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ABSTRACT 
 
 
 
 

Chest infection is a major health threat in most regions of the world. It is 

claimed to be one of the top causes of postoperative death after fragility hip fractures, 

according to a study presented in 2011. With the invention of deep learning in machine 

learning, implementation in Computer Aided Diagnosis system which utilizes deep 

neural networks for learning, classification, generation and even clustering has 

allowed X-ray image classification to be more accurate. The improvement in medical 

image classification using transfer learning is further studied. In this thesis, a novel 

deep neural network model which is composed of two Convolutional Neural Networks 

(CNNs) with different depth of weight layers, where the prediction probabilities for all 

CNNs are fused to the voting system for chest X-ray image classification is proposed 

and presented. The performance and accuracy of several existing deep learning model 

are investigated and compared to the proposed model. The outcome of this work, we 

successfully classified chest infection in chest X-ray images using the proposed model 

with overall accuracy of 83.69%. 
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ABSTRAK 
 
 
 
 

Jangkitan dada adalah ancaman kesihatan utama di kebanyakan rantau di dunia. 

Ia dikatakan sebagai salah satu penyebab utama kematian selepas operasi keretakan 

pinggul kerapuhan, menurut kajian yang dikemukakan pada tahun 2011. Dengan 

penciptaan pembelajaran mendalam dalam pembelajaran mesin, pelaksanaan dalam 

Diagnosis Bantuan Komputer (CAD) yang menggunakan rangkaian saraf dalam untuk 

pembelajaran, klasifikasi, generasi dan klustering telah membolehkan pengelasan imej 

X-ray menjadi lebih tepat. Peningkatan klasifikasi imej perubatan menggunakan 

pembelajaran pemindahan terus dikaji. Dalam tesis ini, model rangkaian neural 

mendalam yang terdiri daripada dua Convolutional Neural Networks (CNNs) dengan 

kedalaman lapisan berat yang berlainan, di mana kebarangkalian ramalan untuk semua 

CNNs bersatu dengan sistem pengundian untuk klasifikasi imej X-ray dada 

dicadangkan dan dibentangkan. Prestasi dan ketepatan beberapa model pembelajaran 

dalam yang sedia ada akan disiasat dan dibandingkan dengan model yang 

dicadangkan. Hasis kerja penyelidikan ini telah berjaya mengelaskan jangkitan dada 

dalam imej X-ray dada menggunakan model yang dicadangkan dengan ketepatan 

keseluruhan sebanyak 83.69%. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 

This chapter has five sections. Section 1.1 introduces the background of this 

project. Problem statement is justified in Section 1.2. Then the objectives for this 

project are clearly declared in Section 1.3. The following section discusses the scope 

of work for the project setup and implementation. Lastly, organization of this report is 

described in Section 1.5. 

 
 
 
 

1.1 Project Background 
 
 

Chest infection is a major health threat in most regions in the world. It is 

claimed to be one of the top causes of postoperative death after fragility hip fractures, 

according to a study presented by Alice Tsai at the 12th European Federation of 

National Associations of Orthopaedics and Traumatology (EFORT) Congress 2011 

[1]. According to the Statistics on Causes of Death from the Department of Statistic 

Malaysia [2], Ischemic heart diseases was the principal cause of death in 2016 of 13.2 

per cent, followed by pneumonia (12.5%), cerebrovascular diseases (6.9%), transport 

accidents (5.4%) and malignant neoplasm of trachea, bronchus & lung (2.2%). Most 

of the leading causes mentioned can be considered as chest infections and require chest 

X-ray examination at some stage of disease management which is normally done by 

visual examination by experienced radiologists. In fact, it is a difficult task even to the 

human observer to distinguish between various chest pathologies. 
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Automatically detection of abnormalities in lung from chest X-rays with high 

accuracy Computer Aided Diagnosis (CAD) system could greatly enhance real world 

diagnosis processes as it may assist radiologists in reading chest images or even 

replace human in chest pathology identification. Deep learning techniques, have 

recently been introduced for medical image analysis, with promising results in various 

applications like medical image segmentation and classification [3]. With the 

invention of deep learning in machine learning, implementation in CAD which utilizes 

deep neural networks for learning, classification, generation and even clustering has 

allowed X-ray image classification to be more accurate. 

