CREEP AND THERMAL RESPONSE OF LONG SPAN PRESTRESSED CONCRETE INTEGRAL ABUTMENT BRIDGE

AKILU MUHAMMAD

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Civil Engineering)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

i

AUGUST 2017

ACKNOWLEDGEMENT

My ultimate gratitude goes to Allah the beneficent, the merciful, who I worship, who I ask for help and who created me a human being of sound mind and health condition and bestowed on me uncountable bounties. Indeed without His help I will never be able to accomplish this study. May the peace and blessings of Allah be with my greatest human benefactor, Prophet Muhammad (S.A.W.) my spiritual leader and guide in the worship of Allah.

My profound acknowledgement goes to my research supervisor Assoc. Prof. Dr Redzuan Abdullah. I learnt a lot on Finite Element Modelling from him which formed the foundation of my research. He helped me with the research concept in line with my interest area and he sincerely guided me in the entire course of this research. I also acknowledge my second supervisor Ir. Mohamad Salleh Yassin who has been helpful especially in the structural design of my bridge model. I benefited from his wealth of experience in bridge design.

I appreciate the study leave given to me by the Management of Waziri Ummaru Federal Polytechnic, Birnin-kebbi. I thank the management of Tertiary Education Tax Fund of the Federal Ministry of Education who provided the research funds for my overseas training.

My profound appreciation goes to my loving wife, Hadiza and our four kids who endured the inconvenience of living with me and supporting me while on my study sojourn at Universiti Teknologi Malaysia.

I sincerely express my sincere appreciation to my mother for her endless prayers for my success and I sincerely thank my guardian, Late Professor Mahdi Adamu, who did his best in inculcating in me the love for scholarship to doctorate degree level while I was a high school lever. His moral and financial support in the course of my studies and from primary school to this level has been the pillar of my support. May Allah reward him abundantly for his kindness.

In the course of my studies, I received numerous support and encouragement from my relatives and friends. Prominent among them is Col. Mukhtar Adamu for his numerous financial assistance and moral support. I also acknowledge support I received from Abbas Tukur, Prof Hussaini Tukur, Dr. Aisha Adamu, Nasiru Adamu, Kabiru Yauri, Ummu Tukur, Bashar Tukur, Mansur Tukur, Shehu Tukur, Sani Balarabe Abubakar, Dr Shehu Muhammad, Dr Aliyu Barau and Dr Aliyu Aminu, Dr Ibrahim Abdullahi and many others too numerous to mention.

ABSTRACT

Integral Abutment Bridges (IAB) are getting popular due to significant cost savings in their construction and maintenance. Many countries stipulate the use of IABs in their new bridge construction projects but mostly the span is limited to 60 m. The limit is set considering the concerns on the long-term performance of IAB beyond 60 m span due to complexities in its response to long-term material behaviour, environmental loading and backfill soil conditions. This limitation necessitates the need for research to adequately predict the long-term behaviour of IAB particularly those with span beyond 60 m. A parametric study is carried out by performing non-linear finite element analyses using LUSAS to determine the longterm behaviour of continuous span prestressed concrete IAB. The parameters considered are backfill soil type, bridge total length, thermal loading and creep. Subsoil behind bridge abutment is varied from dense sand, loose sand, stiff clay, to medium stiff clay. The bridge total lengths of 60 m, 90 m, 120 m, and 150 m, with pier-to-pier spans of 20 m, 30 m, 40 m and 50 m are considered respectively. Three dimensional models of IAB are subjected to self-weight, vehicle loading, prestressing force, temperature load ranging from 20 °C to 36 °C and concrete creep. The bridge response at 75 year life is examined in terms of deformations and changes in internal forces in the abutment, prestressed beams and pile foundations. The long term response of the IAB with different backfill soil types and span lengths subjected to all possible loadings was successfully quantified. The results revealed that the variation of the displacement and the internal forces in the abutment and the bridge beam are within the constructable limit where it is possible to design and construct the IAB beyond the length of 60 m. Seventy five years creep and shrinkage loading is found to have significant effect on long term behaviour of the bridge. It causes maximum loss in prestress force by 27 % resulting in reduced moment and shear capacity of girder by 557 kNm and 321 kN respectively and increases the girder deflection by 75 mm (160 %) in 150 m IAB. This also resulted in incremental abutment deflection 25 mm (575 % rise), abutment moment 5410 kNm (95 %), abutment shear 440 kN (41 %), and girder stress 7.53 N/mm² (378 %) in 150 m long IAB. Soil-abutment interaction is found to have predominant effect in comparison to soil-pile interaction. Bridge length has considerable effect on magnitude of abutment moment causing 5870 kNm (112 %) incremental moment with increase in bridge length from 60 m to 150 m in varying subsoil stiffnesses. Results of the analyses are used in the formulation of long-term response prediction equations for deflection, moment and shear behavior of IAB abutments. The empirical equations have proven to be adequate and time efficient means of predicting deformations and changes in internal forces in the IABs of similar geometry and configurations.

ABSTRAK

Pembinaan Jambatan Tembok Landas Bersepadu (IAB) semakin popular sekarang kerana ia memberikan penjimatan kos yang ketara daripada segi pembinaan dan penyelenggaraan. Banyak negara telah mensyaratkan pembinaan IAB bagi projek pembinaan jambatan yang baharu, namun panjang jambatan kebanyakannya dihadkan kepada 60 m sahaja. Pertimbangan untuk menghadkan panjang jambatan ini adalah berdasarkan kepada ketidaktentuan prestasi bahan konkrit dalam jangka panjang, ketidaktentuan beban yang terjana daripada persekitaran dan juga ketidaktentuan keadaan tanah tambun di belakang tembok landas. Kekangan ini menyebabkan perlunya dijalankan penyelidikan bagi membuat jangkaan kelakunan jangka panjang IAB, terutamanya bagi panjang keseluruhan yang melebihi 60m. Satu kajian parameter telah dijalankan dengan kaedah analisis unsur terhingga tidak lelurus menggunakan LUSAS bagi menentukan kelakunan jangka panjang jambatan IAB yang dibina dengan rasuk konkrit prategasan selaniar. Parameter yang diambil kira adalah jenis tanah tambun di belakang tembok landas. panjang keseluruhan jambatan, beban suhu dan rayapan konkrit. Jenis tanah tambun di belakang tembok landas diubah-ubah iaitu daripada jenis pasir tumpat, pasir gembur, tanah liat kukuh, kepada tanah liat sederhana kukuh. Panjang keseluruhan jambatan yang dipertimbangkan adalah 60 m, 90 m, 120 m, dan 150 m dengan jarak antara pier penyokong adalah masing-masing 20 m, 30 m, 40 m and 50 m. Model tiga dimensi bagi IAB dikenakan beban berat diri, beban kenderaan, daya prategasan, beban suhu dengan julat daripada 20 °C kepada 36 °C dan juga rayapan konkrit. Kelakunan jambatan pada umur 75 tahun telah diperiksa dengan melihat kepada nilai pesongan dan perubahan daya dalaman dalam tembok landas, dalam rasuk prategasan dan dalam asas cerucuk. Kelakunan jangka panjang IAB yang berinteraksi dengan pelbagai jenis tanah tambun dan panjang keseluruhan jambatan yang berbeza-beza di bawah semua jenis beban telah diperolehi dengan jayanya.. Hasil yang didapati adalah perubahan daya dalaman tembok landas dan rasuk prategasan bagi jambatan IAB yang melebihi 60m adalah dalam had yang boleh direkabentuk dan boleh dibina. Beban rayapan dan pengecutan selepas 75 tahun didapati memberi kesan yang besar ke atas kelakunan jangka panjang jambatan. Ia menyebabkan pengurangan daya prategasan maksimum sebanyak 27.1 % yang akhirnya mengurangkan kapasiti moment dan daya ricih rasuk masing-masing sebanyak 557 kNm dan 321 kN serta menambahkan pesongan rasuk sebanyak 75 mm (160 %) pada IAB 150 m panjang. Ia juga menghasilkan penambahan pesongan tembok landas sebanyak 25 mm (575 %), momen tembok landas sebanyak 5410 kNm (95 %), ricih tembok landas 440 kN (41 %) dan tegasan rasuk 7.53 N/mm² (378 %) pada IAB 150 m panjang. Tinda balas yang besar berlaku antara tanah-tembok landas tetapi tidak besar pada tanah-cerucuk. Panjang jambatan memberi kesan yang besar ke atas nilai momen tembok landas yang berinteraksi dengan kekukuhan tanah tambun yang berubahubah, iaitu pertambahan sebanyak 5870 kNm (112 %) apabila panjang jambatan bertambah daripada 60 m kepada 150 m. Hasil daripada analisis telah diguna untuk menerbitkan rumus bagi membuat ramalan kelakunan jangka panjang nilai pesongan, momen dan daya ricih tembok landas IAB. Rumus empirik ini terbukti menjadi kaedah yang memadai dan menjimatkan masa bagi membuat ramalan pesongan dan perubahan daya dalaman IAB yang sama bentuk dan ukuran.

