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ABSTRACT 

 

 

 

 

Integral Abutment Bridges (IAB) are getting popular due to significant cost 

savings in their construction and maintenance. Many countries stipulate the use of 

IABs in their new bridge construction projects but mostly the span is limited to 60 

m. The limit is set considering the concerns on the long-term performance of IAB 

beyond 60 m span due to complexities in its response to long-term material 

behaviour, environmental loading and backfill soil conditions. This limitation 

necessitates the need for research to adequately predict the long-term behaviour of 

IAB particularly those with span beyond 60 m. A parametric study is carried out by 

performing non-linear finite element analyses using LUSAS to determine the long-

term behaviour of continuous span prestressed concrete IAB. The parameters 

considered are backfill soil type, bridge total length, thermal loading and creep. 

Subsoil behind bridge abutment is varied from dense sand, loose sand, stiff clay, to 

medium stiff clay. The bridge total lengths of 60 m, 90 m, 120 m, and 150 m, with 

pier-to-pier spans of 20 m, 30 m, 40 m and 50 m are considered respectively. Three 

dimensional models of IAB are subjected to self-weight, vehicle loading, 

prestressing force, temperature load ranging from 20 
0
C to 36 

0
C and concrete creep. 

The bridge response at 75 year life is examined in terms of deformations and 

changes in internal forces in the abutment, prestressed beams and pile foundations. 

The long term response of the IAB with different backfill soil types and span lengths 

subjected to all possible loadings was successfully quantified. The results revealed 

that the variation of the displacement and the internal forces in the abutment and the 

bridge beam are within the constructable limit where it is possible to design and 

construct the IAB beyond the length of 60 m. Seventy five years creep and 

shrinkage loading  is found to have significant effect on long term behaviour of the 

bridge. It causes maximum loss in prestress force by 27 % resulting in reduced 

moment and shear capacity of girder by 557 kNm and 321 kN respectively and 

increases the girder deflection by 75 mm (160 %) in 150 m IAB. This also resulted 

in incremental abutment deflection 25 mm (575 % rise), abutment moment 5410 

kNm (95 %), abutment shear 440 kN (41 %), and girder stress 7.53 N/mm
2
 (378 %) 

in 150 m long IAB. Soil-abutment interaction is found to have predominant effect in 

comparison to soil-pile interaction. Bridge length has considerable effect on 

magnitude of abutment moment causing 5870 kNm (112 %) incremental moment 

with increase in bridge length from 60 m to 150 m in varying subsoil stiffnesses. 

Results of the analyses are used in the formulation of long-term response prediction 

equations for deflection, moment and shear behavior of IAB abutments. The 

empirical equations have proven to be adequate and time efficient means of 

predicting deformations and changes in internal forces in the IABs of similar 

geometry and configurations. 
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ABSTRAK 

 

 

 

 
Pembinaan Jambatan Tembok Landas Bersepadu (IAB) semakin popular sekarang 

kerana ia memberikan penjimatan kos yang ketara daripada segi pembinaan dan 

penyelenggaraan. Banyak negara telah mensyaratkan pembinaan IAB bagi projek 

pembinaan jambatan yang baharu, namun panjang jambatan kebanyakannya dihadkan 

kepada 60 m sahaja. Pertimbangan untuk menghadkan panjang jambatan ini adalah 

berdasarkan kepada ketidaktentuan prestasi bahan konkrit dalam jangka panjang, 

ketidaktentuan beban yang terjana daripada persekitaran dan juga ketidaktentuan keadaan 

tanah tambun di belakang tembok landas. Kekangan ini menyebabkan perlunya dijalankan 

penyelidikan bagi membuat jangkaan kelakunan jangka panjang IAB, terutamanya bagi 

panjang keseluruhan yang melebihi 60m. Satu kajian parameter telah dijalankan dengan 

kaedah analisis unsur terhingga tidak lelurus menggunakan LUSAS bagi menentukan 

kelakunan jangka panjang jambatan IAB yang dibina dengan rasuk konkrit prategasan 

selanjar. Parameter yang diambil kira adalah jenis tanah tambun di belakang tembok landas, 

panjang keseluruhan jambatan, beban suhu dan rayapan konkrit. Jenis tanah tambun di 

belakang tembok landas diubah-ubah iaitu daripada jenis pasir tumpat, pasir gembur, tanah 

