted into electrical energy.  Energy harvesters such as photovoltaic cells, 

piezoelectric transducers and thermoelectric generators are able to convert these useful 

energies to power up any low-power portable electronic devices.  Most energy 

harvesters are designed to be cost-effective and require minimal maintenance over 

lifespans of several years.  Some of energy harvesters are built in a miniature size 

which allowing them to be embedded in electronic devices.   

 

A thermoelectric device is an inexpensive energy harvester that can be used to 

convert heat from the ambient, human body and waste heat into useful electrical 

energy.  This type of energy harvester has a solid-state mechanism that actually 

increases the longevity of the device, while ensuring emissions- and noise-free 

operation, consequently promoting a healthy environment [1].  This type of energy 
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harvester is currently used in several applications including wristwatches [2], 

biometric sensors [3], and cooling chambers [4].   

1.2 Problem Statement 

Various types of thermoelectric materials with excellent thermoelectric 

performances have recently been explored and reported [5-8].  Most thermoelectric 

devices found in the current market are made of bismuth-telluride (Bi2Te3), which 

exhibits a figure-of-merit (ZT) of close to one [9].  Although this compound is 

commonly used for thermoelectric devices, this material contain high toxic level and 

expensive due to its rarity.  Alternatively, Si, a semiconductor material that is 

extensively used in microelectronic devices became a promising material for 

application in thermoelectric devices.  However, the high thermal conductivity, κ, of 

bulk Si (i.e., ~150 Wm-1K-1 at room temperature [10, 11]) contributes to a low ZT, 

which consequently affects thermoelectric efficiency.  

 

To address the shortcomings of existing materials, nanostructured materials 

such as nanowires [12, 13] and nanotubes [14-16] were proposed as an alternative to 

enhance thermoelectric properties [17].  Nanowires-based materials offer various 

advantages for improving thermoelectric performances, including thin-film 

superlattices and quantum dot-based materials [18].  Numerous studies in the literature 

have reported a hundredfold reduction in κ by using the Si nanowires [19-21].  

Reduction of κ is due to frequent phonon scattering in the material which consequently 

improves the values of ZT which relates to the efficiency of thermoelectric devices 

[22, 23].   

 

Despite the existing literatures on thermoelectric materials, knowledge gaps 

remain.  In this work, the length of Si nanowire arrays (SiNWA), heat flow and 

temperature difference, ΔT between the hot and cold junctions, which would contribute 

improvements in output power, current and voltage of a SiNWA thermoelectric energy 

harvester, are studied together for both p-type (boron-doped) and n-type (phosphorus-

doped) samples.  The SiNWA are fabricated using a simple and cost-effective 
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technique called metal-assisted chemical etching (MACE). Improvements that would 

portrayed by SiNWA as a potential thermoelectric material could open up more 

possibilities in thermoelectric applications. 

1.3 Research Objectives 

Thermoelectric energy harvester that uses temperature gradients and heat flow 

present in nature and human body offers a method to overcome the problems.  

However, thermoelectric material plays an important role in producing efficient 

thermoelectric devices.  In this work, a nanostructured SiNWA is proposed as an 

alternative thermoelectric material. Therefore, the main objectives of this research 

include: 

  

 

1) To develop several lengths of p- and n-type Si Nanowire Arrays (SiNWA) 

thermoelectric material in the range of 5 – 50 µm by using MACE technique. 

 

2) To measure and characterize thermoelectric properties such as heat flow, ∆T 

and output voltage of p- and n-type SiNWA thermoelectric samples. 

 

1.4 Scope of Research 

The scopes of this work are as follow: 

 

i. This research aims to explore a one-dimensional nanostructured semiconductor 

material, SiNWA which is used as a thermoelectric material.  Two types of Si 

wafers were used in this work, namely p-type (boron-doped) and n-type 

(phosphorus-doped). 
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ii. Simulations of heat transfer and output voltage between hot and cold ends of a 

single Si nanowire model were conducted while bulk Si model was used as a 

benchmark.  Simulations were done in COMSOL Multiphysics software. 

