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ABSTRACT 

Temperature sensitivity of waxy crude oils makes it difficult to study their 

flow behaviour in the presence of water especially near their wax appearance 

temperature (WAT). In this study, a method was proposed and implemented to 

mitigate such difficulties by predicting mixture temperatures prior to experimental 

flow of a typical Malaysian waxy crude oil and water in a designed horizontal 

multiphase flow loop. To observe this method in action, mixture temperatures, 

pressure drops and liquid holdups were experimentally measured for mixture 

velocity ranging from 0.2 to 1.7 m/s in a carbon steel horizontal pipe at three 

different temperatures slightly above the WAT. Several correlations were also 

applied to predict the pressure gradients and their results were compared with the 

experimental values. Accordingly, flow patterns were determined by considering a 

combination of visual observations, pressure drop interpretations and free water 

measurements. Moreover, the effect of emulsified water droplets on accelerating the 

wax crystallization process above the WAT under dynamic and static conditions was 

examined in connection with the results of the two-phase flow experiments. The 

results showed the success of the proposed method in predicting the mixture 

temperature with an accuracy of ±0.5 °C. The results of pressure drop revealed a 

dependency on mixture velocity, input water fraction, flow pattern and the 

parameters that flow pattern is a function of (such as pipe wettability, superficial 

velocities, and oil composition). In dual continuous flows, the performance of two-

fluid model was comparatively better than homogenous model with average 

deviation of 17.9 and 26.7%, respectively. Despite operating the experiments above 

the WAT, the deposition of wax crystals on the pipe wall was evidenced for some of 

the flow patterns which, by implication, authenticates the influence of emulsified 

water on elevating the WAT in dynamic flow conditions. Classification of the flow 

patterns based on the wax deposition yielded an original flow pattern map composed 

of nine patterns among which new configurations were evidenced for annular flows. 

In addition, all the flow patterns were affected by the entrance effect and a layer of 

water-in-oil emulsion was observed for all the flow conditions.  From the 

experiments under the static conditions, a sharp increase in the WAT was found with 

the presence of water in the system, regardless of the volume of water. Greater 

deviations became apparent at higher water volume fractions and rotational speeds, 

which resulted in the formation of a larger number of droplets. The results of this 

study provide a progressive introduction to help flow assurance engineers to 

understand the process of wax crystallization and deposition under two-phase flow 

conditions in horizontal pipelines, and to ultimately develop more effective wax 

management strategies. 
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ABSTRAK 

Kesensitifan minyak mentah berlilin terhadap perubahan suhu menyukarkan 

kajian tingkah laku alirannya dengan kehadiran air terutama pada suhu yang 

berhampiran dengan suhu penjelmaan lilinnya (WAT). Dalam kajian ini, satu kaedah 

telah dicadang dan dilaksana bagi mengurangkan permasalahan terbabit iaitu dengan 

meramal suhu campuran sebelum bermulanya kajian aliran minyak mentah berlilin 

Malaysia dan air, di dalam gelung mendatar aliran berbilang fasa. Bagi mencerap 

keadaan uji kaji dinamik ini, suhu campuran, kejatuhan tekanan, dan cecair tertahan 

telah diukur untuk halaju campuran yang berjulat dari 0.2 m/s hingga ke 1.7 m/s di 

dalam paip keluli karbon mendatar pada tiga suhu berlainan yang berada sedikit di 

atas WAT. Beberapa sekaitan turut digunakan untuk meramal kecerunan tekanan 

dengan hasilnya dibandingkan dengan nilai-nilai uji kaji. Dengan itu, corak aliran 

ditentukan dengan mempertimbang gabungan pemerhatian visual, kejatuhan tekanan, 

dan air bebas yang diukur. Selain itu, kesan titisan air beremulsi terhadap 

peningkatan proses penghabluran lilin di atas WAT pada keadaan dinamik dan statik 

