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ABSTRACT  

 

 

 

 

The use of robotic manipulator with multi-link structure has a great influence 

in most of the current industries. However, controlling the motion of multi-link 

manipulator has become a challenging task especially when the flexible structure is 

used. Currently, the system utilizes the complex mathematics to solve desired hub 

angle with the coupling effect and vibration in the system. Thus, this research aims to 

develop a dynamic system and controller for double-link flexible robotics 

manipulator (DLFRM) with the improvement on hub angle position and vibration 

suppression. A laboratory sized DLFRM moving in horizontal direction is developed 

and fabricated to represent the actual dynamics of the system. The research utilized 

neural network as the model estimation. Results indicated that the identification of 

the DLFRM system using multi-layer perceptron (MLP) outperformed the Elman 

neural network (ENN). In the controllers’ development, this research focuses on two 

main parts namely fixed controller and adaptive controller. In fixed controller, the 

metaheuristic algorithms known as Particle Swarm Optimization (PSO) and Artificial 

Bees Colony (ABC) were utilized to find optimum value of PID controller parameter 

to track the desired hub angle and supress the vibration based on the identified 

models obtained earlier. For the adaptive controller, self-tuning using iterative 

learning algorithm (ILA) was implemented to adapt the controller parameters to meet 

the desired performances when there were changes to the system.  It was observed 

that self-tuning using ILA can track the desired hub angle and supress the vibration 

even when payload was added to the end effector of the system. In contrast, the fixed 

controller degraded when added payload exceeds 20 g. The performance of these 

control schemes was analysed separately via real-time PC-based control. The 

behaviour of the system response was observed in terms of trajectory tracking and 

vibration suppression. As a conclusion, it was found that the percentage of 

improvement achieved experimentally by the self-tuning controller over the fixed 

controller (PID-PSO) for settling time are 3.3 % and 3.28 % of each link 

respectively. The steady state errors of links 1 and 2 are improved by 91.9 % and 

66.7 % respectively. Meanwhile, the vibration suppression for links 1 and 2 are 

improved by 76.7 % and 67.8 % respectively.  
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ABSTRAK 

 

 

 

 

 Penggunaan pengolahan robotik dengan struktur  pelbagai-pautan 

mempunyai pengaruh besar dalam kebanyakan industri semasa. Walau 

bagaimanapun, mengawal gerakan pengolahan pelbagai-pautan telah menjadi tugas 

yang mencabar terutama apabila struktur mudah lentur digunakan. Pada masa ini, 

sistem menggunakan matematik yang kompleks untuk menyelesaikan sudut hub 

yang dikehendaki dengan kesan gandingan dan getaran dalam sistem. Oleh itu, 

tujuan penyelidikan ini adalah untuk membentangkan satu sistem dinamik dan 

kawalan untuk pengolahan robotik mudah lentur (DLFRM) dengan penambahbaikan 

kedudukan sudut hub dan pengurangan getaran. DLFRM bersaiz makmal yang 

bergerak dalam arah mendatar dibangunkan dan dihasilkan untuk mewakili dinamik 

sebenar sistem. Penyelidikan ini menggunakan rangkaian saraf sebagai anggaran 

model. Keputusan menunjukkan bahawa pengenalan sistem DLFRM menggunakan 

perceptron pelbagai lapisan (MLP) mengatasi prestasi rangkaian neural Elman 

(ENN). Dalam pembangunan pengawal, penyelidikan ini memberi tumpuan kepada 

dua bahagian utama iaitu pengawal tetap dan pengawal suai. Dalam pengawal tetap, 

algoritma metaheuristik yang di kenali sebagai Pengoptimuman Kerumunan Zarah 

(PSO) dan Koloni Lebah Buatan (ABC) telah digunakan untuk mendapatkan nilai 

optimum bagi parameter pengawal PID untuk mengesan sudut hub yang dikehendaki 

dan mengurangkan getaran berdasarkan model yang dikenal pasti yang diperolehi 

sebelum ini. Untuk pengawal suai, penalaan diri menggunakan algoritma 

pembelajaran berlelaran (ILA) dilaksanakan bagi menyesuaikan parameter pengawal 

untuk memenuhi prestasi yang diinginkan apabila terdapat perubahan pada sistem. 