TABLE OF CONTENTS

CHAPT	ER	TITLE	PAGE
	DEC	CLARATION	ii
	DEI	DICATION	iii
	ACH	KNOWLEDGMENT	iv
	ABS	STRACT	vi
	ABS	STRAK	vii
	TAE	BLE OF CONTENTS	viii
	LIS	T OF TABLES	xii
	LIS	T OF FIGURES	xvii
	LIS	T OF SYMBOLS	xxvi
	LIS	T OF APPENDICES	xxxii
1	INT	RODUCTION	1
	1.1	Background of the study	1
	1.2	Overview on Integral Abutment Bridge	6
	1.3	Problem Statement	11
	1.4	Research Objectives	12
	1.5	Scope of Research	12
	1.6	Research Methodology	13
	1.7	Layout of Thesis	16
2	LIT	ERATURE REVIEW	17
	2.1	Introduction	17
	2.2	Structure system of IAB and Semi-IAB	18
		2.2.1 Paucity of Unified Design Code for IABs	21

	2.2.2	Types of	f Integral Abutments	23
2.3	Soil-s	tructure ir	nteraction	25
	2.3.1	1.1.1	Winkler Spring Approach	26
	2.3.2	1.1.2 \$	Soil-structure Interaction in IAB	28
		2.3.2.1	Soil-Pile Interaction	29
		2.3.2.2	Ultimate soil resistance (P_u) of cohesive soils	32
		2.3.2.3	Development of p-y curve for laterally loaded piles in clay	35
		2.3.2.4	Ultimate soil resistance (P_{ult}) of cohesionless soils	38
		2.3.2.5	Development of p-y curve in laterally loaded piles in cohensionless Soil	39
		2.3.2.6	Abutment-Backfill Interaction	44
2.4	Creep	and Shrin	kage	53
	2.4.1	Creep		53
	2.4.2	Shrinka	ge	57
	2.4.3	CEB-FI	P Creep and Shrinkage Model (1990)	59
		2.4.3.1	Creep Strain Assumptions in CEB- FIP Code	60
		2.4.3.2	Creep Coefficient	61
		2.4.3.3	Shrinkage Strain Assumptions in CEB-FIP Code	63
	2.4.4	Viscoela	astic Behaviour of Creep	64
2.5	Therma	al loading	on Bridges	66
	2.5.1	Uniform	n Temperature Change	69
	2.5.2	Differen	tial Temperature Change	70
		2.5.2.1	Approach 1	71
		2.5.2.2	Approach 2	72
	2.5.3	Nonline	ar Temperature Difference Component	72
	2.5.4	Heat Tra	ansfer	73
2.6	Effect capacit	of creep le	bading on ultimate moment and shear stressed concrete girders	73

	2.7	Finite Element Modelling in LUSAS	76
		2.7.1 Straight Beam Element (BMS3)	77
		2.7.2 Straight Beam Element (BTS3)	78
		2.7.3 Thick Shell Element (QTS4)	79
	2.8	Prior research works on IABs	80
		2.8.1 Investigations on Length Limit of IAB	88
		2.8.2 Investigations on Creep Loading	91
		2.8.3 Superstructure and Substructure Modelling	95
		2.8.4 Prior Research Works as Basis for Present Research	96
	2.9	Research Gap	98
2	DEC		101
3			101
	3.1 2.2	Introduction	101
	3.2	2.2.1 Bridge Leading	102
		3.2.1 Bridge Loading	105
	2.2	5.2.1.1 Load Combinations	111
	5.5	Force	113
	3.4	Finite Element Model	115
		3.4.1 Modelling the Prestressing Force	118
		3.4.2 Modelling the Soil-Structure Interaction	122
		3.4.3 Abutment-Backfill Interaction	127
	3.5	Parametric Study	129
	3.6	Model Validation	130
		3.6.1 Validation of Response from Live and Dead loads	130
		3.6.2 Validation of Modelling of Prestressing Force	131
		3.6.3 Thermal Result Validation	141
4	ANA	ALVSIS RESULTS AND THE PROPOSED	
T	EM	PIRICAL FOUATIONS	143
	4.1	Introduction	143
	4.2	Creep and Shrinkage effect on IAB	144
		1	•••

	4.2.1	Prestress	loss and Reduced Moment and Shear	
		Capacitie	es of Prestressed girders after 75 years	144
	4.2.2	Effect of	Creep on Superstructure of IABs over 75	157
	400	years		1.00
	4.2.3	Years	Creep on Substructure of IABs Over 75	166
		4.2.3.1	Effect of creep on deformations in	
			abutment and piles	167
		4.2.3.2	Effect of Creep on Internal Forces in	
			Abutment and Piles	173
	4.2.4	Empirica	l Equations for predicting response of	
		IABs und	ler creep loading	186
		4.2.4.1	Deflection	186
		4.2.4.2	Moment	191
		4.2.4.3	Shear	194
4.3	Therm	nal analysis	s and results	197
	4.3.1	Response	e of Substructure to Thermal Loading	198
		4.3.1.1	Abutment and pile deflection	198
		4.3.1.2	Abutment moments	205
		4.3.1.3	Abutment shears	215
	4.3.2	Response	e of Superstructure to Thermal Loading	222
		4.3.2.1	Deflection in Superstructure	222
		4.3.2.2	Internal forces in Superstructure	225

5 CONCLUSION AND RECOMMENDATION

5.1	Introduc	tion	228
5.2	Summary of Findings		228
	5.2.1	Creep and Shrinkage loading	229
	5.2.2	Thermal loading	232
5.3	Conclus	ion	236
5.4	Recomm	nendation	237

REFRENCES	238
Appendices A-B	250-252

LIST OF TABLES

TABLE NO	TITLE	PAGE
1.1	Number of IAJB designed and built since 1995 and in-	
	service in U.S.	9
2.1	Summary of selected criteria used by European countries	22
2.2	Maximum allowable limits for IABs in US	23
23	Approximate magnitude of movement required to reach	
2.5	minimum active and maximum passive earth pressure condition	38
2.4	Properties for sandy soil (Bowles, 1996)	41
2.5	Approximate magnitude of movement required to reach	
	minimum active and maximum passive earth pressure	
	condition (Clough and Duncan 1991)	48
2.6	Characteristic of linear thick beam Element used (LUSAS, 2008b)	77
2.7	Characteristics of nonlinear thick beam Element used (LUSAS, 2008b)	78
2.8	Characteristic of nonlinear thick shell Element used	
	(LUSAS, 2008b)	79
3.1	Geometric properties of the structural members of IAB model	105
3.2	Summary of total dead load per span (50 m)	105
3.3	Summary of total live loads per span (50 m)	106
3.4	Summary of loads on girder (50 m)	106
3.5	Summary of total dead load per span (40 m)	107

3.6	Summary of total live loads per span (40 m)	107
3.7	Summary of loads on girder (40 m)	108
3.8	Summary of total dead load per span (30 m)	108
3.9	Summary of total live loads per span (30 m)	109
3.10	Summary of loads on girder (30 m)	110
3.11	Summary of total dead load per span (20 m)	110
3.12	Summary of total live loads per span (20 m)	111
3.13	Summary of loads on girder (20 m)	111
3.14	Prestress forces generated in 90 m IAB girders	120
3.15	Prestress definition to BS5400	121
3.16	Material properties of bridge girders	121
3.17	Calculated spring constant for cohesive soils	123
3.18	Spring constants for cohesionless soils	125
3.19	Calculated spring constant for backfill using soil properties	
	in Bowles (1996) and Michael (2001).	129
3.20	Comparison between FEA and Moment Distribution result	131
4.1	Loss in prestress force over 75 years for 20 m spans (60m	
	IAB) with 4000 kN initial prestress force	145
4.2	Loss in prestress force over 75 years for 30 m spans (90 m	
	IAB) with 4250 kN initial prestress force	145
4.3	Loss in prestress force over 75 years for 40 m spans (120 m	
	IAB) with 4500 kN initial prestress force	146
4.4	Loss in prestress force over 75 years for 50 m spans (150 m	
	IAB) with 5000 kN initial prestress force	146
4.5	Reduction in ultimate moment capacity of 20 m spans (60	
	m IAB) girder over 75 years	148
4.6	Reduction in ultimate moment capacity of 30 m spans (90	
	m IAB) girder over 75 years	148
4.7	Reduction in ultimate moment capacity of 40 m spans (120	
	m IAB) girder over 75 years	149
4.8	Reduction in ultimate moment capacity of 50 m spans (150	
	m IAB) girder over 75 years	149
4.9	Summary of applied moments and reduction in ultimate	150

	moment capacity for all lengths of IAB girders over 75	
	years	
4.10	Calculated (boldened) and Projected results by	
	interpolation of reduction in ultimate moment capacity for	
	all spans of IAB girders over 75 years	151
4.11	Reduction in ultimate shear capacity in 20 m spans (60 m	
	IAB) girder over 75 years	153
4.12	Reduction in ultimate shear capacity in 30 m spans (90 m	
	IAB) girder over 75 years	153
4.13	Reduction in ultimate shear capacity in 40 m span (120 m	
	IAB) girder over 75 years	154
4.14	Reduction in ultimate shear capacity in 50m span (150 m	
	IAB) girder over 75 years	154
4.15	Summary of applied shear and reduction in ultimate shear	
	capacity for all lengths of IAB girders over 75 years	155
4.16	Actual and Projected results of reduction in ultimate shear	
	capacity for all spans of IAB girders over 75 years	155
4.17	Effect of creep on girder and slab deflection in IAB	1.00
	supported by different subsoil type	160
4.18	Summary of maximum mid-span girder stress on top	
	surface of slab due to 75 years creep and shrinkage loading	165
4.19	Maximum Increment in lateral deflection at top of	
	abutment due to 75 years creep and shrinkage loading	172
4.20	Peak values of deflection at top of abutment for IABs of	
	varying lengths supported on substructure soils of varying	
	stiffness	173
4.21	Increment in abutment moment due to 75 years creep and	170
	shrinkage loading in dense sandy soil	178
4.22	Peak values of abutment moment in varying substructure	170
	soils	178
4.23	Maximum increment in abutment shear due to creep and	
	shrinkage	181
4.24	Peak values of abutment shear in varying substructure soils	
		181

and IAB lengths

4.25	Summary of deflection at top of abutment due to thermal	
	load increment	202
4.26	Peak values of deflection due to thermal increment at top of	
	abutment for IABs of varying lengths and supported on	
	substructure soils of varying stiffness	203
4.27	Summary of deflection at top of abutment due to	
	decremental thermal loading	204
4.28	Peak values of deflection due to thermal decrement at top	
	of abutment for IABs of varying lengths and supported on	
	substructure soils of varying stiffness	204
4.29	Peak values of abutment moment due to thermal load	
	increment in IABs of varying lengths and supported by	
	subsoil of varying stiffness	213
4.30	Peak values of abutment moment due to thermal load	
	decrement in IABs of varying lengths and supported by	
	subsoil of varying stiffness	213
4.31	Peak values of abutment shears due to thermal load	
	increment in IABs of varying lengths and supported by	221
	subsoil of varying stiffness	
4.32	Peak values of abutment shears due to thermal load	
	decrement in IABs of varying lengths and supported by	222
	subsoil of varying stiffness	
4.33	Effect of temperature increment on mid-span girder	
	deflection in IAB supported by different subsoil type.	223
4.34	Effect of temperature decrement on mid-span girder	
	deflection in IAB supported by different subsoil type.	224
4.35	Effect of temperature increment on girder and slab moment	
	in IAB	226
4.36	Effect of temperature decrement on girder and slab moment	
	in IAB	226
4.37	Effect of temperature increment on girder and slab shears in	
	IAB	227

