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ABSTRACT 

 

 

Breast cancer is among the major killer diseases for women. Currently 

chemotherapy is the common method used for such cancer treatment. The 

drawback with this technique is that it kills both normal and cancerous cells. As a 

result not many cancer patients can survive after the treatment. Thus, alternative 

techniques need to be considered.  The aim of this project is to introduce laser 

radiation instead of x-ray for cancer treatment. In order to further enhance the 

hyperthermia effect, gold nanoparticles (AuNP) are injected to couple with 

cancerous cell. In this work, laser irradiation with three different wavelengths were 

used for the treatment namely, 1064 nm, and 532 nm produced by Q-switched 

Nd:YAG laser and 248 nm produced by Krypton Fluoride Excimer laser.  AuNPs 

were produced using pulse laser ablation in liquid technique. The AuNP diameter 

was varied in the range of 8-18 nm and concentration was prepared by serial 

dilution within the range of 0.14-4.50 µg/ml. Three different human breast cancer 

cell lines (MDA-MB-231, MDA-MB-468, and MDA-kb2) and a Chinese Hamster 

Ovary (CHO) non-cancerous cell were used to study the cell survivability towards 

hyperthermia effect with and without the presence of AuNPs. The cell survivability 

was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assay and analyzed using GloMax Multi Microplate Multimode 

Reader. The results show that survivability rate of MDA-MB-231 cell was 84 

percent after treated with 1064 nm laser compared to 74 percent after treated with 

532 nm laser. UV radiation from Excimer laser is found to increase the cell 

survivability rate up to 157 percent. The survivability rate of CHO cell treated with 

532 nm laser dropped by 9 percent compared to those of MDA-MB-231, MDA-

MB-468 and MDA-kb2 cells which decreased by more than 20 percent after the 

treatment. The total number of survival cell decreases with the presence of AuNPs. 

The results indicate that higher concentration and smaller size of AuNPs minimized 

the MDA-MB-231 breast cancer cell survivability. Therefore, hyperthermia effect 

can be enhanced by using laser irradiation sensitized with AuNP and has great 

potential for treating cancer.   
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ABSTRAK 

 

 

Kanser payudara adalah antara penyakit pembunuh utama bagi wanita. Pada 

masa ini kemoterapi ialah kaedah yang biasa digunakan untuk rawatan kanser 

tersebut. Kelemahan teknik ini adalah ia membunuh kedua-dua sel normal dan 

kanser. Akibatnya tidak ramai pesakit kanser boleh bermandiri selepas rawatan. 

Oleh itu, teknik alternatif perlu dipertimbangkan. Tujuan projek ini adalah untuk 

memperkenalkan sinaran laser sebagai gantian sinaran-x untuk rawatan kanser. 

Bagi meningkatkan lagi kesan hipertermia, nanopartikel emas (AuNP) disuntik 

untuk bergabung dengan sel kanser. Dalam projek ini, sinaran laser dengan tiga 

panjang gelombang yang berbeza telah digunakan untuk rawatan iaitu 1064 nm dan 

532 nm yang dihasilkan oleh laser Nd: YAG yang bersuiz-Q dan 248 nm yang 

dihasilkan oleh laser Eksimer Kripton Fluorida. AuNP telah dihasilkan 

menggunakan teknik ablasi laser denyut dalam cecair. AuNP telah disediakan 

dalam pelbagai diameter di dalam lingkungan 8-18 nm dan kepekatannya 

disediakan dengan menggunakan teknik pencairan bersiri dalam julat 0.14-4.50 

μg/ml. Tiga turunan sel kanser payudara manusia yang berbeza (MDA-MB-231, 

MDA-MB-468, dan MDA-kb2) dan satu sel bukan kanser, Chinese Hamster Ovari 

(CHO) telah digunakan untuk mengkaji kadar kemandirian sel terhadap kesan 

hipertermia dengan dan tanpa kehadiran AuNP. Kadar kemandirian sel telah 

ditentukan dengan menggunakan cerakin 3- (4,5-dimethylthiazol-2-yl) -2,5-

diphenyltetrazolium bromida (MTT) dan dianalisis menggunakan GloMax Multi 

Microplate Multimode Reader. Keputusan menunjukkan bahawa kadar 

kemandirian sel MDA-MB-231 ialah 84 peratus selepas dirawat dengan sinaran 

laser 1064 nm berbanding 74 peratus selepas dirawat dengan sinaran laser 532 nm. 