liat kukuh, kepada tanah liat sederhana kukuh. Panjang keseluruhan jambatan yang 

dipertimbangkan adalah 60 m, 90 m, 120 m, dan 150 m dengan jarak antara pier penyokong 

adalah masing-masing 20 m, 30 m, 40 m and 50 m. Model tiga dimensi bagi IAB dikenakan 

beban berat diri, beban kenderaan, daya prategasan, beban suhu dengan julat daripada 20 
0
C 

kepada 36 
0
C dan juga rayapan konkrit. Kelakunan jambatan pada umur 75 tahun telah 

diperiksa dengan melihat kepada nilai pesongan dan perubahan daya dalaman dalam tembok 

landas, dalam rasuk prategasan dan dalam asas cerucuk. Kelakunan jangka panjang IAB 

yang berinteraksi dengan pelbagai jenis tanah tambun dan panjang keseluruhan jambatan 

yang berbeza-beza di bawah semua jenis beban telah diperolehi dengan jayanya.. Hasil yang 

didapati adalah perubahan daya dalaman tembok landas dan rasuk prategasan bagi jambatan 

IAB yang melebihi 60m adalah dalam had yang boleh direkabentuk dan boleh dibina. Beban 

rayapan dan pengecutan selepas 75 tahun didapati memberi kesan yang besar ke atas 

kelakunan jangka panjang jambatan. Ia menyebabkan pengurangan daya prategasan 

maksimum sebanyak 27.1 % yang akhirnya mengurangkan kapasiti moment dan daya ricih 

rasuk masing-masing sebanyak 557 kNm dan 321 kN serta menambahkan pesongan rasuk 

sebanyak 75 mm (160 %) pada IAB 150 m panjang. Ia juga menghasilkan penambahan 

pesongan tembok landas sebanyak 25 mm (575 %), momen tembok landas sebanyak 5410 

kNm (95 %), ricih tembok landas 440 kN (41 %) dan tegasan rasuk 7.53 N/mm
2
 (378 %) 

pada IAB 150 m panjang. Tinda balas yang besar berlaku antara tanah-tembok landas tetapi 

tidak besar pada tanah-cerucuk. Panjang jambatan memberi kesan yang besar ke atas nilai 

momen tembok landas yang berinteraksi dengan kekukuhan tanah tambun yang berubah-

ubah, iaitu pertambahan sebanyak 5870 kNm (112 %) apabila panjang jambatan bertambah 

daripada 60 m kepada 150 m. Hasil daripada analisis telah diguna untuk menerbitkan rumus 

bagi membuat ramalan kelakunan jangka panjang nilai pesongan, momen dan daya ricih 

tembok landas IAB. Rumus empirik ini terbukti menjadi kaedah yang memadai dan 

menjimatkan masa bagi membuat ramalan pesongan dan perubahan daya dalaman IAB yang 

sama bentuk dan ukuran. 
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                                                      CHAPTER 1 

 

 

 

 

                                                 INTRODUCTION 

 

 

 

 

1.2 Background of the Study  

 

 

Bridges have been part of any country’s infrastructural development. They 

connect road and rail networks with overpass over obstacles like large bodies of 

water, valleys, or existing roads. Their desirable characteristics include structural 

stability and durability, simplicity of construction, minimal maintenance, smooth 

riding surface, water tightness and aesthetics. Single or multi-span bridges are 

usually constructed with expansion joints to accommodate expansion and 

contraction of superstructure due to volumetric strains caused by thermal, creep and 

shrinkage stresses. Strains from temperature load can lead to cracks development on 

concrete which can result in early deterioration of concrete components. Expansion 

joints are therefore provided in jointed bridges to accommodate thermal expansions 

and contractions; bearings are also provided to accommodate superstructure 

movement arising from live loads as shown in Figure 1.1.  
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     Figure 1.1     Scheme of a Jointed Bridge 

 

 

Expansion joints come with their maintenance problems. They are costly to 

purchase and install and they wear with time from vehicular traction and 

environmental effects (Figures 1.2, 1.3, 1.4). This can result in rough driving 

surface, ingress of rain water and de-icing salts, freezing and thawing of trapped 

water in joints, leaking of joints and corrosion of reinforced concrete and bearings 