227

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Scheme of a Jointed Bridge	2
1.2	Expansion joint failures	3
1.3	Dangerous expansion joint failures	3
1.4	Dangerous expansion joint failures	4
1.5	Corrosion of bridge bearing	4
1.6	Scheme of an Integral Abutment Bridge	5
1.7	Comparison of bridge construction costs	8
1.8	Rise of IABs in the United States	8
1.9	Summary of bridge type by dates in United Kingdom	9
1.10	Flowchart of research methodology	15
2.1	(a) Jointed Bridge and (b) Integral Abutments	18
2.2	Semi-integral bridge abutment girder-connection	19
2.3	Bridge definitions by Swiss Federal Roads office	20
2.4	Types of IABs	24
2.5	Discontinuity of soil deformation in Winkler spring model	26
2.6	(a) Winker foundation (b) Actual foundation	27
2.7	Arbitrary loading on an elastically supported beam	28
2.8	Three-Dimensional Soil-Pile Interaction	30
2.9	Soil-pile interaction model	31
2.10	Linear approximation of nonlinear $p - y$ curve	32
2.11	Effect of wedge action on ultimate soil resistance	33
2.12	Backfill and embankment pressure distribution on the	
	abutment and the foundation	34
2.13	P-Y curve for saturated soft clay (Matlock 1970) in (Suhail,	25
	2012)	55

2.14	P-Y curve for stiff clay with no free water (Welch and Reese	
	1972) in (Suhail, 2012)	37
2.15	P-Y curves for static and cyclic lateral loading in sand	40
2.16	Non-dimensional coefficient for soil resistance versus depth	42
2.17	Values of coefficients Ac and As	42
2.18	Segments of a typical P-Y curve for sandy soil	44
2.19	Relationship between wall movement and earth pressure for	
	(a) dense and loose sand (b) medium sandy soil	47
2.20	Relationship between wall movement and earth pressure for	40
	(a) dense and loose sand (b) medium sandy soil	49
2.21	Relationship between wall movement and earth pressure	50
2.22	Secant Young's modulus for granular soil, for $G_s = 2.65$	52
2.23	Concrete Strain components under sustained load	55
2.24	Recoverable and irrecoverable concrete creep components	56
2.25	Relationship between shrinkage and creep in freshly laid	57
2.26	concrete	
2.20	(a) differential shrinkage offects for composite concrete	
	(a) differential similaries effects for composite prostrossed concrete	
	bridges (b) creep effects for composite prestressed concrete	50
2 27	Vigeoclastic Debevieur	50
2.27	Strong relevation	65
2.20	Thermal loading on bridge	67
2.29	Effect of positive thermal gradient on bridge deck	67
2.30	Constituent components of a temperature profile	68
2.31	Correlation between minimum/maximum shade air	00
2.32	temperature (Tmin/Tmax) and minimum/maximum uniform	
	bridge temperature component (Te min/Te max)	70
2 33	Recommended values of linear temperature difference	70
2.33	component for different types of bridge decks for road foot	
	and railway bridges	71
2.34	Temperature differences for concrete bridge decks according	/1
2.2 1	to approach ?	72
	······································	, 4

2.35	Interrelationship between causes and effects in prestress loss	75
2.36	Short and long term loss in prestress force	75
2.37	IAB simplified model showing linear springs	81
2.38	Two dimensional IAB model (b) Three dimensional IAB model	83
2.39	Finite Element continuum model of steel pile embedded in	
	sand (a) pile and abutment (b) Pile without abutment	84
2.40	2D model 3D IAB model	85
2.41	Three dimensional finite element model of Rochester Bridge	86
2.42	(a) Cross-sectional view of nodes and elements for FE	
	modelling of concrete slab on steel girder (b) Bridge	
	superstructure-abutment connection detail	87
3.1	Prestressed concrete JKR girders	103
3.2	(a) Section of IAB model showing girders, piers and piles.	
	(b) Girder abutment integral connection	104
3.3	Bending Moments (in kNm) obtained from various load	110
	combinations for 120 m IAB	112
3.4	Parabolic cable profile.	114
3.5	Profile of prestressing cable for three spans	115
3.6	Twenty one piles supporting bridge abutment in three rows	
	of seven piles in the FE model	116
3.7	FE model of symmetrical half of the 150 m IAB	117
3.8	FE model on IAB deck showing fixity in x axis at extreme	
	right end of bridge deck to achieve symmetry in y and z	
	axes.	118
3.9	Beam and Tendon model	119
3.10	Finite element model of the segment showing vertical	
	applied load and prestressed force application on beam from	
	profiled tendon symmetrical half of. (a) 150 m girder and (b)	
	150 m IAB	119
3.11	P-Y curve for soft clay developed for this research	122
3.12	P-Y curve for stiff clay developed this research	123
3.13	P-Y curve for dense sandy soil	124

3.14	P-Y curve for medium dense sandy soil	124
3.15	P-Y curve for loose sandy soil	125
3.16	FE models of 90 m IAB showing sandy backfill of linearly	
	varying soil stiffness supported by clay soil of uniform	
	stiffness (b) details of sandy soil on clay soil model.	126
3.17	Relationship between wall movement and earth pressure	128
3.18	Single span IAB	131
3.19	Bending moment diagram for single span IAB	131
3.20	Simply supported restressed concrete beam	132
3.21	FE line model showing deflection due self and imposed load	133
3.22	FE line model showing deflection due to prestress force with	127
	short-term losses.	157
3.23	FE line model showing deflection due to applied load and	120
	short-term prestress force.	130
3.24	FE line model showing axial expansion due to uniform	1/1
	thermal loading on bridge girder.	141
3.25	FE line model showing deflection due to applied load and	
	one year creep loading on post-tensioned girder.	141
4.1	Rate of loss of loss in prestress force due to creep	147
4.2	Calculated and projected rate of loss in moment capacities in	
	60 m to 150 m IAB lengths due to 75 years creep and	
	shrinkage	152
4.3	Actual and projected rate of loss in shear capacities in 60 m	
	to 150 m IAB lengths due to 75 years creep and shrinkage.	157
4.4	Vertical deflection on bridge girder (in mm) due to (a)	
	instantaneous loading alone (b) instantaneous and 75 years	
	creep loading.	158
4.5	Variation in mid-span girder deflection over 75 years in 60	
	m IAB	161
4.5	Variation in mid-span girder deflection over 75 years in 60	171
	m IAB.	101
4.6	Variation in mid-span girder deflection over 75 years in 90	161

	m IAB	
4.7	Variation in mid-span girder deflection over 75 years in 120 m IAB	162
4.8	Variation in mid-span girder deflection over 75 years in 150 m IAB.	162
4.9	Principal stress on top of 150 m IAB deck (N/mm ²) (a) after 75 years of creep loading (b) without creep loading.	164
4.10	Variation in abutment and pile deflection due to 75 years creep and shrinkage loading in 60 m IAB in varied foundation soils	168
4.11	Variation in abutment deflection due to 75 years creep and	168
4.12	Variation in abutment and pile deflection due to 75 years creep and shrinkage loading in 90 m IAB in varied	100
4.13	foundation soils Variation in abutment deflection due to 75 years creep and	169
	shrinkage loading in 90 m IAB in varied foundation soils	169
4.14	Variation in abutment and pile deflection due to 75 years creep and shrinkage loading in 120 m IAB in varied	170
4.15	Variation in abutment deflection due to 75 years creep and shrinkage loading in 120 m IAB in varied foundation soils	170
4.16	Variation in abutment and pile deflection due to 75 years creep and shrinkage loading in 150 m IAB in varied	170
4 17	foundation soils	171
4.17	shrinkage loading in150 IAB in varied foundation soils.	171
4.18	Variation in top and bottom abutment moment (in N/mm) for (a) under creep load and (b) under no creep load in 60 m	
1 10	IAB in dense sandy soil.	174
4.17	shrinkage loading in 60 m IAB under varied foundation	175

soils.

4.20	Variation in abutment moment (in N/mm) for (a) due to	
	creep and (b) under no creep load in 90 m IAB supported in	
	dense sandy soil.	175
4.21	Variation in abutment moment due to 75 years creep and	
	shrinkage loading in 90 m IAB under varied foundation	
	soils.	176
4.22	Variation in abutment moment (in N/mm) for (a) due to	
	creep and (b) under no creep load in 120 m IAB supported	
	in dense sandy soil.	176
4.23	Variation in abutment moment due to 75 years creep and	
	shrinkage loading in 120 m IAB under varied foundation	
	soils.	177
4.24	Variation in abutment moment (in N/mm) for (a) due to	
	creep and (b) under no creep load in 150 m IAB supported	
	in dense sandy soil.	177
4.25	Variation in abutment moment due to 75 years creep and	
	shrinkage loading in 150 m IAB under varied foundation	
	soils.	178
4.26	Variation in abutment shear (in N) (a) under creep load and	
	(b) under no creep load in 60 m IAB supported in dense	
	sandy soil.	182
4.27	Variation in abutment shear (in N) due to 75 years creep and	
	shrinkage loading in 60 m IAB under varied foundation	
	soils	182
4.28	Variation in abutment shear (in N) due to (a) creep load and	
	(b) due to no creep load in 90 m IAB supported on dense	
	sandy soil	183
4.29	Variation in abutment shear (in N) due to 75 years creep and	
	shrinkage loading in 90 m IAB under varied foundation	
	soils	183
4.30	Variation in abutment shear (in N) due to (a) creep load and	
	(b) due to no creep load in 120 m IAB supported on dense	184

sandy soil

4.31	Variation in abutment shear due to 75 years creep and	
	shrinkage loading in 120 m IAB under varied foundation	
	soils.	184
4.32	Variation in abutment shear (in N) (a) due to creep load and	
	(b) without creep load in 150 m IAB supported by dense	
	sandy soil.	185
4.33	Variation in abutment and Pile shear due to 75 years creep	
	and shrinkage loading in 150 m IAB under varied	
	foundation soils	185
4.34	Trend line of 75 years creep and shrinkage deflection on	
	abutment	188
4.35	Comparative values of validated and actual results of	
	abutment deflection after 75 years creep and shrinkage	
	loading	190
4.36	Trend line of 75 years creep and shrinkage moment on	
	abutment	192
4.37	Comparative values of validated and actual results of	
	abutment moments after 75 years creep and shrinkage	
	loading	193
4.38	Trend line of 75 years creep and shrinkage shear on	
	abutment	195
4.39	Comparative values of validated and actual results of	
	abutment shears after 75 years creep and shrinkage loading	196
4.40	Abutment and pile deflection due to uniform thermal	
	decrement in 60 m IAB	199
4.41	Abutment and pile deflection due to uniform thermal	100
	increment in 60 m IAB	199
4.42	Abutment and pile deflection due to uniform thermal	
	decrement in 90 m IAB.	200
4.43	Abutment and pile deflection due to uniform thermal	
	increment and decrement in 90 m IAB.	200