turut dikaji dengan mengaitkan hasil uji kaji aliran dua fasa. Hasil kajian 

menunjukkan kejayaan kaedah yang dicadang dalam peramalan suhu campuran 

dengan ketepatan ±0.5 °C. Keputusan uji kaji tentang kejatuhan tekanan 

mendedahkan kebergantungannya terhadap halaju campuran, pecahan air masukan, 

corak aliran dan parameter lain yang mempengaruhi corak lain (misalnya 

kebolehbasahan paip, halaju permukaan, dan komposisi minyak). Dalam aliran 

berterusan duaan, prestasi model dua bendalir adalah lebih baik berbanding model 

homogen dengan masing-masing sisihan purata ialah 17.9 dan 26.7%. Walaupun uji 

kaji dilaksanakan di atas WAT, pemendapan hablur lilin pada dinding dalaman paip 

didapati masih berlaku dalam beberapa corak aliran, yang mengesahkan kesan air 

beremulsi terhadap peningkatan WAT pada keadaan aliran dinamik. Pengelasan 

corak aliran berdasarkan pemendapan lilin telah menghasilkan peta asli corak aliran 

yang mencakupi sembilan corak aliran termasuk penemuan baharu untuk aliran 

anulus. Semua corak aliran dipengaruhi kesan masukan dan lapisan emulsi air-

dalam-minyak yang diperhatikan untuk semua keadaan aliran. Berdasarkan uji kaji 

pada keadaan statik, peningkatan mendadak WAT didapati berlaku dengan kehadiran 

air di dalam sistem, tanpa bergantung kepada isi padu air terbabit. Pelencongan lebih 

besar didapati berlaku pada pecahan isi padu air dan laju putaran yang lebih tinggi 

sehingga terbentuknya titisan air yang lebih banyak. Hasil kajian ini mampu 

membantu jurutera jaminan aliran bagi memahami proses penghabluran lilin dan 

pemendapannya pada keadaan aliran dua fasa di dalam talian paip mendatar, dan 

seterusnya berupaya untuk membangunkan strategi pengurusan lilin yang lebih 

berkesan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

 

 

The expanded territory of petroleum production has given rise to the advent 

of a new field in petroleum industry termed flow assurance. By definition, flow 

assurance comprises all activities that guarantee the continuous stable hydrocarbon 

production with minimum costs and environmental hazards from a reservoir to the 

target market at any environmental conditions and within the whole reservoir’s 

productive life (Bai and Bai, 2005). In this regard, flow assurance engineers must 

overcome such challenges, firstly by anticipating the potential difficulties that may 

arise at different stages of production, and secondly by proposing the most effective 

production plan prior to operation (Aske and Statoil, 2011). In doing so, reviewing 

the production fluid(s) and operational conditions at different production stages is 

always on the list of priorities.  

 

 

At early stages of production from an oil well, the main produced reservoir 

fluid is the crude oil which is usually regarded as a single oil phase despite the 

presence of usually insignificant amount of formation water in the producing oil. As 

time goes by and the reservoir pressure declines due to the depletion of the oil zone, 

the underlying aquifer water will gradually enter the wellbore as a response to the 

induced pressure gradient between the surrounding water and the wellbore. 

Accordingly, the amount of the existing water in the production line is augmented 

synchronously with the age of the well. Thus, mature oil fields experience high water 
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cut in the period of their productive life. However, in some cases, an oil well might 

be still economical to operate even for water cut as high as 90% which is highly 

dependent on the oil price and geographic location of the well (Jepson et al., 

1996; Elseth, 2001; Kumara et al., 2009 ). If the perforation interval is close to the 

gas/oil interface gas might eventually be produced. 

 

 

Owing to the nature of formation water and its accompanied components 

(i.e., salt and sediments), severe obstacles may arise and affect the profitability of 

production. Corrosion, paraffinic wax deposition, reduction of oil flow area in pipe, 

emulsions and hydrates formation are some examples of flow assurance problems 

caused by the presence of water. Therefore, it is more preferable to transport 

dehydrated oil and gas through single phase pipe flow wherever possible to avoid 

such hardships. However, the gradual growth in oil demand has reached a point 

where production from deepwater oilfields is the only key remained for such a huge 

request (Khain and Polyakova, 2004). Fortunately, progressive achievements in 

offshore oil exploration and drilling technology have recently made it feasible to 

explore and develop new remote deepwater oil reservoirs, which had been once 

unobtainable. The transportation of the extracted crude oils from such reserves often 

takes place through long-distance (sometimes over 200 km) subsea multiphase 

pipelines to reach various destinations (Elseth, 2001). This vast distance makes it 

unprofitable to have distinct pipelines for each phase (i.e., oil, water, and gas). The 

alternative is to transport the fluids through one single pipe (three-phase flow) or at 

least two pipelines (one for gas and the other for liquids).  Thus, attempts are needed 

to investigate multiphase flow behaviour under diverse flow conditions to identify 

influential parameters for controlling possible problems during transportation. 