Daripada pemerhatian, didapati penalaan diri menggunakan ILA dapat menjejaki 

sudut yang dikehendaki dan getaran dikurangkan walaupun ketika muatan telah 

ditambahkan ke hujung pautan system. Sebaliknya, penalaan tetap merosot apabila 

muatan ditambah melebihi 20 g. Prestasi skema kawalan ini dianalisis secara 

berasingan berasaskan waktu sebenar melalui kawalan komputer. Tingkah laku 

tindak balas sistem diperhatikan dari segi pengesanan trajektori dan pengurangan 

getaran. Kesimpulannya, hasil kajian menunjukkan peratus penambahbaikan secara 

ekperimen yang dicapai dengan kawalan penalaan diri berbanding kawalan secara 

tetap (PID-PSO) untuk masa penyelesaian 3.3 % dan 3.28 % bagi setiap pautan 

masing-masing. Ralat keadaan mantap pautan 1 dan 2 dapat diperbaiki sebanyak 

masing-masing 91.9 % dan 66.7 %. Sementara itu, pengurangan getaran untuk 

pautan 1 dan 2 diperbaiki masing-masing sebanyak 76.7 % dan 67.8 %.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Study 

 

 

Robotic manipulators are extensively used in industries and other fields at 

various level of operation that is from simple pick and place task to the critical 

operation such as space manipulator, automotive, security, electronic factory, 

medicine, oil and gas, etc. This is because they are cost effective and proven to be 

more reliable than humans. In term of design, robotic manipulator structures are 

generally substantial and heavy that result in rigid arm and stiff joint design. Their 

usages are limited to light loads and their movement is slow. Hence, the conventional 

design is not favorable in current industries as it is not efficient in term of speed, 

productivity and power consumption. Apart from that, many industries require light 

mechanical structure such as spacecraft and aircraft. Therefore, noteworthy attention 

has been given to flexible manipulator systems in recent years to fulfill the necessity 

of industrial applications. There are lots of benefits from the development of the 

flexible manipulator structure: cost reduction, lower power consumption, improved 

dexterity, better maneuverability, better transportability, safer operation, light weight 

and lower environmental impact.  

 

Though flexible structure provides accommodating structure for design, it is 

known that the systems demonstrate vibration when subject to disturbances forces. 

The vibration occurs in the light weight manipulators cannot be avoided whenever 
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they maneuver from one point to another. The vibration can be very severe to the 

extent that results in noise, disturbances and discomfort. Vibration may cause 

performance degradation, tracking errors, long idle period between tasks, 

undermining accuracy and safety. In the worst-case, vibration may cause premature 

deterioration of the system. Therefore, it is vital to control the vibration of flexible 

structures. 

 

 

Ongoing researches of flexible structure focused on improving the control 

methods to fulfill all conflicting between benefits, drawbacks and industries 

requirements. In suppressing the vibration, there are two different techniques that are 

hitherto utilised, namely passive control techniques and active control techniques. 

Though there is research on passive control in flexible manipulator (Feliu et al., 

2014; Emiliano et al., 2007; Forbes and Damaren, 2012), but most of the researches 

concentrated on using active vibration technique. Active control uses the principle of 

wave interference by artificially generating a destructive anti source that interferes 

with the disturbances and reduces the level of vibration. In other word, a suitable 

control will process the detected vibration in the system, then superimpose 

disturbance signals to free the system from the actual disturbance force. Meanwhile, 

a passive control requires additional weight embedded to the system as an absorber 

which is simpler, but it is applied to the system with high frequency which is more 

than 200 Hz. Besides, engaging passive control may contradict with the objective to 

reduce the weight of mechanical structures. Furthermore, the flexible manipulator 

system is found to be categorized under low frequency system. Thus, in comparison, 

active control is found to be more suitable and practical to be applied to the system. 

It has been widely used by many researchers and is still the prominent approach till 

today. 

 

 

To date, a number of control strategies are available for double-link flexible 

robotic manipulator (DLFRM) such as Passivity-based velocity feedback and strain-

feedback schemes (Peza-Solís et al., 2010), hybrid collocated proportional derivative 

(PD) and non-collocated proportional integral derivative (PID) (Mahamood and 

Pedro, 2011a), global terminal sliding mode (Chu et al. 2009), a genetic algorithm 

(GA) based hybrid fuzzy logic control strategy (Zebin and Alam, 2010), decoupling 
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controller based on the cloud model (Lingbo et al., 2006), decentralized controller 

based on linear matrix inequalities (Khairudin and Husain, 2014; Leena and Ray, 

2012). The strategies include both conventional and intelligent schemes. Some of 

them combine both intelligent and conventional scheme to compensate the drawback 

of each controller. 

 

 

 

 

1.2 Statement of the Problem 

 

 

The advancements in various field of life inclusive of domestic and industries 

create a great demand for flexible robot manipulator. Many robot manipulator 

applications are categorized as multiple-input-multiple-output (MIMO) systems due 

to multi-link structure. The design and tuning of multi-loop controllers to meet 

certain specifications are often the pullback factor because there are interactions 

between the controllers. The system must be decoupled first to minimize the 

interaction or to make the system diagonally dominant. Moreover, the reduction of 

vibration on flexible structure of robot manipulator must be treated at the same time. 