4.44	Abutment and pile deflection due to uniform thermal	201
	decrement in 120 m IAB.	201
4.45	Abutment and pile deflection due to uniform thermal	201
	increment in 120 m IAB.	201
4.46	Abutment and pile deflection due to uniform thermal	
	decrement in 150 m IAB.	202
4.47	Abutment moment due to uniform thermal decrement in	
	60 m IAB.	207
4.48	Abutment moment due to uniform thermal increment in	207
	60 m IAB	207
4.49	Variation in abutment moment (in Nmm) due to (a) thermal	
	load decrement (b) no thermal load and (c) thermal load	
	increment in 60 m IAB supported on dense sandy soil.	208
4.50	Abutment moment due to uniform thermal decrement in	200
	90 m IAB.	208
4.51	Abutment moment due to uniform thermal increment in	200
	90 m IAB.	209
4.52	Variation in abutment moment (in Nmm) due to (a) thermal	
	load decrement (b) no thermal load and (c) thermal load	
	increment in 90 m IAB supported on dense sandy soil.	209
4.53	Abutment moment due to uniform thermal decrement in	210
	120 m IAB	210
4.54	Abutment moment due to uniform thermal increment in 120	210
	m IAB	210
4.55	Variation in abutment moment (in Nmm) due to (a) thermal	
	load decrement (b) no thermal load and (c) thermal load	211
	increment in 120 m IAB supported on dense sandy soil	
4.56	Abutment moment due to uniform thermal decrement in	211
	150 m IAB	211
4.57	Abutment moment due to uniform thermal increment in	212
	150 m IAB.	212
4.58	Variation in abutment moment (in Nmm) due to (a) thermal	
	load decrement (b) no thermal load and (c) thermal load	212

	increment in 150 m IAB supported on dense sandy soil.	
4.59	Abutment shears due to uniform thermal decrement in 60 m	215
	IAB supported by soil of varying stiffness	213
4.60	Abutment shears due to uniform thermal increment in 60 m	216
	IAB	210
4.61	Variation in abutment shear (in N) due to (a) thermal load	
	decrement (b) no thermal load and (c) thermal load	216
	increment in 60 m IAB supported on dense sandy soil.	
4.62	Abutment shears due to uniform thermal decrement in 90 m	017
	IAB.	217
4.63	Abutment shears due to uniform thermal increment in 90 m	217
	IAB	217
4.64	Variation in abutment shear (in N) due to (a) thermal load	
	decrement (b) no thermal load and (c) thermal load	
	increment in 90 m IAB supported on dense sandy soil.	218
4.65	Abutment shears due to uniform thermal decrement and	210
	decrement in 120 m IAB.	210
4.66	Abutment shears due to uniform thermal increment in 120 m	210
	IAB	219
4.67	Variation in abutment shear (in N) due to (a) thermal load	
	decrement (b) no thermal load and (c) thermal load	
	increment in 120 m IAB supported on dense sandy soil.	219
4.68	Abutment shears and pile shears due to uniform thermal	220
	decrement in 150 m IAB	220
4.69	Abutment shears and pile shears due to uniform thermal	220
	increment in 150 m IAB	220
4.70	Variation in abutment shear (in N) due to (a) thermal load	
	decrement (b) no thermal load and (c) thermal load	
	increment in 150 m IAB supported on dense sandy soil.	221

LIST OF SYMBOLS

q	-	Reaction forces of foundation
W	-	deflection of the beam on elastic foundation
k	-	Modulus of subgrade reaction
p	-	Lateral soil resistance per unit length of pile
у	-	Lateral deflection of soil per unit length of pile
E_s	-	Soil modulus
P_u	-	Ultimate value of resistance of soil per unit length of pile.
γ	-	Unit weight of soil
Z_t	-	Wedge depth of soil
C_u	-	Undrained shear strength of clay
z	-	Depth of soil from ground level
P_{ult}	-	Ultimate soil resistance in cohesive soil
K_0	-	Coefficient of earth pressure at rest
K_{a}	-	Minimum coefficient of active earth pressure
α	-	Angle of wedge action along the horizontal direction
$oldsymbol{eta}_a$	-	Angle of wedge action along the vertical direction
e	-	Void ratio of soil
p'	-	Mean confining stress less pore water pressure in the soil
p_{atm}	-	Atmospheric pressure
γ	-	Shear strain of soil
$ ho_{d}$	-	Dry density of soil
G_{s}	-	Specific gravity of soil
$ ho_{\scriptscriptstyle w}$	-	Density of water

δ	-	Distance moved by backfill due to abutment push
Н	-	Height of the abutment
k _{horz}	-	Horizontal soil stiffness
t	-	Time
$\mathcal{E}_{cr}(t)$	-	Creep strain
$\mathcal{E}_{sh}(t)$	-	Drying or shrinkage strain.
ε (t)	-	Uncracked and uniaxially loaded concrete strain.
$\mathcal{E}_{e}(t)$	-	Instantaneous strain
$\mathcal{E}_{sh}(t)$	-	Shrinkage strain
$\mathcal{E}_T(t)$	-	Temperature strain
$\sigma_{_{c0}}$	-	Concrete strain components under sustained compressive stress
${ au}_0$	-	initial time
$ au_d$	-	Early shrinkage strain
${ au}_0$	-	Instantaneous increase in strain.
$ au_1$	-	Time when instantaneous stress is removed
$\mathcal{E}_{cr.d}(t)$	-	Recoverable strain or delayed elastic strain
$\mathcal{E}_{cr.fi}(t)$	-	The first part is recoverable strain
$\mathcal{E}_{cr.fb}(t)$	-	Basic flow component of second part of recoverable strain
$\mathcal{E}_{cr.fd}(t)$	-	Drying component of second part of recoverable strain
$\mathcal{E}_{cr.f}(t)$	-	Irrecoverable part of the creep strain is called flow
P_s	-	Axial force due to differential shrinkage
\mathcal{E}_{s}	-	Unrestrained differential shrinkage
E_{sl}	-	Elastic modulus of slab
E_b	-	Elastic modulus of beam
A_s	-	Cross sectional area of slab
A_b	_	Cross sectional area of beam

xxviii

M_{s}	-	Shrinkage moment
P_s	-	Horizontal shear force
e _s	-	Distance from top of beam to center of slab
у	-	Distance from beam neutral axis to top of beam
σ _c		Compressive strength
$\mathcal{E}_{ci}(t_0)$		Initial strain at loading
$\mathcal{E}_{cc}(t)$	-	Creep strain at time $t > t_0$
$\mathcal{E}_{cs}(t)$	-	Shrinkage strain
$\mathcal{E}_{cT}(t)$	_	Thermal strain
$\mathcal{E}_{c\sigma}(t)$	_	Stress dependent strain
$\mathcal{E}_{cn}(t)$	-	Stress independent strain
$J(t,t_0)$	-	Creep function or creep compliance
$E_c(t_0)$	-	Modulus of elasticity at the time of loading
$eta_{\scriptscriptstyle cct}$	-	Coefficient that depends on the age of concrete
$arphi_0$	-	Notional creep coefficient
$oldsymbol{eta}_{c}$	-	Coefficient to describe the development of creep with time
		after loading.
t_0	-	Age of the concrete at loading
h	-	Notional size of the concrete member
A_{c}	-	Area of concrete cross section
и	-	Length of the perimeter of the concrete section
f_{cm}	_	mean concrete compressive strength
RH	-	Relative humidity of the ambient environment (%)
$a_i(\tau)$	-	Creep compliance coefficients which is dependent on age of loading
G	-	Linear spring of stiffness

eta_s	-	Coefficient to describe the development of shrinkage with time
t_s	-	Age of concrete at the beginning of shrinkage
\mathcal{E}_m	-	Incremental non-mechanical strain
ΔT_{Mheat}	-	Linear temperature difference component with for warmer
		top cooler bottom
ΔT_{Mcool}	-	Linear temperature difference component for cooler top
		warmer bottom
ΔT_E	-	Nonlinear temperature difference component
qz	-	Internal heat generated in the concrete
ρ	-	Density of concrete
С	-	Specific heat capacity of concrete
Т	-	Temperature
k_c	-	Thermal conductivity of concrete
$f_{\it pe}$	-	Design effective prestress in tendon after all losses
f_{ps}	-	Calculated stress in prestressing steel at section considered
		and loading considered
f_{pu}		Characteristic strength of tender
-		Characteristic strength of tendon
M_{u}	-	Ultimate moment capacity of prestressed concrete girders
\mathcal{E}_{u}	-	Maximum compressive strain of concrete
f_{cu}	-	Characteristic strength of concrete
γ_m	-	Material factor of safety of concrete
С	-	Compressional force in concrete
Т	-	Tensional force in concrete
f_{pb}	-	Design tensile stress in tendons at beam failure
${\cal E}_{pb}$	-	Ultimate strain in tendon at failure
A_{ps}		Area of prestressing steel
-		

d	-	Effective depth of prestressed beam to centroid of tendons
b	-	Effective width of concrete beam
${\cal E}_{pb}$	-	Ultimate strain in tendon
Е _{се} -		Effective prestrain in concrete
${\cal E}_p$	-	Strain in tendon due to flexure
\mathcal{E}_{pe}	-	Effective prestrain in tendon
x	-	Depth of neutral axis
P_i	-	Prestress force
E_{ps}	-	Modulus of elasticity of tendon
I_{xx}	-	Moment of inertia of girder
е	-	Eccentricity of cable from neutral axis of girder
A_{c}	-	Area of concrete girder
E_{c}	-	Modulus of elasticity of concrete
β	-	Reduction factor for long term prestress loss
V_{co}	-	Ultimate shear resistance of prestressed concrete section
f_t	-	Allowable principal stress
b_v	-	Breadth of section or width of web for T, L and I sections
M_{o}	-	Moment that produces zero stress at extreme tension fiber.
f_{pt}	-	Level of prestress in concrete at tensile face.
V _c	-	designed concrete shear stress
М	-	Bending moment due to applied load
V	-	Shear force due to applied load
f_{cp}	-	Design stress at the end of prestress development length
l_p	-	Prestress development length
γ	-	Average shear strain of soil