 

 

A survey on the studies performed on three-phase flow indicates that in most 

cases oil and water are considered as a single liquid phase to simplify the study in the 

form of gas–liquid flow (Wyckoff and Botset, 1936; Taitel et al., 1995; Chen and 

Guo, 1999; Spedding et al., 2005; Wang et al., 2010; Gao and Jin, 2011; Xu et al., 

2012). This is mostly due to the relative similarity between the oil and water 

densities and a distinguishable dissimilarity between the densities of the liquids and 
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gas.  However, the results of recent studies on liquid–liquid flow have shown that the 

flow characteristics of two immiscible fluids can be very different from the flow 

characteristics of each individual liquid in many respects (Brauner, 

2003; Chakrabarti et al., 2005; Zhao et al., 2006; Cai et al., 2012; Du et al., 

2012; Gao et al., 2013; An et al., 2014; Bertola, 2014; Ismail et al., 2015). This 

highlights the importance of studying different aspects of oil–water two-phase flow 

to recognize and understand the potential impediments during the flow which are 

essential for having effective production plans.  

 

 

The liquid–liquid flow encompasses wide areas of the petroleum industry, 

starting from the oil reservoir production to the refinery units. In this regard, pressure 

drop, liquid holdup, and flow pattern have been studied as the major flow 

characteristics under different flow conditions (Trallero et al., 1997; Angeli and 

Hewitt, 2000; Lovick and Angeli, 2004; Rodriguez and Oliemans, 2006; Xu, 

2007; Vielma et al., 2008; Cai et al., 2012; Hanafizadeh et al., 2015). Several 

correlations for pressure gradient prediction have been also proposed based on the 

experimental results which are in most cases incompatible for diverse fluids 

characteristics (Chakrabarti et al., 2005; Grassi et al., 2008; Al-Wahaibi, 

2012; Edomwonyi-Otu and Angeli, 2015). Substantial variations can, furthermore, be 

found in the published results for holdups and flow patterns depending on the 

methodology applied. However, despite all the existing discrepancies between the 

findings in this research area, there exists a general agreement that shows the 

pressure drop dependency on the flow pattern and mixture velocities. This implies 

the significance of fluids configuration in pipes in every study of multiphase flow.  
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1.2 Statement of Problem 

 

 

The presence of paraffinic waxes, regardless of their proportion, in all types 

of crude oils highlights the significance of two-phase flow study with respect to these 

components (Manning and Thompson, 1995). Nevertheless, research works done on 

oil–water two-phase flows have mostly been restricted to the use of model oils (i.e., 

synthetic or mineral oils) rather than crude oils (Cai et al., 2012; Kee et al., 

2014; Tan et al., 2015). Although this practice is accepted as an attempt to improve 

the general knowledge on the subject, actual oilfield cases may not be covered. In 

recent years, successful efforts have been made using viscous model oils and/or 

crude oils to provide data which are considered to be more representative of oilfield 

production conditions. The important works of Fairuzov et al. (2000), Vuong et al. 

(2009), Xiong et al. (2011), Zhang et al. (2012), Yusuf et al. (2012) and Jing et al. 

(2016) are just a few to be mentioned. Experimental data obtained from these works 

have sometimes shown new insights and revealed previously undetected phenomena 

or supported a new phenomenon as compared to those working on the model oils. 

Fairuzov et al. (2000), for instance, performed a research on the flow pattern 

transitions via employing sampling probes for mixture flows of a light crude oil and 

water in a horizontal pipeline. They observed that even in stratified flows small 

portions of dispersed water droplets remained within the crude oil. Kokal (2005) 

demonstrated the formation of relatively stable water-in-oil emulsions due to the 

presence of natural emulsifiers and heavy components such as asphaltenes, resins, 

organic acids, and waxes among the crude oil components. Later on, Xiong et al. 