The continuous stress produced by the vibration can lead to structural deterioration, 

fatigue, instability and performance degradation. Thus, the reduction of vibration on 

flexible structure of robot manipulator is of paramount importance. Though many 

researchers have successfully produced the controllers for multi-link flexible 

manipulator, the control scheme developed involves complex mathematics to solve 

the coupling effect and vibration simultaneously. As a result, it consumes a lot of 

time in numerical computation which leads to higher computational cost.  

 

In the attempt of providing a better control performance, the preferable option 

for control strategy that involves MIMO system is decentralized control strategy 

because it reduces the system into single-input single-output system (SISO). 

Simultaneous optimization method is an alternative of optimizing the parameters 

without go through the complex mathematical calculation to decouple the system. 

Meanwhile, AVC is opted to optimally reduce vibration. For implementing AVC in 

flexible manipulator, smart material is embedded to the system. 

 



4 

 

 

 

Thus, this thesis aims to manage the MIMO system along with the existence 

of vibration in them.  In this research, the hybrid PID-PID controller is developed for 

hub motion and end point vibration suppression of each link respectively. The 

optimization procedure of PID control parameters are tackled using EA and ILA. 

Two EAs are implemented, namely, Particle Swarm Optimization (PSO) and 

Artificial Bees Colonial Algorithm (ABC). Meanwhile, for adaptive controller, self-

tuning of P-Type ILA employed to the system. The PID control tuning method using 

EAs and ILA are implemented on the identified model through system identification 

acquisition of the real plant using neural network structure based on NARX model. 

The performance of EA and ILA is then analyzed via experimental validation. Self-

tuning using iterative learning algorithm (ILA) was implemented to adapt the 

controller parameters to meet the desired performances when there were changes to 

the system.  

 

 

 

 

1.3 Objectives of the Study 

 

 

This research focuses on the control strategies of the double-link flexible 

robotic manipulator. The objectives are as such; 

 

 

1. To model the dynamic of double-link flexible robotic manipulator with actual 

experimental input-output data using non-parametric system identification 

(SI) utilizing Neural Network Non-linear Auto Regressive exogenous 

(NNARX) structure. 

 

2. To develop conventional and intelligent hybrid PID controllers that can 

achieve desired angle of each link together with the suppression of the 

unwanted tip vibration on the double-link flexible robotic manipulator based 

on the identified model. 
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3. To develop, simulate and analyze the performance of real time self-tuning 

PID controller in controlling the angle and vibration of double-link flexible 

robotic manipulator. 

 

 

4. To analyze, verify and validate the best intelligent hybrid PID and self-tuning 

PID controllers experimentally and to perform the comparative assessment 

between those controllers. 

 

 

 

 

1.4 Scope of the Study 

 

 

The scope of the research is as follows; 

 

 

1. Development and fabrication of a laboratory scale size of double-link flexible 

robotic manipulator to move in horizontal planar direction only and gravity 

effect is neglected.  

 

2. The non-parametric model approach is used to model the dynamic of double-

link flexible robotic manipulator limited to multilayer perceptron neural 

network (MLP) and Elman neural network (ENN) based on Nonlinear auto-

regressive with exogenous input (NARX) structure. All the developed models 

are validated via mean square error (MSE), one step ahead (OSA) prediction 

and correlation tests only. 

 

3. Rigid and flexible motion controls of DLFRM are conducted using two 

different control loops respectively based on decentralized control strategy 

only. The rigid motion is evaluated via the input tracking only and the 

performance of the flexible motion is assessed through vibration attenuation 

at the first mode of vibration.  

 

 

4. The intelligent controls are designed and simulated by applying PID 

controller tuned via offline, limited to particle swarm optimization (PSO) and 
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artificial bee colony (ABC) and compared with conventional fixed Ziegler-

Nichols (ZN) PID controller. The best control scheme of fixed controller 

obtained from the simulation is validated experimentally via the developed 

DLFRM rig. 

 

 

5. The real time self-tuning PID control schemes limited to P-type iterative 

learning algorithm (ILA). The controller is implemented for input tracking 

and vibration suppression via the developed DLFRM experimental rig. 

 

6. The robustness test for the PID control scheme on the experimental rig is 

limited to angle variation and end point payload. 