 

iii. Wet etching technique, metal-assisted chemical etching (MACE) was used to 

fabricate nanowires.  Several lengths of p- and n-type Si Nanowire Arrays 

(SiNWA) thermoelectric material in the range of 5 – 50 µm were fabricated in 

order to analyse their relationship to the time of etching.  

 

iv. The amount of heat applied to the hot junction by the heater was assumed the 

same in all the experiments, where the heating rate was 0.5 °C/sec.  

Experiments in this work were conducted to evaluate the performance of the 

SiNWA samples during temperature changes.  

1.5 Research Contribution 

Nanostructured SiNWA was predicted to show an improvement in thermal 

resistance due to enhancement of thermoelectric properties such as ΔT and Seebeck 

voltage, Voc compared to bulk Si.  Both p- and n-type SiNWA were developed using 

MACE wet etching technique where the longer etching time will increases the length 

of SiNWA.  Heat flow, ΔT and Voc are characterized simultaneously and analysed for 

two different nanowire lengths, using bulk Si for comparison.  Heat flow across 

SiNWA was expected to be reduced which will be able to provide a larger ΔT between 

the hot and cold junctions than bulk Si.  A larger ΔT that can be attained in a 

thermoelectric device may help to gain a larger Voc and finally, improves 

thermoelectric performance.  Improvement of Voc, heat flow and ΔT across SiNWA 

will expand the use of SiNWA in thermoelectric devices for applications such as 

industrial monitoring, electrical appliances and others.  
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1.6 Potential Impact of the Research  

Thermoelectric energy harvesting offers a promising self-sustainable source of 

energy for low-power applications.  Si is extensively used in microelectronic devices 

and is a promising material in thermoelectric devices.  Previous studies have shown 

that by altering bulk Si into nanostructured Si such as SiNWA improves thermoelectric 

properties.  The use of SiNWA could therefore be profitable in thermoelectric 

applications.  The output voltage from a SiNWA can be varied or increased by 

adjusting nanowires length, thereby changing ΔT. This could be beneficial for certain 

low-power applications.   

 

Results of this study could motivate other researchers to further explore the 

application of SiNWA to thermoelectric energy harvesters.  By reducing 

manufacturing and material costs, the use of thermoelectric devices could potentially 

be expanded into various fields such as automotive, bio-medical engineering and 

wireless technologies.  In addition, cost reductions may improve economic growth and 

perhaps encourage the use of green technology in our daily lives for environmental 

conservation. 

1.7 Organization of the Thesis  

This study focuses on the use of SiNWA as a thermoelectric material and how 

different lengths of nanowires affect the output of a thermoelectric device.  All 

processes in the study are described in this thesis.  This thesis consists of five chapters 

starting with an introduction of research in Chapter 1.  This chapter includes 

background, problem statements, objectives, scopes, contribution and potential 

impacts of the research. 

 

Chapter 2 provides an overview of different types of energy harvesters.  The 

fundamental working principles of thermoelectric energy harvester are described.  

Additionally, previous work on thermoelectric materials is reviewed.  Finally, the 
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theory and significance of SiNWA as a thermoelectric material are reviewed at the end 

chapter. 

 

Chapter 3 explains the research methodology, including workflow and models 

used for simulations of heat distribution over nanowires.  Fabrication of SiNWA using 

a two-step MACE technique is described in this chapter.  In addition, experimental 

setup and equipment used in the experiment are described at the end of the chapter. 

 

Chapter 4 presents the experimental analysis of SiNWA as a thermoelectric 

material.  This chapter analyses and discusses three results sections: COMSOL 

simulations, MACE fabrication and experimental characterization. 

 

Finally, the findings of this work are summarized in Chapter 5.  

Recommendations for future work are given to help others further develop this 

technology and improves the output of this work. 
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