 ϕ - Angle of internal friction

\mathcal{Y}_u	-	Ultimate soil deflection
p_u	-	Ultimate soil resistance
C_{u}	-	Undrained cohesion of soil
<i>Y</i> ₅₀	-	Half of deflection of soil at ultimate soil resistance
\mathcal{E}_{50}	-	Strain corresponding to one-half the maximum deviator
		stresses in an undrained test
a	-	Nodal displacement
r_{ps}	-	Radius of curvature
μ	-	Duct friction coefficient
M_{i}	-	Moment due to self-weight of beam
\mathcal{E}_{sh}	-	Shrinkage of concrete per unit length for outdoor exposure
f_c	-	Stress at centroid of prestressing steel
Κ	-	Unintentional angular displacement for internal tendons
P_x	-	Tendon force at a distance from the beginning of the curve
P_{ie}	-	Tendon force at end of the curve
f_i	-	Initial stress at jacking
f_{st}	-	Characteristic strength of strand

LIST OF APPENDICES

APPENI	DIX TITLE	PAGE
А	Moment Distribution Calculatio	n 250
В	Bridge Load Calculations	252

CHAPTER 1

INTRODUCTION

1.2 Background of the Study

Bridges have been part of any country's infrastructural development. They connect road and rail networks with overpass over obstacles like large bodies of water, valleys, or existing roads. Their desirable characteristics include structural stability and durability, simplicity of construction, minimal maintenance, smooth riding surface, water tightness and aesthetics. Single or multi-span bridges are usually constructed with expansion joints to accommodate expansion and contraction of superstructure due to volumetric strains caused by thermal, creep and shrinkage stresses. Strains from temperature load can lead to cracks development on concrete which can result in early deterioration of concrete components. Expansion joints are therefore provided in jointed bridges to accommodate superstructure movement arising from live loads as shown in Figure 1.1.

Figure 1.1 Scheme of a Jointed Bridge

Expansion joints come with their maintenance problems. They are costly to purchase and install and they wear with time from vehicular traction and environmental effects (Figures 1.2, 1.3, 1.4). This can result in rough driving surface, ingress of rain water and de-icing salts, freezing and thawing of trapped water in joints, leaking of joints and corrosion of reinforced concrete and bearings (Figure 1.5). Expansion joints and bearings were realised to be the major source of bridge maintenance problems; extensive and expensive replacement works that usually consumes a greater portion of bridge maintenance budget are carried out to repair faulty joints and bearings (Wolde-Tinsae et al., 1988; Mistry, 2005; Sophia et al., 2006). Leaking joints account for 70 % of defects occurring at ends of girders, piers and abutment seats (Rodolf and Samer, 2005). Maintenance of expansion joints and bearings, in many instances, result in disruption of traffic movement and intra and inter city economic activities.

Figure 1.2 Expansion joint failures (BadwaterJournal.com, 2011)

Figure 1.3 Dangerous expansion joint failures (Emseal Infrastructure & Civil Products, 2014)

Figure 1.4 Dangerous expansion joint failures (Harry, 2006)

Figure 1.5 Corrosion of bridge bearing (Michel et al., 2010)

Problems associated with expansion joints and bearings are eliminated with a different form of bridge construction that is gaining popularity today, known as Integral Abutment Bridge (IAB) or Joint-less Bridge. It is a single or continuous multi-span bridge that has no movable longitudinal deck joints at abutment and piers (Burke, 2009). In other words, it is a frame type structure having no movement joints and bearings (Figure. 1.6) where the superstructure and substructure are monolithically and rigidly connected. This makes the structure to act as a single unit with improved stiffness and rigidity. The superstructure movements from live load, temperature, and creep are transferred to the abutments. Dicleli (1999) also viewed IABs as single-span or multiple-span bridge that has a continuous deck and whose

only mechanism of movement is abutment that is supported on flexible piles. This structural arrangement results in transferring the cyclic movement of the bridge superstructure to all substructure components. Consequently, soil-substructure interaction namely backfill-abutment and soil-pile foundation interaction affects the bridge movement and has been identified as the key factor influencing the behaviour of IABs (Faraji et al., 2001; Khodair, 2005). The stiffness of backfill provides resistance to longitudinal bridge movement due to thermal and breaking loads (British highway agency, 2003).

Integral connection of bridge superstructure and abutment in IAB eliminates the need for joints, bearings, and the cost for their maintenance. This system simplifies construction procedure and enhances structural performance of bridges as a result of the rigidity of superstructure-abutment connection. IABs have therefore become popular in many countries due to their functional and economic advantages. In UK and Ireland in particular, bridges not exceeding 60 m span and 30⁰ skew are now required to be designed as IAB (O'brien and Keogh, 2005). Many transportation agencies in the US and Canada prefer the choice of IABs (Dicleli and Erhan, 2009).

1.3 Overview of Integral Abutment Bridge

Bridges constructed before the 20th century (1900) were Integral Abutment Bridges (IABs). As bridges span longer distances in 20th century, expansion joints or movement joints were introduced to accommodate thermal movement. Expansion joints are now gradually removed from bridge designs to reduce the high cost of maintenance thereby retuning back to earlier design pattern (Nicholson, 1998). Jointless bridges began to be developed on experimental basis, with short bridges ranging from 15 m to 30 m, during the 1930s in the United States, Australia and New Zealand. Due to the absence of rational design guides, bridge length was subsequently increased based empirically on successful performance of other bridges. This led different highway transport agencies developing their own design criteria and length limitations (Wolde-Tinsae et al., 1988).

In traditional highway bridges, movement joints and bearings are usually provided to allow structural movement due to thermal variation, creep and shrinkage (Arockiasamy et al., 2004). In the 1960s when traffic loads increased in volume, weight and speed, there was increased demand for maintenance of joints and bearings (Wolde-Tinsae et al., 1988). Maintenance and replacement works became more regular consuming a major share of bridge maintenance budget. Gradual deterioration of expansion joints form heavy impacts of bridge live loads, thermal expansions and contractions, creep, shrinkage contractions and foundation settlement leads to leakage of salt laden water form bridge surface to underneath of bridge deck, corroding bridge girder, bearings and reinforced concrete substructures. The problem is exacerbated in regions that experience heavy snow where de-icing chemicals like sodium chloride and calcium chloride are commonly used (Kier, 2009). The problem is magnified when the drainage troughs are not functioning properly due to accumulation of dirt. In addition to structural damage, leaky joints give unpleasant aesthetic appearance requiring regular cleaning and repainting. Studies have linked faulty expansion joints and/or the attendant maintenance operations to road accidents and hazardous roadway condition (Rabih Haj-Najib, 2002). Elastomeric glands also become filled with water and dirt leading to its eventual failure (Mistry, 2005). Different types of expansion joints are manufactured to accommodate varied types of movements, some with improved performance over others, but all expansion joints eventually fail with time leading to expensive repair and replacement works.

In view of the numerous problems associated with expansion joints, jointless bridges become an alternative to destructive effect of leaking and freezing deck joints (Burke, 1993). In addition to reduction in high cost of maintenance, construction process is simplified and construction cost is reduced with the removal of joints and bearings (Griemann et al., 1986; Hans and Peter, 2006). Studies by Hans (2015) have shown that significant savings in bridge construction costs is achieved with the use of IABs (Figure 1.7). IABs are therefore rapidly gaining popularity; many states in US have resorted to the removal of joints and associated bearings in the proposed and existing bridges to save cost (Figure 1.8). Kunin and Alampalli (1999) discovered that nearly 10,000 IABs were built by 30 bridge agencies in United States between 1969 and 1999. The number of Integral and Jointless Bridges (IAJB) comprising both integral and semi-integral abutment bridges (that has abutments-girder joints) amounted to 13,000 in U.S. according to survey conducted by Rodolf and Samer in 2005 (Table 1.1). In the ten years preceding the survey, US had a 200 % surge in number of IABs. Over 1000 IABs were built in Finland during recent decades (Olli et al., 2005). Figure 1.9 shows increase in use of IABs in UK within a four year period. Bridge maintenance costs of jointed bridges have been a source of concern for many bridge agencies. Experience from US, Sweden and many countries have shown that IABs are a better alternative due lower financial demand for their construction and maintenance (Feldmann et al., 2006).

A: Bridge founded above ground water level

B: Bridge founded under ground water level, concrete cast in the water

C: Sheet pile wall and unreinforced bottom layer of concrete preventing water intrusio

D: Elevated foundation

E: Integral abutments

Figure 1.8 Rise of IABs in the United States (Paraschos and Amde, 2011)

	DESIGNED since 1995	BUILT since 1995	IN SERVICE (TOTAL)
Integral Abutment	~ 7000	~ 8900	~ 13000
Full Integral	~ 5700	~ 6400	~ 9000
Semi Integral	~ 1600	~ 1600	~ 4000
Deck Extension	~ 1100	~ 1100	~ 3900

Table 1.1: Number of IAJB designed and built since 1995 and in-service in U.S. (Rodolf and Samer, 2005).

Figure 1.9 Summary of bridge type by dates in United Kingdom (David, 2006)

IABs have the following advantages over conventional bridges according to Arockiasamy et al., (2004); Hassiotis et al., (2006); Kunin and Alampalli (2000); Mistry (2005); Wasserman and Walker (1996); Ooi et al., (2010); Cheng (2012):

- i. Lower construction and maintenance costs as a result of absence of construction joints and bearings.
- ii. Serviceability and structural stability of the bridge is enhanced by the integral connection of girder to abutment. IABs have added redundancy and additional strength to withstand seismic loads during earthquakes.

- iii. Integral connection between beam and abutment provides additional resistance to beams against uplift forces at end spans due to live loads.
- iv. Smooth riding surface due to absence of joints reduces impact stress levels and improves riding quality.
- v. Due to integral connection, the entire bridge behaves like a portal frame and is able to spread lateral loads to adjacent soil support thereby enhancing stability and reducing uneven settlement.
- vi. Improved aesthetic feature of the bridge and enables rapid bridge construction.
- vii. Rapid construction and bridge widening is achieved due to simplified features of IABs like fewer construction joints, uniformly spaced piles and so on.