(Figure 1.5). Expansion joints and bearings were realised to be the major source of 

bridge maintenance problems; extensive and expensive replacement works that 

usually consumes a greater portion of bridge maintenance budget are carried out to 

repair faulty joints and bearings (Wolde-Tinsae et al., 1988; Mistry, 2005; Sophia et 

al., 2006). Leaking joints account for 70 % of defects occurring at ends of girders, 

piers and abutment seats (Rodolf and Samer, 2005). Maintenance of expansion 

joints and bearings, in many instances, result in disruption of traffic movement and 

intra and inter city economic activities.   
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Figure 1.2     Expansion joint failures (BadwaterJournal.com, 2011) 

 

  

 

 

Figure 1.3   Dangerous expansion joint failures (Emseal Infrastructure & Civil 

Products, 2014) 
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        Figure 1.4    Dangerous expansion joint failures (Harry, 2006) 

 

 

 

 

 

 

 

 

 

 

 

 

Problems associated with expansion joints and bearings are eliminated with a 

different form of bridge construction that is gaining popularity today, known as 

Integral Abutment Bridge (IAB) or Joint-less Bridge. It is a single or continuous 

multi-span bridge that has no movable longitudinal deck joints at abutment and piers 

(Burke, 2009). In other words, it is a frame type structure having no movement 

joints and bearings (Figure. 1.6) where the superstructure and substructure are 

monolithically and rigidly connected. This makes the structure to act as a single unit 

with improved stiffness and rigidity. The superstructure movements from live load, 

temperature, and creep are transferred to the abutments. Dicleli (1999) also viewed 

IABs as single-span or multiple-span bridge that has a continuous deck and whose 

      Figure 1.5      Corrosion of bridge bearing (Michel  et al., 2010) 
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only mechanism of movement is abutment that is supported on flexible piles. This 

structural arrangement results in transferring the cyclic movement of the bridge 

superstructure to all substructure components. Consequently, soil-substructure 

interaction namely backfill-abutment and soil-pile foundation interaction affects the 

bridge movement and has been identified as the key factor influencing the behaviour 

of IABs (Faraji et al., 2001; Khodair, 2005). The stiffness of backfill provides 

resistance to longitudinal bridge movement due to thermal and breaking loads 

(British highway agency, 2003).  

 

 

 
    Figure 1.6    Scheme of an Integral Abutment Bridge 

 

 

Integral connection of bridge superstructure and abutment in IAB eliminates the 

need for joints, bearings, and the cost for their maintenance. This system simplifies 

construction procedure and enhances structural performance of bridges as a result of 

the rigidity of superstructure-abutment connection. IABs have therefore become 

popular in many countries due to their functional and economic advantages. In UK 

and Ireland in particular, bridges not exceeding 60 m span and 30
0
 skew are now 

required to be designed as IAB (O’brien and Keogh, 2005). Many transportation 

agencies in the US and Canada prefer the choice of IABs (Dicleli and Erhan, 2009).  
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1.3 Overview of Integral Abutment Bridge  

 

 
Bridges constructed before the 20

th
 century (1900) were Integral Abutment 

Bridges (IABs). As bridges span longer distances in 20th century, expansion joints 

or movement joints were introduced to accommodate thermal movement. Expansion 

joints are now gradually removed from bridge designs to reduce the high cost of 

maintenance thereby retuning back to earlier design pattern (Nicholson, 1998). 

Jointless bridges began to be developed on experimental basis, with short bridges 

ranging from 15 m to 30 m, during the 1930s in the United States, Australia and 

New Zealand. Due to the absence of rational design guides, bridge length was 

subsequently increased based empirically on successful performance of other 

bridges. This led different highway transport agencies developing their own design 

criteria and length limitations (Wolde-Tinsae et al., 1988). 

 

In traditional highway bridges, movement joints and bearings are usually 

provided to allow structural movement due to thermal variation, creep and shrinkage 

(Arockiasamy et al., 2004). In the 1960s when traffic loads increased in volume, 

weight and speed, there was increased demand for maintenance of joints and 

bearings (Wolde-Tinsae et al., 1988).  Maintenance and replacement works became 

more regular consuming a major share of bridge maintenance budget. Gradual 

deterioration of expansion joints form heavy impacts of bridge live loads, thermal 

expansions and contractions, creep, shrinkage contractions and foundation 

settlement leads to leakage of salt laden water form bridge surface to underneath of 

bridge deck, corroding bridge girder, bearings and reinforced concrete substructures. 