 

 

 

 

1.5  Significant Contribution to Knowledge 

 

 

The contributions of the research are focused on four main areas that is in the 

development of model using experimental data from the rig, the development of 

controllers via decentralized control strategies, the implementation of simultaneous 

optimization method via evolutionary algorithm in solving the parameter of hybrid 

PID MIMO system and real time self-tuning PID based controllers. The details are 

elaborated herein; 

 

 

1. This research contributes in developing the dynamic model of the double-link 

flexible robotic manipulator using non-parametric system identification 

approach. Most of the previous researches used model-based mathematical 

modeling such as assumed mode method (AMM), finite element method 

(FEM) and lump parameters and quite a number implement non-model based 

such as using neural network (NN), fuzzy and neuro-fuzzy. In this research, 

the model is developed using both input and output data from the experiment 

of double-link flexible robotic manipulator system based on NARX model 

structure model. Two types of parameter estimation were used for the model 

development that is multilayer perceptron neural network using back 
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propagation as training algorithm (MLP-NN-BP) and Elman neural network. 

The models were verified through mean squared error, one step ahead and 

correlation tests to determine the best model that represents the system. Thus, 

the controller was designed based on NNARX model which represent the 

nonlinear model of the system. Number of research in this area control the 

system via linear model of the system which is not preferable because it does 

not represent the real plant.  

 

 

2. This research contributes in developing a new method using hybrid PID 

controller on DLFRM with decentralized control strategy via simultaneous 

optimization method. Problem arises as the systems consist of single-input 

multiple-outputs (SIMO) as a separate system and become MIMO system as 

the system merge. The simultaneous optimization method is implemented to 

the MIMO system. Despite the fact that many researches had implemented 

this method, most of them has pre-calculated the decouple gain and use the 

optimization method on decoupled matrix. Whereas, in this research, the 

optimization is implemented directly on the obtained models from system 

identification for all the PID controllers. Thus, the novelty of this research is 

that the dynamic models of DLFRM are separated in the modeling stage. By 

that, the characteristics of DLFRM are defined in each model and the 

coupling effect is assumed to be minimized. There is no study yet to 

implement this approach. Besides, the intelligent Hybrid PID controllers 

tuned by PSO and ABC have not been reported previously to control the rigid 

and flexible motion of DLFRM. Thus, in this study, the simultaneous 

optimization method using PSO and ABC are developed to observe the 

mathematical burden in calculating the decouple gain due to coupling effect. 

 

 

3. This research contributes in investigating the implementation of controlling 

MIMO system using decentralized control strategies in the actual plant. The 

models are controlled within the simulation environment to pre-determine the 

appropriate gains for PID controllers before the experimental work is 

employed. Later, the performances of the simulated controllers are validated 
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experimentally. All the four controllers are run simultaneously on the real 

plant which has not been conducted previously. 

 

 

4. The real time self-tuning iterative learning algorithm PID based controllers is 

simulated and validated experimentally. The system is controlled 

concurrently by all the four controllers in real time. Besides, the study 

provides details implementation of new control structure in controlling 

DLFRM under variation of payloads via online which has not been reported 

in any research. From the experiment, these controllers are proven to be 

robust in term of the input tracking and vibration suppression though there is 

a change of payloads at the end-effector. This is a great advantageous of the 

controllers and it is very important characteristics to be implemented in the 

real application.  

 

 

 

 

1.6  Research Methodology 

 

 

The extensive literature review on the subject matter was carried out to properly 

decide the direction of the study. The research consists of several phases: system 

identification, controller design and experimental validation as shown in Figure 1.1. 

Before that, the experimental rig was developed and fabricated. The fabrication of 

the rig was aimed to replicate the dynamics of the actual systems. The 

instrumentation and data acquisition system were setup and integrated with the 

DLFRM rig. 
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Figure 1.1 Flowchart of Research 
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The impact test was executed to the DLFRM system to validate the rig. The 

first three modes of vibration were identified from the findings. This is an important 

element in vibration control. The results were to be compared with the experimental 

studies. From there, the validity of the developed model could be confirmed.  

 

Then the model of double-link flexible robotic manipulator was identified 

through SI. The input-output data required for the modeling process were collected 

experimentally using the DLFRM test rig. Simulink program was developed as the 

tool for collecting the data. Four outputs were collected from two encoders and two 

accelerometers which represent the hub angles and end point accelerations of each 

link respectively. Nonlinear auto-regressive with exogenous input model structure 

was used to define the relationship between input and output data. The model was 

estimated using neural network that is multi-layer perceptron and Elman neural 

network. The model was validated through MSE, OSA and correlation tests. The 

fittest model was selected as the platform or plant for the PID controller design in the 

simulation environment. 