In addition to the primary actions of live and dead loads, IABs being jointless bridges experience additional stress from temperature and time-dependent loadings such as creep, shrinkage, prestress cable relaxation and reaction from soil-structure interaction. Expansion and contraction of superstructure due to thermal loading, creep and shrinkage can result in flexural stress built up on piles supporting long span IABs. If the stress is large enough, it can lead to formation of plastic hinges and limit the flexural resistance of the piles to additional superstructure elongation (Burke, 2009). This nonlinear reaction which is severe during thermal expansion of the bridge can lead to translational and rotational displacement of the abutment wall. Soil structure interaction also affects the behaviour of IABs in relation to soil stiffness and foundation type (Faraji et al., 2001, George et al., 2002).

The behaviour of IABs is not adequately comprehended by bridge engineers despite the numerous applications of IABs in bridge constructions. Thermal, creep and shrinkage effects and soil-structure interactions have been the major source of concern in the ambiguities associated with the performance of IABs. Design and construction of IABs was therefore dependent on past experience as there is no design guide available in the existing codes of practice for IABs (Huang et al., 2008).

1.4 Problem Statement

In spite of IABs having functional and economic advantages over conventional bridges, there are many uncertainties regarding their behaviour that need to be fully understood. Most of these uncertainties arise as a result of elimination of movement joints leading to lateral movements occurring at bridge abutments. Removal of movement joints result in uncertainties relating to complexities in soil-structure interaction and nonlinear material behaviour. Bridge superstructures of IABs do experience cyclic expansion and contraction due to thermal load variation against passive resistance of backfill behind bridge abutment. In addition to this thermally induced superstructure and abutment displacement, nonlinear creep and shrinkage of bridge deck and girder create additional contraction of the superstructure and abutment against lateral resistance of piles supporting bridge abutment. Thermal movement, time-dependent response and soil structure-interaction makes the behaviour of IABs not fully understood (Huang et al., 2004; Ooi et al., 2010; Arockiasamy et al., 2004).

The absence of a unified design code that clearly defines the procedure for design of IABs is a point of concern that necessitates the need for further study on the behaviour of IABs. The practice of design and construction of IABs is mainly empirical in nature rather than systematic investigation (Arockiasamy and Sivakumar, 2005). There is no clearly defined analysis method and standardised design procedures in the current design specifications and guides; the behaviour is therefore unknown and the design is cumbersome resulting in low utilisation of IABs despite the enormous benefits (Kim and Laman, 2010a; Thippeswamy et al., 2002). There is therefore the need to further enrich our present limited

understanding of behaviour of IABs under effects of temperature, creep and shrinkage.

1.5 Research Objectives

The behaviour of continuous prestressed concrete girder IABs under temperature and creep loads was studied in this research. This study has achieved the following objectives:

- Developing a three dimensional finite element model that effectively predicts the effect of creep, shrinkage and thermal loadings on the performance of long spanning IABs.
- Quantifying the effect of creep and shrinkage on moment and shear capacities of prestress concrete girders of IAB.
- iii) Proposing empirical model equations that can serve as guide in predicting long term response of IABs to creep loading. The equations should contribute to safe design of long span IABs beyond the current practice of limiting the span of IABs to 60 m.

1.5 Scope of Research

The research is conducted through numerical analyses using Finite Element Method. Modified Newton Raphson iteration method was used in nonlinear transient creep analyses of prestressed concrete slab on T beam IABs using CEB-FIP (1990) creep model for 75 years. The post tensioned IABs have no skew or curvature. Four IABs lengths were 60 m, 90 m, 120 m and 150 m with each bridge having pier to pier spans of 20 m, 30 m, 40 m and 50 m respectively. Linear Thermal analyses were conducted to study the response of the bridge to thermal loading in tropical climate. An average temperature range of 21° C to 36° C was

chosen within the range of Malaysian climate (Malaysian Metrological Department, 2015) which was adopted as case study of the research. Soil behind bridge piles were varied form dense sand, medium dense sand, loose sand, stiff clay, medium stiff clay to soft clay to study the response of backfill and piles on bridge movement due to thermal and time-dependent loadings. Soil was modelled using linear springs and the spring stiffness was obtained with the use of force displacement curves (P-y curves).

1.6 Research Methodology

The Reseach was conducted through numerical analyses using finite element method and the analyses were carried out in finite element software LUSAS. Figure 1.10 provides flowchart of the step by step procedure followed in carrying out the reseach. Literature was reviewed and presented in Chapter two to establish research gap in previous studies on thermal and time-dependent behaviour performance of integral abutment bridge due to temperature, creep and shrinkage loadings. The research gap, as presented in Section 2.9 formed the research problem to be solved and the overall objective of the research. Structural design of IAB carried out using BS8110 (1997) code, was based on an existing IAB in Johor Bahru Malaysia. Three dimensional finite element models of IABs were developed to represent structural components of the bridge. Prestressing force was modelling using equivalent load method and the girder and the prestressing tendon were modelled as single beam element. Soil-structure interaction for both backfillabutment and soil-pile interaction were modelled using Clough and Duncan and p-y curve methods respectively. Nonlinear beam element with CEB-FIP 1990 code creep and shrinkage material properties was used to model prestressed concrete girders for the 75 years creep analyses. Linear beam elements were used to model girders for thermal loading. Models were tested by subjecting them to thermal and creep loadings in addition to live, dead and prestress loadings to obtain preliminary results which were validated using analytical procedure. Parametric analyses were carried out and the parameters considered are thermal load, creep and shrinkage,

bridge length and stiffness of substructure soil.Loss in prestress loss, changes in creep coefficient, reduction in moment and shear capacities of prestress concrete girders of IABs were computed at the end of the analyses. Results of the analyses were used to develop empirical equations that can be used in long-term response prediction of IABs to creep loading. The equations were tested and validated to establish their accuracy and a conclusion was made on the usefulness of the equations in early predictive assessment of long-term performance of IABs to creep loading.

Figure 1.10Flowchart of research methodology

1.7 Layout of Thesis

Chapter one presents the background of the research and explains the concept of IABs and their attributes. It also discussed limitations of IABS which formed the basis of the research problems, objectives, methodology and scope as discussed in the chapter.

Chapter two is a review on relevant literature to provide background knowledge of the research, prior research work conducted and what has not been adequtely covered by previous study which formed the basis of the present study. The topics covered include Concept and types of IAB, global approaches in its utilisation, secondary loading effects on the bridge, temperature and creep models and soilstructure interaction modelling.

Chapter three provides discussion on method used in finite element modelling of post-tensioned cable profile for continuous bridge girders and other structural elements of the bridge. Procedure followed in modelling soil-structure interaction for abutment-backfill interaction and pile-soil interactions under varying soil types were fully discussed. Results from finite element modelling were validated in this chapter.

Chapter four provided parametric study results for both creep and thermal loadings of IABs. The results of the analysis of 60 m 90 m, 120 m and 150 m, IABs are presented and explained. Empirical equations were developed, tested and validated.

Chapter five provides concluding aspects of the research. It discusses the research findings and achievements and provided general conclusion based on the research findings. It also provides recommendations for further studies on IABs.

REFERENCES

- AASHTO (2007), American Association of State Highway and Transportation
 Officials, Load and Resistance Factor Design bridge design specifications.
 4th Edition, Washington, DC.
- ACI (1992), American concrete Institute, Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures, 209R-92, ACI Committee 209, Farmington Hills, MI 48331
- Antoine, E., M. (2004) Prestressed Concrete Analysis and Design Fundamentals, Second Edition, Techno Press, Michigan.
- Arockiasamy, M., Butrieng, N., and Sivakumar, M. (2004). State-of-the-art of integral abutment bridges: Design and practice. Journal of Bridge Engineering, 9(5), 497-506.
- Arockiasamy, M., and Sivakumar, M. (2005). Time-Dependent Behaviour of Composite Integral Abutment Bridges. Practice Periodical of Structural Design and Construction Volume 10 No.3, .
- Au, F. T. K., and Si, X. T. (2011). Accurate time-dependent analysis of concrete bridges considering concrete creep, concrete shrinkage and cable relaxation. Engineering Structures, 33(1), 118-126.
- BadwaterJournal.com (2011) Road Salt corrosion on the Sherma Minton Bridge, 1 64 at West Louisville retrieved from http://badwaterjournal.com/Bad_ Water _Journal/ Sherman_Minton.html.
- Baptiste, K. T., Kim, W., and Laman, J. A. (2011). Parametric study and length limitations for prestressed concrete girder integral abutment bridges. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 21(2), 151-156.
- Barker, R. M., Duncan, J. M. K., Rojiani, K. B., Ooi, P. S. K, Kim, S.G., (1991). Manuals for the Design of Bridge Foundation, NCHRP Report 343,

Transportation Research Board, National Research Council, Washington, D.C.

- Bhatt, P., (2011) Pretressed Concrete Design to Eurocodes, Routledge, New York.
- Bowles, J. E., (1996). Foundation Analysis and Design, 5th Edition, McGraw-Hill, New York.
- Braun, A., Seidl G., Weizennegger, M. (2006) Frame Structures in Bridge construction, Design, Analysis and economic consideration, Proceedings of International Workshop on the Bridges with Integral Abutments organised by Division of Structural Engineering, Department of Civil and Environmental Engineering, Luleå University of Technology.
- BCMOT (2007) Bridge Standards and Procedures Manual, v1, supplement to CHBDC S6-06, British Colombia Ministry of Transportation, London.
- British Highway Agency (2003) BA 42/96: The Design of Integral Bridges, Design Manual for Roads and Bridges, The stationary office, London.
- British Standard Institute (1990) BS5400 Part 4 Code of practice for design of concrete bridges, British Standards Online, bsonline.techindex.co.uk.
- British Standard Institute (1997) BS58110 Part 1 Structural use of concrete, British Standards Online, bsonline.techindex.co.uk.
- Burke, M. P. (1993). Design of Integral Concrete Bridges. Concrete International, 15,6, 37-42.
- Burke, M. P. (2009). Integral and Semi-Integral Bridges. Wiley-Blackwell, West Sussex.
- Canadian Standards Association, (2006). Canadian Highway Bridge Design Code. CAN/CSA-S6-06, 10th edition, Ontario.
- CEB-FIP Model code (1990), Code for concrete structures, Comite Euro-International du Beton, Thomas Telford, London.