The problem is exacerbated in regions that experience heavy snow where de-icing 

chemicals like sodium chloride and calcium chloride are commonly used (Kier, 

2009). The problem is magnified when the drainage troughs are not functioning 

properly due to accumulation of dirt. In addition to structural damage, leaky joints 

give unpleasant aesthetic appearance requiring regular cleaning and repainting. 

Studies have linked faulty expansion joints and/or the attendant maintenance 

operations to road accidents and hazardous roadway condition (Rabih Haj-Najib, 

2002). Elastomeric glands also become filled with water and dirt leading to its 

eventual failure (Mistry, 2005). Different types of expansion joints are manufactured 
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to accommodate varied types of movements, some with improved performance over 

others, but all expansion joints eventually fail with time leading to expensive repair 

and replacement works.  

 

In view of the numerous problems associated with expansion joints, jointless 

bridges become an alternative to destructive effect of leaking and freezing deck 

joints (Burke, 1993).  In addition to reduction in high cost of maintenance, 

construction process is simplified and construction cost is reduced with the removal 

of joints and bearings (Griemann et al.,, 1986; Hans and Peter, 2006). Studies by 

Hans (2015) have shown that significant savings in bridge construction costs is 

achieved with the use of IABs (Figure 1.7). IABs are therefore rapidly gaining 

popularity; many states in US have resorted to the removal of joints and associated 

bearings in the proposed and existing bridges to save cost (Figure 1.8). Kunin and 

Alampalli (1999) discovered that nearly 10,000 IABs were built by 30 bridge 

agencies in United States between 1969 and 1999. The number of Integral and 

Jointless Bridges (IAJB) comprising both integral and semi-integral abutment 

bridges (that has abutments-girder joints) amounted to 13,000 in U.S. according to 

survey conducted by Rodolf and Samer in 2005 (Table 1.1). In the ten years 

preceding the survey, US had a 200 % surge in number of IABs. Over 1000 IABs 

were built in Finland during recent decades (Olli et al., 2005). Figure 1.9 shows 

increase in use of IABs in UK within a four year period. Bridge maintenance costs 

of jointed bridges have been a source of concern for many bridge agencies. 

Experience from US, Sweden and many countries have shown that IABs are a better 

alternative due lower financial demand for their construction and maintenance 

(Feldmann et al., 2006).  
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   Figure 1.7      Comparison of bridge construction costs (Hans, 2015) 

 

 

 
 Figure 1.8    Rise of IABs in the United States (Paraschos and Amde, 2011) 
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Table 1.1: Number of IAJB designed and built since 1995 and in-service in U.S. 

(Rodolf and Samer, 2005). 

 

 

 

 

Figure 1.9   Summary of bridge type by dates in United Kingdom (David, 2006) 

 

 

IABs have the following advantages over conventional bridges according to 

Arockiasamy et al., (2004); Hassiotis et al., (2006); Kunin and Alampalli (2000); 

Mistry (2005); Wasserman and Walker (1996); Ooi et al., (2010); Cheng (2012):  

 

i.  Lower construction and maintenance costs as a result of absence of 

construction joints and bearings.  

 

ii. Serviceability and structural stability of the bridge is enhanced by the 

integral connection of girder to abutment. IABs have added redundancy 

and additional strength to withstand seismic loads during earthquakes.  
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iii. Integral connection between beam and abutment provides additional 

resistance to beams against uplift forces at end spans due to live loads. 

 

iv. Smooth riding surface due to absence of joints reduces impact stress 

levels and improves riding quality. 

 

v. Due to integral connection, the entire bridge behaves like a portal frame 

and is able to spread lateral loads to adjacent soil support thereby 

enhancing stability and reducing uneven settlement.   

 

vi. Improved aesthetic feature of the bridge and enables rapid bridge 

construction. 

 

vii. Rapid construction and bridge widening is achieved due to simplified 

features of IABs like fewer construction joints, uniformly spaced piles 

and so on. 