(2011) reported that at water fractions above 50% there was a considerable 

difference between the obtained flow patterns from heavy crude oil with that of 

model oils with similar viscosities. Moreover, they stated that unlike the model oils, 

w/o emulsions persistently existed in all cases and this was ascribed to the crude oil 

natural emulsifiers. While, the occurrence of this phenomenon has never been 

evidenced for the cases where the model oils have been utilized. This implies that, an 

overly simplistic model oil cannot be a perfect representative of complex crude oils 

in terms of flow behavior. 

 

 



5 
 

In order to determine the effect of wax particles on the behavior of two-phase 

flow, the characteristics of flow should be investigated at temperatures close to the 

WAT. This encompasses a range of temperatures at which crude oil retains its 

flowability and is transported in actual operational conditions. Therefore, controlling 

the mixture temperature especially in waxy crude oils and water integration in two-

phase flow system is crucial. This is fundamental to avoid any uncontrolled abrupt 

changes in temperature which can trigger undesirable effects on operational 

conditions. Despite the fact that great effort has been devoted to the study of oil–

water two-phase flows, few studies have paid heed to the role of temperature. As for 

the influence of temperature, available literatures on oil–water two-phase flow are 

divided into two major groups. Firstly, those studies in which the role of temperature 

has been completely ignored, such as research works carried out by Xu et al. (2010), 

Dunia et al. (2011), Zhang et al. (2011), Al-Wahaibi (2012), Cai et al. (2012), Tan et 

al. (2013), Zhai et al. (2014), Edomwonyi-Otu and Angeli (2015), and Ismail et al. 

(2015). The second group comprises those studies taking the effect of temperature 

into account in the absence of wax components (Xiong et al., 2011; Lü et al., 

2012; Filippov et al., 2014). This could be due to the use of synthetic or treated oil 

samples without the presence of paraffin wax in their systems, similar to the works of 

Lü et al. (2012) and Filippov et al. (2014). Even though wax may be found as a 

constituent of the oil sample in some previous research works, Xiong et al. (2011) as 

an example, the operational temperatures were set much higher than the WAT. 

Therefore, a key limitation of prior studies is that they did not address the 

temperature conditions at which problems associated with waxy crude oils may occur 

in oil–water two-phase flow systems. 

 

 

It should be noted that the studies on paraffin deposition under two-phase 

flow conditions are mostly conducted using a flow loop apparatus equipped with a 

pipe-in-pipe heat exchanger (Sarica and Panacharoensawad, 2012). The aim is to 

simulate the deposition process in subsea transportation pipelines by creating a 

temperature gradient between flowing fluids and pipe walls. For such a purpose, the 

inner pipe wall temperature is kept below the WAT of the dehydrated crude oil. The 

main drawback of this technique for research purposes is that the formation of the 

wax crystals (at the wall and in the bulk) is only attributed to the induced radial 
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temperature gradient caused by decreased temperature of the pipe wall. Therefore, 

any possible thermal change in the crude oil due to the presence of emulsified water 

is neglected. In these studies, the WATs of the dehydrated oils are measured and 

assumed to be representative of the entire system (i.e., mixture of oil and water). 

Based on these assumptions, the presence of wax crystals in the designed systems is 

expected only at temperatures below the WAT of the dehydrated crude oils, which 

may not represent the real case in the oilfield. The measurements and results in these 

situations may lead to substantial errors. The studies pertaining to waxy crude oils, 

however, have revealed that the WAT is influenced by several parameters, including 

kinetics, the oil (solvent) and wax composition, polydispersity, pressure, cooling rate, 

and the presence of impurities (Adhvaryu et al., 2002; Alcazar-Vara and Buenrostro-

Gonzalez, 2013). Therefore, any type of impurity existing in a hydrocarbon system 

causes variations in the value of the WAT. This phenomenon can also be extended to 

the field study of oil/water two-phase flow systems wherein waxy crudes are selected 

as the oil phase and w/o emulsion is a part of the flow, especially at temperatures 

near the WAT.  Li and Gong (2010) are among the few researchers who have 

acknowledged the effect of water cut on the WAT. According to their results, the 

change in WAT for different water cuts did not exceed 0.15 °C, which indicates that 

the effect of water cut on the WAT is insignificant. Nevertheless, the research results 

did not provide adequate rationale for these investigators to put forth conclusions 

based on their findings; therefore, they merely reported the results. 