Sinaran UV daripada laser Eksimer didapati meningkatkan kadar kemandirian sel 

sehingga 157 peratus. Kadar kemandirian sel CHO selepas dirawat dengan sinaran 

laser 532 nm menurun sebanyak 9 peratus berbanding dengan kadar kemandirian 

sel MDA-MB-231, MDA-MB-468 dan MDA-kb2 yang menurun lebih daripada 20 

peratus selepas rawatan. Jumlah sel yang hidup berkurangan dengan kehadiran 

AuNP. Hasil kajian menunjukkan bahawa AuNP dengan kepekatan yang lebih 

tinggi dan saiz yang lebih kecil boleh mengurangkan kadar kemandirian sel MDA-

MB-231. Oleh itu, kesan hipertermia boleh dipertingkatkan dengan menggunakan 

sinaran laser dengan AuNP terpeka dan teknik ini mempunyai potensi besar dalam 

rawatan kanser. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Overview 

 

The application of laser induced thermal to eliminate, kill or restrain cancer 

cells is widely acknowledged approach in enhancing and improving cancer therapy 

(Wust et al. 2002). This non-invasive technique in eliminating cancer cells is 

generally referred as thermotherapy or hyperthermia. As the temperature raised, it 

can cause the denature of intracellular protein and the disruption of membrane, 

leading to death of cell (Liu et al. 1997). The performance of thermotherapy is 

influenced by power density of the heating source, as well as the energy absorption 

and thermal conductance of the biological environment (Habash et al. 2007).  

 

Thermotherapy causes far fewer restrictive side effects than conventional 

chemotherapy and radiotherapy. It also has greater potential in evading any 

development of intracellular resistance mechanism. It is beneficial in dealing with 

some types of malignant tumor cells (van der Zee 2002). Thermotherapy is still 

under investigation.  
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The main challenge is to achieve highly localized thermal effect on tumor 

cells with defined lesion boundaries within a short period of time (Bayazitoglu et al. 

2013). Recently, thermotherapy based on near infrared (NIR) irradiation-activated 

nanomaterials has received significant attention due to their efficacy in killing cancer 

cells. This is because of the unique optical and thermal properties of nanomaterials 

that gained significant interest (Terentyuk et al. 2013) . This is a minimal invasive 

and localized treatment for cancer which lead towards the development of gold 

nanomaterials as novel light absorbing agents (Jain et al. 2012). The application of 

nanoparticles as exogenous agents in laser therapy or photothermal therapy is rapidly 

expand to include nanostructures of various geometries and composition (Zhang 

2010). The particles will enhance the magnitude of light absorption resulting in more 

precise delivery of energy at low laser powers and prevent healthy tissue nearby 

from damage. However, the approach is by no means perfect, and the investigation 

into exploring superior materials and methodology is still crucial (Nguyen, 2012).  

 

Gold nanoparticles as photothermal therapy agents absorb light and cause 

electron transition from ground state to excited state. This transition causes the 

increases of kinetic energy that lead to overheat of the surrounding from the light 

absorption species. The production of heat can lead to destruction of cells called 

hyperthermia effect (Huang et al. 2008). Recently, many researchers have done 

investigations about the application of gold nanoparticles in photothermal therapy on 

cancer treatment. Hainfeld et al. 2010 had studied by using x-rays source (ionization 

radiation) and enhanced the radiation therapy by gold nanoparticles to treat the 

mouse head and neck squamous cell carcinoma model, SCCVII. The harmful effects 

from X-rays and its related scan usually become significant after a person had 

substantial number of high radiation-dose treatment. 

 

Gold nanoparticles (AuNPs), echogenic nanoparticles and iron oxide 

nanoparticles have been proposed as injectable agents in order to improve the 

localized delivery of heat in thermal therapies. In particular, AuNPs shown to be an 

ideal agent in enhancing laser-based thermal therapies mostly because of their 
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tunable optical properties and surface plasmon resonance effect (Paulo et al. 2013; 

Hirsch et al. 2006). Van der Zee (2002), had used two oral squamous carcinoma cell 

lines (HSC 313 and HOC 3 Clone 8) and one benign epithelial cell line (HaCaT) 

which incubated with anti-epithelial growth factor receptor (EGFR) antibody 

conjugated gold nanoparticles. Then, it exposes with continuous visible argon ion 

laser at 514 nm. They found that the malignant cells required less than half of the 

laser energy to kill than the benign cells after incubation with anti-EGFR antibody 

conjugated Au nanoparticles. However, it is reported that there are harmful effects of 

EGFR inhibitors that found in more than 90% of patients, which is a papulopustular 

rash that spreads across the face and chest. The presence of rash is correlated to 

antitumor effect of EGFR. In about 10% to 15% of affected patients were critical and 

required treatments (Bayazitoglu et al. 2013). 