      

In addition to the primary actions of live and dead loads, IABs being 

jointless bridges experience additional stress from temperature and time-dependent 

loadings such as creep, shrinkage, prestress cable relaxation and reaction from soil-

structure interaction. Expansion and contraction of superstructure due to thermal 

loading, creep and shrinkage can result in flexural stress built up on piles supporting 

long span IABs. If the stress is large enough, it can lead to formation of plastic 

hinges and limit the flexural resistance of the piles to additional superstructure 

elongation (Burke, 2009). This nonlinear reaction which is severe during thermal 

expansion of the bridge can lead to translational and rotational displacement of the 

abutment wall. Soil structure interaction also affects the behaviour of IABs in 

relation to soil stiffness and foundation type (Faraji et al., 2001, George et al., 2002). 

 

             The behaviour of IABs is not adequately comprehended by bridge engineers 

despite the numerous applications of IABs in bridge constructions. Thermal, creep 

and shrinkage effects and soil-structure interactions have been the major source of 

concern in the ambiguities associated with the performance of IABs. Design and 
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construction of IABs was therefore dependent on past experience as there is no 

design guide available in the existing codes of practice for IABs (Huang et al., 

2008). 

 

 

 

 

1.4 Problem Statement 

 

 

            In spite of IABs having functional and economic advantages over 

conventional bridges, there are many uncertainties regarding their behaviour that 

need to be fully understood.  Most of these uncertainties arise as a result of 

elimination of movement joints leading to lateral movements occurring at bridge 

abutments. Removal of movement joints result in uncertainties relating to 

complexities in soil-structure interaction and nonlinear material behaviour.  Bridge 

superstructures of IABs do experience cyclic expansion and contraction due to 

thermal load variation against passive resistance of backfill behind bridge abutment. 

In addition to this thermally induced superstructure and abutment displacement, 

nonlinear creep and shrinkage of bridge deck and girder create additional 

contraction of the superstructure and abutment against lateral resistance of piles 

supporting bridge abutment. Thermal movement, time-dependent response and soil 

structure-interaction makes the behaviour of IABs not fully understood (Huang et 

al., 2004; Ooi et al., 2010; Arockiasamy et al., 2004).  

 

The absence of a unified design code that clearly defines the procedure for 

design of IABs is a point of concern that necessitates the need for further study on 

the behaviour of IABs. The practice of design and construction of IABs is mainly 

empirical in nature rather than systematic investigation (Arockiasamy and 

Sivakumar, 2005). There is no clearly defined analysis method and standardised 

design procedures in the current design specifications and guides; the behaviour is 

therefore unknown and the design is cumbersome resulting in low utilisation of 

IABs despite the enormous benefits (Kim and Laman, 2010a; Thippeswamy et al., 

2002). There is therefore the need to further enrich our present limited 
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understanding of behaviour of IABs under effects of temperature, creep and 

shrinkage.  

 

  

 

 

1.5 Research Objectives  

 

 

            The behaviour of continuous prestressed concrete girder IABs under 

temperature and creep loads was studied in this research. This study has achieved 

the following objectives:  

 

i) Developing a three dimensional finite element model that effectively 

predicts the effect of creep, shrinkage and thermal loadings on the 

performance of long spanning IABs.  

ii) Quantifying the effect of creep and shrinkage on moment and shear 

capacities of prestress concrete girders of IAB. 

iii) Proposing empirical model equations that can serve as guide in 

predicting long term response of IABs to creep loading. The equations 

should contribute to safe design of long span IABs beyond the current 

practice of limiting the span of IABs to 60 m. 

 

 

 

 

1.5 Scope of Research 

 

 

            The research is conducted through numerical analyses using Finite Element 

Method. Modified Newton Raphson iteration method was used in nonlinear 

transient creep analyses of prestressed concrete slab on T beam IABs using CEB-

FIP (1990) creep model for 75 years. The post tensioned IABs have no skew or 

curvature. Four IABs lengths were 60 m, 90 m, 120 m and 150 m with each bridge 

having pier to pier spans of 20 m, 30 m, 40 m and 50 m respectively. Linear 

Thermal analyses were conducted to study the response of the bridge to thermal 

loading in tropical climate. An average temperature range of 21
0
C to 36

0
C was 
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chosen within the range of Malaysian climate (Malaysian Metrological Department, 

2015) which was adopted as case study of the research. Soil behind bridge piles 

were varied form dense sand, medium dense sand, loose sand, stiff clay, medium 

stiff clay to soft clay to study the response of backfill and piles on bridge movement 

due to thermal and time-dependent loadings. Soil was modelled using linear springs 

and the spring stiffness was obtained with the use of force displacement curves (P-y 

curves).  