 

 

Once the model has been selected, the controllers were developed. Three 

types of controllers were designed that is conventional controller, intelligent PID 

controller and self-tuned controller. Conventional controller acts as the experiment 

control of the controller design. The algorithm was used to compute the amount of 

torque (motor voltage) required for trajectory tracking and the amount of voltage 

from actuator to suppress the vibration for DLFRM system. The PID control scheme 

was tuned offline by intelligent tuning methods using ABC and PSO. Meanwhile, the 

conventional tuning method implemented Ziegler-Nichols method. The performance 

of the intelligent fixed PID control schemes were compared with a conventional, 

fixed PID control scheme.  

 

 

The best performances of fixed PID controllers obtained from the simulation 

evaluations were validated experimentally using the developed DLFRM rig. For self-

tuning PID control scheme, the ILA was incorporated with the PID controller to 

update its parameters iteratively. P-Type ILA was used to tune the PID controller 

parameters for both trajectory tracking and end point acceleration control of 
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DLFRM. The real time self-tuning PID control scheme was executed through the 

developed experimental rig for trajectory tracking control and end point acceleration. 

Finally, a comparative study between fixed and self-tuning PID control schemes 

were conducted and reported. The objective of the comparative study was to observe 

the differences in their performance simultaneously. From there, the researchers can 

exploit the benefits of using the proposed strategies. Figure 1.1 shows the flow chart 

of the proposed research strategy considered in this study. 

 

 

 

 

1.7  Structure of Research 

 

 

This thesis is organized into seven chapters. A brief outline of contents of the thesis 

is as follows: 

 

 

Chapter 1 presents an introduction of the research problem. It comprises the 

research background and problem statement. Besides, the research objectives, 

contributions and methodology are highlighted and elaborated. The structure and the 

flow of the thesis are also outlined in this chapter. 

 

 

Chapter 2 focuses on the literature review of modeling and control for the flexible 

manipulators. Firstly, a brief overview on modeling approaches and control schemes 

of the flexible manipulators was highlighted. Then, the recent proposed model 

schemes were reviewed. This was followed by the review on the numerous proposed 

control schemes and their various applications. The gaps between the earlier 

researches and the proposed modeling and control schemes were recognized and 

discussed. 

 

 

Chapter 3 describes the development of experimental test rig to perform the planar 

movement of double-link flexible robotic manipulator. The rig design, the hardware 

use in the experiment set up and the system integration were elaborated in details. 

Besides, the method of data acquisitions was elucidated. The chapter also clarified 
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the reliability of the developed experimental rig through the experimental and impact 

test carried out on the system.  

 

 

Chapter 4 presents the implementation of SI in modeling the hub-angle and end 

point vibration of the DLFRM. The NARX model structure was selected to 

characterize the actual system. The MLP neural network and Elman neural network 

techniques were utilized to estimate and obtain the model of the system. This chapter 

starts with brief explanation of neural network and NARX model structure in 

general. Then, the details of model estimation were discussed which involved the 

incorporation of NARX model structure and neural network. The comparative study 

among the developed models in terms of MSE, OSA and correlation tests were 

carried out. The best model among the developed models was utilized as a system 

plant in the development of control via simulation environment. 

 

 

Chapter 5 presents new tuning methodologies of the conventional PID controller by 

using metaheuristic algorithms. The algorithm is expected to optimally track the 

desired hub-angle together with vibration suppression of the DLFRM. This chapter 

starts with simulation studies of three types of PID based controller configurations 

that implemented and tuned the controller based on Ziegler Nichols method. The 

performance of the hub angle control and end point acceleration of DLFRM are 

evaluated. The best among the controllers is to be compared with the proposed 

controllers. Next, the implementation of tuning the PID-based controller offline on 

the identified hub-angle model and end point acceleration to obtain the controllers 

parameters are discussed. The optimization process uses the metaheuristic algorithms 

that are ABC and PSO by targeting the position of the hub angle and vibration 

suppression. PID-based parameters are validated experimentally and the performance 

of PID-based controller tuned by ABC was compared with PSO. Lastly, the 

robustness tests were carried out to evaluate the effectiveness of the controller. 

 

 

Chapter 6 presents the development of real time self-tuning PID control scheme 

based on ILA for DLFRM. The proposed controllers were observed via simulation 

environment before executed on experimental rig. The self-tuning PID controller 
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performance was validated experimentally and compared with the fixed control 

schemes. The effectiveness of the controller was validated through robustness tests. 

 

 

Chapter 7 summarizes the work presented and draws significant conclusions. 

Suggestion on the possible future works for modeling and control of DLFRM are 

also discussed. 
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