 

 

 

 

1.3 Objectives 

 

 

This study was primarily based on the following objectives: 

 

(1) To propose and implement a successful method to predict mixture 

temperatures of a crude oil and water flowing in a horizontal pipe for preset 

flow conditions prior to the experimental tests.  
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(2) To experimentally investigate the flow patterns of waxy crude oil–water two-

phase flows in a designed horizontal multiphase flow loop at mixture 

temperatures slightly above the crude oil initial WAT and subsequently to 

establish a new flow-pattern map. 

 

(3) To examine the effect of flow pattern, temperature, water cut, and mixture 

velocity on pressure drop in order to find the dominant parameter at different 

flow conditions.  

 

 

The initial specific aim of this research work was to extend the study of oil–

water two-phase flow from non-waxy to waxy crude oils in the hope that the findings 

can open a window towards the understanding of waxy crude oils flow behavior in 

two-phase flow systems. Therefore, as a first attempt to study a type of waxy crude 

oil in an oil–water two-phase flow system, the experiments were conducted at 

temperatures slightly above the WAT of the crude oil to avoid the complexity of wax 

precipitation. Nevertheless, it was soon evident that the wax precipitation was  

inevitable at the presence of water under such operating temperatures during the two-

phase flow. This phenomenon suggested additional objective to this study as follow: 

 

(4) To scrutinize the effect of the presence of water, i.e., the water volume 

fraction (WVF) and the mean droplet size (MDS), on the WAT of water-in-

waxy-crude-oil emulsions. 

 

 

 

 

1.4 Scope 

 

 

To accomplish this study, I have designed, constructed, and commissioned a 

flow test facility at the Malaysia Petroleum Resources Corporation Institute for Oil 

and Gas (UTM-MPRC Institute for Oil and Gas), Universiti Teknologi Malaysia 

(UTM), Johor Bahru. The facility is capable of experimentally simulating single- or 
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two-phase flows of oil and water in a horizontal pipe section. However, this study 

focused on the concurrent flow of water and a typical Malaysian waxy crude oil at 

three mixture temperatures (i.e., 26, 28, and 30 °C) under various flow conditions. To 

fulfill the aforementioned objectives, I have widened the scope of my investigation 

into the followings:  

 

(1) Thermal treatment of the crude oil, first, to redissolve potential wax crystals 

within the crude; second, to reduce the water content to a minimum of 0.05% 

of the total volume; and third, to evaporate the existing light ends in the crude 

oil. The treatment involved simultaneous heating and manual stirring of the 

crude oil at 80 – 85 °C in a specific thermal treatment system for about two 

hours.  

 

(2) Rheological characteristics measurements of the oil and water samples at 

different temperatures. 

 

(3) Identification of the crude oil compositions using gas chromatography–mass 

spectrometry (GC–MS) to recognize the potential natural surfactant 

components within the oil.   

 

(4) Evaluation of the predictive accuracy of the two proposed models against the 

experimental results for the mixture temperatures obtained during the attempt 

to reach and maintain the mixture temperature as close as possible to the one 

of the three mixture temperatures of 26, 28, and 30 °C for oil and water 

superficial velocities ranging from 0.1 m/s to 0.7 m/s and 0.1 m/s to 1.0 m/s, 

respectively.  

 

(5) Analogy between the new obtained flow pattern maps from the crude oil of 

this study with the existing maps found in open literature for further analysis. 

 

(6) Employing the available pressure gradient models, namely two-fluid model 

(for both curved and planar interfaces) and homogenous model, to predict the 

pressure gradient; and comparing the results with the experimental data to 
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determine the most compatible model based on the observed flow patterns in 

this study. 

 

(7) Preparation of water-in-oil emulsion samples of different water-cuts (10 to 

70%) under three distinct rotational speeds (600, 900, and 1200 RPM). 