 

 

 

 

1.6 Research Methodology 

 

 

The Reseach was conducted through numerical analyses using finite element 

method and the analyses were carried out in finite element software LUSAS.   

Figure 1.10 provides flowchart of the step by step procedure followed in carrying 

out the reseach. Literature was reviewed and presented in Chapter two to establish 

research gap in previous studies on thermal and time-dependent behaviour 

performance of integral abutment bridge due to temperature, creep and shrinkage 

loadings. The research gap, as presented in Section 2.9 formed the research problem 

to be solved and the overall objective of the research. Structural design of IAB 

carried out using BS8110 (1997) code, was based on an existing IAB in Johor Bahru 

Malaysia. Three dimensional finite element models of IABs were developed to 

represent structural components of the bridge. Prestressing force was modelling 

using equivalent load method and the girder and the prestresssing tendon were 

modelled as single beam element. Soil-structure interaction for both backfill-

abutment and soil-pile interaction were modelled using Clough and Duncan and p-y 

curve methods respectively. Nonlinear beam element with CEB-FIP 1990 code 

creep and shrinkage material properties was used to model prestressed concrete 

girders for the 75 years creep analyses. Linear beam elements were used to model 

girders for thermal loading. Models were tested by subjecting them to thermal and 

creep loadings in addition to live, dead and prestress loadings to obtain preliminary 

results which were validated using analytical procedure. Parametric analyses were 

carried out and the parameters considered are thermal load, creep and shrinkage, 
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bridge length and stiffness of substructure soil.Loss in prestress loss, changes in 

creep coefficient, reduction in moment and shear capacities of prestress concrete 

girders of IABs were computed at the end of the analyses. Results of the analyses 

were used to develop empirical equations that can be used in long-term response 

prediction of IABs to creep loading. The equations were tested and validated to 

establish their accuracy and a conclusion was made on the usefulness of the 

equations in early predictive assessment of long-term performance of IABs to creep 

loading. 
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       Figure 1.10      Flowchart of research methodology 

 

 

         Literature review and research gap identification 

            Problem statement and definition of research objectives  

                      IAB design and development of 3D FE model 

 75 years FE simulation under creep load and analyses of parametric study results 

                       Testing and validation of Empirical Equations 

                                  Testing and validation of FE results 

Structure 

Element of 

IAB 

Prestressing 

force and 

Bridge loads 

Soil-

structure 

interaction 

Creep and 

thermal 

loadings 

                                                   Conclusion 

FE simulation under thermal load and analyses of parametric study results 

                Development of Empirical Equations from analyses results 

 Calculation of prestress loss, moment and shear capacity of IAB girders for 75 

years of creep and shrinkage loading 
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1.7  Layout of Thesis 

 

 

Chapter one presents the background of the research and explains the concept of 

IABs and their attributes. It also discussed limitations of IABS which formed the 

basis of the research problems, objectives, methodology and scope as discussed in 

the chapter.  

 

Chapter two is a review on relevant literature to provide background knowledge of 

the research, prior research work conducted and what has not been adequtely 

covered  by previous study which formed the basis of the present study. The topics 

covered include Concept and types of IAB, global approaches in its utilisation, 

secondary loading effects on the bridge, temperature and creep models and soil-

structure interaction modelling. 

  

Chapter three provides discussion on method used in finite element modelling of 

post-tensioned cable profile for continuous bridge girders and other structural 

elements of the bridge.  Procedure followed in modelling soil-structure interaction 

for abutment-backfill interaction and pile-soil interactions under varying soil types 

were fully discussed. Results from finite element modelling were validated in this 

chapter.  

 

Chapter four provided parametric study results for both creep and thermal loadings 

of IABs. The results of the analysis of 60 m 90 m, 120 m and 150 m, IABs are 

presented and explained. Empirical equations were developed, tested and validated. 

 

Chapter five provides concluding aspects of the research. It discusses the research 

findings and achievements and provided general conclusion based on the research 

findings. It also provides recommendations for further studies on IABs.  
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