 
Deep learning has received a great interest and has been trending due to the 

rise of more powerful GPUs, sophisticated neural network algorithms modelled after 

the human brain, and access to the explosion of data from the internet. There is one 

saying, “The analogy to deep learning is that the rocket engine is the deep learning 

models while the fuel is the huge amounts of data we can feed to these algorithms.” 

These techniques are most effective when applied on large datasets for training. 

However in the medical field, such large datasets with correct label and pre-defined 

metadata are usually not available. 

 
 
 
 

1.2 Problem Statement 
 
 

Transfer Learning (TL) becomes an alternative for the case of small dataset. 

However, previous studies suggest that transfer learning is most effective when the 

sets are similar [4]. It is a challenge to classify grayscale X-ray image using pre-trained 

model with coloured and non-medical images causing features learnt is hardly 

transferable. Even though transfer learning has been the interest of research on the 

field of deep learning in medical image classification, any deep architecture methods 

for the specific task of pathology detection in chest radiographs are not aware [5]. 

 
Among the research on transfer learning in the field of medical chest X-ray 

image classification, the focus is more likely onto abnormal and normal class 

detection. Some of the researches focus on classifying chest X-ray image to multiple 
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disease using deep learning. However, it comes to a limitation when the chest X-ray 

image is from a patient diagnosed with multiple chest diseases. On top of that, the 

accuracy of the prediction of possible diseases on chest X-ray image in CAD systems 

nowadays is not convincing. 

 
Hence, a focus to research and develop a novel approach is important to tackle 

chest X-ray images with multiple chest diseases and improve classification accuracy. 

In this research project, an enhanced deep learning Convolutional Neural Network 

(CNN) model with multisource transfer learning and voting system is proposed. 

 
 
 
 

1.3 Objectives 
 
 

There are a three main objectives defined for this project, they are: 

i) To automate preparation of the dataset in labeling and preprocessing to 

be used as input dataset to the model. 

ii) To train and validate the performance of transfer learning pre-trained 

convolutional network to obtain high accuracy in classifying X-ray 

images into multiple chest infections. 

iii) To develop an enhanced CNN model which applies multisource 

transfer learning and voting system methodology for multiple chest 

infection classification with improved accuracy. 

 
 
 
 

1.4 Scope of Work 
 
 

The scope of work for this research project is clearly presented in the Table 

1.1. 
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Table 1.1: Scope of work 
 
 

SCOPE DETAILS 

Platform TensorFlow 1.7.0 – Open source machine learning library. 

Tool Python 3.5.2 – High level programming language. 

Field Chest X-ray Image classification 

Focus Transfer learning techniques and classification accuracy on 4 

categories of chest infections (Pulmonary Atelectasis, Calcified 

Granulomatous disease, Cardiomegaly and Lung 

Hypoinflation) 

Dataset Chest X-ray images from National Library of Medicine 

https://openi.nlm.nih.gov/gridquery.php?q=&it=x,xg&sub=x 

(7468 images – including frontal and side view of human chest) 

Model VGGNet and Inception-ResNet 
 
 
 
 
 

1.5 Project Report Outline 
 
 

This thesis consists of five chapters. Chapter 1 is the introduction of this 

research project. Project background, problem statement, objectives, scope of work, 

and the project organization are discussed. 

 
Chapter 2 is the literature review of this research project. The studies and 

research findings on deep learning, Convolutional Neural Network architectures, 

transfer learning, and related works on the existing research are presented in this 

chapter. 

 
Chapter 3 is the research methodology of this project. The architecture of the 

proposed model which is composed of two CNNs with combined average weight on 

the output probabilities on each classes is presented. Proposed methodology is further 

discussed in detail on selected pre-trained networks, multisource transfer learning and 

voting system. Lastly, the dataset preparation for this project is clearly explained 

including the preparation of chest X-ray image dataset. 



5 
 

 
 
 

Chapter 4 is the result and discussion of this project. The results on the 

application of transfer learning are discussed. The accuracy of the model is shown. 

Training of chest X-ray dataset and validation result for individual CNN model is 

shown. Evaluation and accuracy of the proposed model on classifying chest diseases 

are clearly presented in this chapter. 

 
Chapter 5 is the conclusion. Future works related to this project are discussed 

on this chapter. 
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