 

(8) Conducting a thermal analysis using differential scanning calorimetry (DSC) 

to elucidate the mechanism influencing the WATs of the emulsion samples 

by considering the Gibbs free energy concept.  

 

 

 

 

1.5 Significance of Study 

 

 

This study is an attempt to enlarge the knowledge on concurrent 

transportation of oil and water through a single horizontal pipeline while the oil 

phase is a type of waxy crude oil. To the best of our knowledge, there is no 

experimental work in this field accomplished using any typical Malaysian waxy 

crude oil despite the fact that there are numerous mature Malaysian oilfields 

producing waxy crude oils through two-fluid phase flow systems. Therefore, it is 

believed that this is the first group of researchers who are working in this area by 

utilizing a domestic crude oil sample. Thus, the experimental results can be used as a 

basic source for industrial purposes so that the design of pipeline systems can be 

effectively established to handle waxy crude oil transportation. In most cases, 

pipelines are a cost effective method of transportation when compared to other 

alternates such as barge or tanker shipment.  

 

 

The present study also proposes a new technique which opens up new doors 

for experimental investigations on the flow behaviour of waxy crude oils at 

temperatures close to the WAT. With the use of this approach not only mixture 

temperature is controlled but also it prevents the formation of unwanted wax crystals 
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due to the fast cooling rate at the system’s inlet. Therefore, this novel method can be 

applied as a practical solution to study the flow behaviour of waxy crude oils in 

oil/water two-phase flow systems at temperatures relatively close to the WAT. 

 

 

 In this study, I also extend my attention to the role of water, as an impurity 

within the crude oil, on the WAT of water-in-oil emulsions. If the possible thermal 

effects of the presence of water on the emulsion WAT are neglected, the 

consequence can be the unwanted deposition of wax crystals at temperatures greater 

than the WAT of the crude oil. This may threaten the success of flow assurance 

operations, especially in temperature-sensitive systems, such as the offshore pipeline 

transportation of waxy crude oils. The results of this part of the study may provide 

reference and insights for further study of w/o emulsions closer to the actual oilfield 

conditions whereby a reliable correlation can be developed for prediction of the 

WATs of w/o emulsions by identifying the WATs of dehydrated crude oils.  

 

 

In general, the results of this study provide a progressive introduction to help 

flow assurance engineers to understand the process of wax crystallization and 

deposition under multiphase flow conditions in horizontal pipelines, and to 

ultimately develop more effective wax management strategies.  

 

 

 

 

1.6 Thesis Structure 

 

 

The thesis is structured to comprise five main chapters with subsections. 

Chapter 1 covers the research background, statements of the problems, research 

objectives and scopes, and significance of study.  
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Chapter 2 gives descriptions of previous research works associated with 

liquid–liquid two-phase flows in horizontal pipelines and reports the results obtained. 

A brief reference is also made to some of the models suggested to predict the 

pressure gradient of two-phase horizontal flows. The section also discusses some 

fundamental aspects of waxy crude oils and explains some of the important terms 

used in this study. 

 

 

Chapter 3 gives a detailed description of the pilot-scale facility and the 

instrumentation used in the experimental work. The methods used for data 

processing and analysis are also described. Besides, two analytical models for 

predicting mixture temperatures are derived and the procedure to reach the desired 

mixture temperatures during the course of the experiments is addressed. 

Furthermore, the materials and measurements regarding the study of the effect of 

emulsified water on the WATs of water-in-waxy-crude-oil emulsions are thoroughly 

presented.  

 

 

Chapters 4, first, presents the mixture temperature results obtained from both 

experimental and the two models. Later, it presents the findings on the flow patterns, 

pressure gradient, and holdup. Comparisons of the experimental results with the 

models and available literature data can be also found in this chapter. Eventually, this 

chapter describes the thermodynamic effect of the emulsified water on the WAT of 

the emulsion which is highly probable to be formed during the concurrent 

transportation of water and waxy crude oil in a horizontal pipe based on the results of 

this study.  

 

 

Finally, Chapter 5 summarizes the conclusions of this work and proposes 

recommendations for future work. 
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