Chandra, S. (2014) Spring Modelling of soil behaviour, Indian Institute of

- Technology, Kurukshetra, http://home.iitk.ac.in/~peeyush/mth426/Lec4_ schandra. pdf
- Cheng, L. (2012) On the performance of Super-long Integral Abutment Bridges-Parametric Analysis and design optimisation, PhD thesis submitted to Department of Civil and Mechanical Structural Systems, University of Trento.

- Civjan, S. A., Bonczar, C., Brena, S. F., Dejong, J., and Crovo, D. (2007). Integral abutment bridge behavior: Parametric analysis of a massachusetts bridge. Journal of Bridge Engineering, 12(1), 64-71.
- Clough, G. M.and Duncan, J. M., (1991). "Chapter Six/Earth pressures" in Foundation Engineering Handbook, pp 224-34, Edited by H. Y., Fang, 2 Nd Edition, Chapman and Hall, New York,
- Collin, P., Veljkovic, M., and Petursson, H. (2006). International Workshop on Bridges with Integral Abutments, Lulea University of Technology, Lulea, Sweden.
- David, C. I. (2006) Integral Bridges in the UK, International Workshop on the Bridges with Integral Abutments, Department of Civil and Environmental Engineering, Luleå University of Technology, Sweden.
- Debbarma, S.R.,and Saha, S. (2011) Behaviour of pre-stressed concrete bridge girders due to time dependent and temperature effects, First middle east conference on smart monitoring, assessment and rehabilitation of civil structures, Dubai.
- Dicleli, M (1999) A rational design approach for prestressed-concrete girder Integral Bridges, Engineering Structures, 22(3):230-245, DOI: 10.1016/ S0141-0296(98)00080-7
- Dicleli, M. (2000a). Simplified model for computer-aided analysis of integral bridges. Journal of Bridge Engineering, 5(3), 240-248.
- Dicleli, M. (2000b). A rational design approach for prestressed-concrete-girder integral bridges. Engineering Structures, 22(3), 230-245.
- Dicleli, M., and Albhaisi, S. M. (2003). Maximum length of integral bridges supported on steel H-piles driven in sand. Engineering Structures, 25(12), 1491-1504.
- Dicleli, M., and Albhaisi, S. M. (2004a). Performance of abutment–backfill system under thermal variations in integral bridges built on clay. [doi: 10.1016/j.engstruct. 2004.02.014]. Engineering Structures, 26(7), 949-962.
- Dicleli, M., and Albhaisi, S. M. (2004b). Estimation of length limits for integral bridges built on clay. Journal of Bridge Engineering, 9(6), 572-581.

- Dicleli, M. (2005). "Integral Abutment-Backfill Behavior on Sand Soil—Pushover Analysis Approach." Journal of Bridge Engineering, 10.1061/(ASCE)1084-0702(2005)10:3(354), 354-364.
- Dicleli, M., & Erhan, S. (2009). Live load distribution formulas for single-span prestressed concrete integral abutment bridge girders. Journal of Bridge Engineering, 14(6), 472-486.
- Dicleli, M., & Erhan, S. (2010). Effect of soil-bridge interaction on the magnitude of internal forces in integral abutment bridge components due to live load effects. [doi: 10.1016/j.engstruct.2009.09.001]. Engineering Structures, 32(1), 129-145.
- Dongya, A., Chengming L., Jiahua Z., Jiachun C., & Tian, W. (2010). The Engineering Practice of Elasto-plastic Dynamic Time-history Analysis on Complex Building Structures Using Abaqus, Paper presented at the Sumulia Customer Conference.
- Duffie, J.A. and Beckman, W.A. (1980). Solar Engineering of Thermal Processes, Second Edition, John Wiley & Son, Inc., Hoboken, New Jersey
 - Emseal Infrastructure & Civil Products (2014) Replacement of failed Bolt-Down expansion joints with EMCRETE and BEJS para 1 retrieved from http://www.emseal.com/Products/Infrastructure/BridgeJointSeals/BEJSBridg eInFailedBoltDowns.htm
 - England, G., L. and Tsang, C., M. (1996) Thermally Induced Problems in Civil Engineering Structures, Thermal stresses iv, Elsevier Science, London.
 - Eugene, J. O., and Damien, L. K. (1999) Bridge Deck Analysis. E & FN Spon London.
 - European Committee for Standardization (2003) EN 1991 Eurocode 1: Actions on structures Part 1-5: General actions -Thermal actions, EN 1991-1-5: 2003 (E).
 - Faraji, S., Ting, J. M., Crovo, D. S., and Ernst, H. (2001). Nonlinear analysis of integral bridges: Finite-element model. Journal of Geotechnical and Geoenvironmental Engineering, 127(5), 454-461.
 - Feldmann, M., Hechler, O. and Pak, D. (2006) Economic and Durable Design of Composite Bridges with Integral Abutments, International Workshop on the Bridges with Integral Abutments organised by Division of Structural

Engineering, Department of Civil and Environmental Engineering, Luleå University of Technology, Luleå.

- Fennema, J. L., Laman, J. A., and Linzell, D. G. (2005). Predicted and measured response of an integral abutment bridge. Journal of Bridge Engineering, 10(6), 666-677.
- Freyermuth , C. L. (1969). Design of Continuous Highway Bridges with Prestressed Concrete Girders, PCI Journal, Vol. 14 , No. 2 .
- George, L. E., Tsang N. C. M., and Bush, D. I. (2002). Integral Bridges: a fundamental approach to time temperature loading problem, Thomas Telford, London.
- Ghali, A. Favre, R. and Elbadry, M. (2002). Concrete Structures Stresses and Deformations, (Third Edition ed.). E & FN SPON, London:
- Gilbert, R. I., (1998). Time effects in concrete structure, Elsevier, Amsterdam
- Greimann, L.F., Yang, P.S., and Wolde-Tinsae, A.M. (1986), Nonlinear Analysis of Integral Abutment Bridges, Journal of Structural Engineering, ASCE, Vol. 112, No. 10, 1986, pp. 2263-2280.
- Haliburton, T. A., (1971). Soil-structure Interaction; Numerical Analysis of Beams and Beam Columns, Technical Publication No. 14, School of Civil Engineering, Oklahoma State University, Stillwater, Oklahoma.
- Hambly, E., C. (1991) Bridge Deck Behaviour, Second Edition, Taylor and Francis, New York.
- Hans, P. and Peter, C. (2006). Innovative Solutions for Integral Abutments, International Workshop on the Bridges with Integral Abutments, Department of Civil and Environmental Engineering Division of Structural Engineering, University of Technology, Luleå
- Hans, P., (2015). Design of Steel Piles for Integral Abutment Bridges, Doctoral Theisis submitted to Division of Structural Engineering. Department of Civil and Environmental Engineering, Luleå University of Technology, Luleå.
- Harry L. W. (2005). Integral Abutments: The New York Experience, Proceedings of The 2005 – FHWA Conference Integral Abutment and Jointless Bridges organized by Constructed Facilities Center, College of Engineering and Mineral Resources, West Virginia University.

- Hassiotis, S. S., Khodair, Y., and Roman, E., Dehne, Y., (2006). Evaluation of Integral Abutments, Final Report, FHWA-NJ-2005-025. New Jersey Department of Transportation, U.S.A.
- Huang, J., French, C. E.,and Shield C.K.(2004). Behavior of Concrete Integral Abutment Bridges, Research Reports, University of Minnesota, Minneapolis.
- Huang, J., Shield, C. K., and French, C. E. W. (2008). Parametric study of concrete integral abutment bridges. Journal of Bridge Engineering, 13(5), 511-526.
- Hurst, M. K., (2003) Prestressed concrete design, Second Edition, E&FN Spon, London.
- JKR (1996). The New JKR Standard beams. Unit Jambatan, Kerja Raya Malaysia
- Kalayci, E., Breña, S. F., and Civjan, S. A. (2009). Curved integral abutment bridges - thermal response predictions through finite element analysis. Conference paper presented at Structures 2009: Don't Mess with Structural Engineers, conference organised by American Society of Civil Engineers.
- Kaufmann, W. and Alvarez, M. (2011). Swiss Federal Roads office guidelines for Integral Bridges, Structural Engineering International, 21,2,189-194
- Kenneth F. D., and Dajin L., (2007). Foundations for Integral Abutments. Practice Periodical on Structural Design and Construction 12(1), 22-30.
- Khodair, Y. A., and Hassiotis, S. (2005). Analysis of soil-pile interaction in integral abutment. Computers and Geotechnics, 32(3), 201-209.
- Kier, D., (2009) Modeling of Integral Abutment Bridges Considering Soil-Structure Interaction Effects, PhD Theisis Submitted to University of Oklahoma
- Kim, W., and Laman, J. A. (2010a). Numerical analysis method for long-term behavior of integral abutment bridges. Engineering Structures, 32(8), 2247-2257. [doi: 10.1016/j. engstruct. 2010.03.027].
- Kim, W., and Laman, J. A. (2010b). Integral abutment bridge response under thermal loading. Engineering Structures, 32(6), 1495-1508.
- Kong, F. K. and Evans, R. H. (1987). Reinforced and prestressed concrete incorporating BS8110 and microcomputer applications, 3rd edition, Springer, London.
- Kong, B., Cai, C.S. & Zhang, Y. (2016). Parametric study of an integral abutment bridge supported by prestressed precast concrete piles, Engineering Structures, Volume 120, 1, pp 37–48, http://dx.doi.org/10.1016/j. engstruct.