 

In this work, the effects of the gold nanoparticles (AuNPs) in photothermal 

therapy was studied by using Kr2 Excimer laser of 248 nm and Q-switched Nd:YAG 

laser of 1064, and 532 nm. The survivability of human breast cells MDA-MB-231, 

MDA-MB-468, and MDA-Kb2, were investigated and the results were compared 

with normal cell from Chinese Hamster Ovary (CHO). 

 

 

1.2 Problem Statement  

 

Breast cancer is the most common cancer in the world with one out of eight 

women having cancer in Malaysia and 80% of the them are over forty years old, but 

still younger women and men, also can get breast cancer. Latest, in Feb 2014 in 

Kelantan, six years old girl was detected with breast cancer (Pride Foundation). From 

the researches, eight out of ten will not survive due to late detection cancer.  
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Currently breast cancer treatment is through chemotherapy which involves 

chemical and x-ray radiation. The problem with such chemical treatment is 

depending on the stages and immunity of the body.  Plus the x-ray is conventional 

radiation which penetrates into the body and killing not only the cancer cells but also 

the normal ones. As a result such treatment prone to increase the number of death 

instead of saving life, therefore alternative route need to be considered.  Nowadays   

many researches are conducted to find the solution. To throw some light on this 

matter, a fundamental study is carried out to look at the potential of laser to replace 

the x-ray. Furthermore to enhance the absorption of laser radiation on the cancer cell, 

inert metal such as gold nanoparticles are employed. Through the best of our 

knowledge during this study, this is the first intension of using laser in cancer cell 

treatment. Hopefully the effort to introduce laser in the cancer treatment will open 

the window for optical technology to be involved in the medical industry.  

  

 

1.3 Research Objectives 

 

The main objective of this project is to determine the effects of laser heating 

on cancer cell associated with gold nanoparticles. In attempt to achieve this goal 

various studies will be carried out including: 

i. To characterize the fabricated gold nanoparticles (AuNPs) by pulse laser 

ablation in liquid (PLAL) process 

ii. To determine the effects of irradiated cancer cell to laser with various 

parameters including different wavelength, energy density, and exposed 

duration. 

iii. To determine  the effects of irradiated cancer cells associates with gold 

AuNPs at different concentration and size with laser 
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1.4 Research Scope 

 

In this study, breast cancer cells MDA-MB-231, MDA-MB-468, MDA-Kb2 

and normal cell from Chinese human ovary, CHO. All cells are cultured in Faculty of 

Bioscience and Medical Engineering, UTM and used as a sample to interact with 

non-ionized radiation. Gold nanoparticle (AuNPs) was fabricated by pulse laser 

ablation in liquid (PLAL) process and will be sterilized by several treatment 

techniques including ethanol, autoclaving, and ultraviolet exposure. The fabricated 

AuNPs will be characterized using Energy-filtered transmission electron microscopy 

(EFTEM) and the interested concentration and size will be verified. Kr2 Excimer, 

and Nd:YAG laser with tuneable wavelength including fundamental, and second 

harmonic generation were utilized as non-ionization sources. Energy density, and 

exposed duration for each of the source radiation will verified. The cell survivability 

rates after exposure were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) cell viability assay to observe the effect of 

cancer cell before and after radiation. Cell changes in morphology will be observed 

by inverted microscope.   

 

 

 

 

1.5 Research Significance 

 

The Effect of Laser Irradiation to Nanoparticles on Cancer Cells study will 

guide to the potential advantages such as  

i. Localized cancer treatment without harmful effects on surrounding healthy 

tissues  

ii. Reduce or eliminate undesired side effects in comparison to chemotherapy 

iii. Potentially fast and economy treatment that involve just a few laser shots 

iv. Patients will have less pain, bleeding, swelling, and scarring as laser are more 

precise and less likely to get infections compared to traditional surgeries  
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1.6 Thesis Outline  

 

Chapter 1 describes the overview of the thesis, problem statement, list of 

objectives and the scope of the research. The complete theory of hyperthermia effect 

is explained in Chapter 2. Several major problems in laser on cancer treatment 

process are described briefly. It is followed by the literature review of different 

methods of implementation and techniques used as compared to this research.  

 

 The subculture techniques, AuNPs fabrication process, AuNPs sterilization 

techniques, laser experimental setups, and MTT cell survivability assay are covered 

in Chapter 3. The media, reagent, and material used in the process are specified. 

Sample preparation for several characterization techniques used is also included. 

  

 All the results are presented and discussed in Chapter 4. The initial work 

comprised of laser system calibration, cell optimization, and cell morphology 

observation. This is followed by the explanation of laser heating effect on human 

breast cancer cells, and normal cells combined with different concentration and size 

of AuNPs. Finally the cell changes in morphology is discussed.  Chapter 5 is the 

conclusion and the summary of the results achieved from the experimental works 

together with some recommendations for future study.   
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