2016.04.034

- Kong, B., Cai, C.S.,and Kong, X., (2015). Field monitoring study of an integral abutment bridge supported by prestressed precast concrete piles on soft soils Engineering Structures, Volume 104, Pages18–31, http://dx.doi.org/10.101 6/j.engstruct.2015.09.004
- Kramer, S.L. (1998). Development of P-Y curves for analysis of laterally loaded piles, Technical report produced by Washington state department of transport and U.S. department of transport federal highway administration.
- Kroplin, B., and Weihe, S.(1997). Aspects of fracture induced anisotropy. Proc. of 5th International conference on computational plasticity (COMPLAS5), Barcelona, 255-279,
- Kunin, J. and Alampalli, S., (1999) Integral Abutment Bridges: Current Practice in the United States and Canada. Special Report 132, Transportation Research and Development Bureau, New York State Department of Transportation, Albany, New York
- Kunin, J., and Alampalli, S. (2000). Integral abutment bridges: Current practice in United States and Canada. Journal of Performance of Constructed Facilities, 14(3), 104-111.
- Larsson, and Svensson, (2013) .Realistic Modelling of Thermal Effects in Concrete Bridges, Master's degree dissertation, Division of Structural Engineering, Lund Institute of Technology, Lund University.
- Lehane, B., Keogh, D.L. and O'Brien, E.J. (1996). Soil-structure interaction analysis for integral bridges, Advances in Computational Methods for Simulation, Civil-Comp Press, Edinburgh, pp201-10
- Lin, T.Y. and Burns, N. H. (1980). Design of prestressed concrete structures, John Wiley, New York.
- LUSAS (2008a) Theory Manual Volume1, version 14 issue1, Finite Element Analysis Ltd, Surrey.
- LUSAS (2008b) Theory Manual Volume2, version 14 issue1, Finite Element Analysis Ltd, Surrey.
- Malaysian Metrological Department (2015). Monthly weather Bulletin of Malaysian metrological Department, Ministry of Science Technology and innovation.

Available:http://www.met.gov.my/web/metmalaysia/publications/bulletinpre view/ monthlyweather

- Matlock, H. (1970). Correlation for Design of Laterally Loaded Piles in Soft Clay, Proceedings of Offshore Technology Conference, Houston, Texas, (OTC 1204). P577-594
- Mattock, A. H. (1961) Precast-Prestressed concrete bridges-Creep and Shrinkage Studies, Journal of the PCA Research and Development Laboratories, Portland Cement Association, Vol.3, No.2.
- Michel, B., Myrto, A., and Alessandro, P., (2010). Preliminary Report on Bridge Damage from the Darfield (New Zealand) M7.1 earthquake of September 4, 2010 – Draft of 2010-09-23, retrieved from http://eqclearinghouse.org /co/20100903-christchurch/reports-from-the-field/preliminary-report-onbridge-damage-from-the-darfield-new-zealand-m7-1-earthquake-ofseptember-4-2010
- Mistry, V. (2005) Integral Abutment and Jointless Bridges, proceedings of The 2005
 FHWA Conference, Constructed Facilities Centre College of Engineering and Mineral Resources, West Virginia University Baltimore, Maryland USA.
- Narong, T. (2006) Curved Integral Abutment Bridges, PhD research Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, USA.
- National Cooperative Highway Research Program (NCHRP 1991). Manuals for the design of bridge foundations, Editors, Barker RM, Duncan JM, Rojiani KB, Ooi PSK, Tan CK, Kim SG, Rep. 343, Transportation Research Board, Washington, D.C.;.
- Nawy, E. G., (2003) Prestressed Concrete A Fundamental Approach, 4th Edition, Prentice-Hall, New Jersey.
- Nicholson, B. A., (1998) Integral abutments for Prestressed Beam Bridges, Prestressed Concrete Association, Leicester.
- Noorzaei, J., Abdulrazeg, A. A., Jaafar, M. S., and Kohnehpooshi, O. (2010) Non-linear analysis of an integral bridge. Journal of Civil Engineering and Management, 16(3), 387-394.

- O'Brien E. J. and Keogh D. L., (2005). Bridge Deck Analysis, E & FN Spon, London.
- Olli, K., L. and Anssi, L (2005) Soil-Structure Interaction of Jointless Bridges, Proceedings of FHWA Conference, Constructed Facilities Center, College of Engineering and Mineral Resources, West Virginia University, Baltimore, Maryland.
- Ooi, P. S. K., Lin, X., and Hamada, H. S. (2010). Numerical study of an integral abutment bridge supported on drilled shafts, Journal of Bridge Engineering, 15(1), 19-31.
- Papanicolaou, G.C. and Zaoutsos, S. P. (2011). Viscoelastic constitutive modelling of creep and stress relaxation in Polymers and polymer matrix composites, Creep and fatigue in polymer matrix composites, Woodhead Publishing Limited, Cambridge, UK.
- Paraschos, A., and Amde, M.A., (2011). "A survey on the status of use, problems, and costsassociated with Integral Abutment Bridges", Better Roads Magazine, February.
- Prab, B., Thomas, J., and Ban, S. C. (2006) Reinforced Concrete Design Theory and Examples, Taylor and Francis, New York.
- Prakash, S.,and Sharma, H.D. (1990) Pile Foundations in Engineering Practice, John Wiley, New Jersey.
- Pugasap, K., Kim, W., and Laman, J. A. (2009). Long-term response prediction of integral abutment bridges. Journal of Bridge Engineering, 14(2), 129-139.
- Rabih Haj-Najib, (2002) Integral Abutment Bridges with skew angles, Doctor of Philosophy theisis sumbmitted to Department of Civil and Environmental Engineering University of Maryland, College Park Maryland.
- Raina, V. K. (1994) Concrete bridge practice, Analysis design and economics, Second edition, Tata McGraw-Hill, New Delhi.
- Raymond, I. G., and Gianluca, R. (2011). Time Dependent Behaviour of Concrete Structures, Spon Press, New York.
- René, B., Mike, A. C., Joris, J.C.R., and Clemens, V. V. (2012) Nonlinear Finite Element Analysis for Solid and Structure, Second Edition, John Wiley & Sons, Sussex, United Kingdom.

- Reese, L.C., and Van Impe, W.F., (2001). Single Piles and Pile Group under Lateral Loading.2 N^d Edition, CRC Press Taylor & Francis, leiden.
- Reese, L. C., Cox, W. R., and Koop, F. D., (1974). Analysis of Laterally Loaded Piles in Sand, Proceedings of 6th Annual Offshore Technology Conference, Vol. 2 paper 2020, p 473-485, Houston Texas.
- Rodolf, F., M., and Samer H. P. (2005) Integral Abutments and Jointless Bridges 2004 Survey Summary, Proceedings of THE 2005 – FHWA Conference Integral Abutment and Jointless Bridges organized by Constructed Facilities Center, College of Engineering and Mineral Resources, West Virginia University.
- Salgado, R., (2006) The Engineering of Foundations, McGraw-Hill, New York.
- Skempton, A.W., (1951). The Bearing Capacity of Clays, Proceedings of Building Research Congress, Volume 1, London.
- Sophia, H., Yaser, K., Eugenia, R., and Yousef, D., (2006) Evaluation of Integral Abutment, a research report, Department of Civil, Environmental and Ocean Engineering Stevens Institute of Technology Hoboken, N.J. 07030
- Springman, S.M., Norrish, A.R.M. and Ng, C.W.W.W (1996) Cyclic loading of Sand Behind Integral Bridge Abutment, UK Highways, TRL Report 146, London.
- Suhail, A. (2012). Effect of Substructure Stiffness on the Performance of Integral Abutment Bridges under Thermal Loads, a PhD dissertation in Civil and Environmental Engineering submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey.
- Teodru, I., (2009). Beams on Elastic Foundation the Simplified Continuum approach, Bulettin of the Polytechnic Institute, Architectural Construction department, Gheorghe Asachi Technical University, Iasi.
- Terzaghi, K. (1955). Evaluation of coefficients of subgrade reaction. Geotechnique,Vol. 5, No. 4, pp.297-326. Harvard soil mechanics series, 51
- Thippeswamy, H. K., GangaRao, H. V. S., and Franco, J. M. (2002). Performance evaluation of Joint-less bridges. Journal of Bridge Engineering, 7(5), 276-289.

- University of Michigan open-source (2014) Introduction to Bio-solid Mechanics, Constitutive Equations: Viscoelasticity, retrieved from http://www.umich. edu/~bme332/ch7consteqviscoelasticity/bme332consteqviscoelasticity.htm
- University of Texas open source (2014). Lesson 14 Mechanical Properties of Materials, retrieved from http://wweb.uta.edu/faculty/ricard/Classes/KINE-301/Notes/Lesson-14.html
- Voyiadjis, G. Z., Cai S., Alshibli, K., Faghihi, D., Kong, B. and Yang, Y. (2016).
 Integral Abutment Bridge for Louisiana's Soft and Stiff Soils, Final Report
 517, Louisiana Transportation Research Center, Department of Civil and
 Environmental Engineering, Louisiana State University, Baton Rouge, LA
 70803.
- Walter, H. D., Amin, G., Mathew, C., Mo. S. C., and Marc A. M. (1983) Temperature Stresses in Composite Box Girder Bridges, Journal of Structural Engineering, Vol. 109, No. 6, ASCE, ISSN 0733-9445/83/0006-1460. Paper No. 18064.
- Wang, S.T., and Isenhower, W.M., (2010). LPile user's manual, Version 6, A Program for the Analysis of Piles and Drilled Shafts Under Lateral Load, Ensoft, Inc., p 68-74.
- Wassermann, E. P. and Walker, J. H. (1996). Integral Abutments for continuous steel bridges, Workshop on Integral abutment bridges, Pittsburgh, PA, 31 p.
- Welch, R.C., and Reese, L.C., (1972). Laterally loaded behavior of drilled shafts, Research Report 3-5-65-89. Center for Highway Research. University of Texas, Austin.
- White, H. (2007) Integral Abutment Bridges: Comparison of Current Practice Between European Countries and the United States of America, Special Report FHWA/NY/SR-07/152, Transportation Research and Development Bureau, State Department of Transportation. New York.
- White, H., Pétursson, H., and Collin, P., (2010). Integral Abutment Bridges: The European Way, Practice Periodical on Structural Design and Construction, ASCE, Vol. 15, No. 3, p 201-208.
- Wolde-Tinsae, Made, M. A., Klinger, J. E., and White, E. J. (1988). "Performance of Jointless Bridges." Journal of Performance of Construction Facilities, ASCE, Vol. 2, No. 2, pp. 111-125.

- Yannotti A. P., Alampalli S., and White H., (2005) New York's State Department of Transportation's experience with Integral Abutment and Jointless Bridges (IAJB2005) Baltimore, Maryland, 4149
- Zdenek, P., Bazant, F. and Jenn-Chuan C., (1983), Rate-Type Concrete Creep law with reduced time Journal of Engineering Mechanics, Vol. 110, No.3.
- Zordan, T., Briseghella, B., and Lan, C. (2010). Parametric and pushover Analyses on integral abutment bridge. Engineering Structures, 33(2), 502-515.[doi: 10.1016/j.engstruct.2010.11.009].