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ABSTRACT

The disc brake squeal is a very annoying sound and a source of considerable 

discomfort that leads to customer dissatisfaction. There are various possible 

mechanisms that could trigger brake squeal generation either from a structural 

dynamics or tribological point of view. Unlike drum brake design, the disc brake 

assembly, particularly the disc and the pads are exposed to any unwanted road 

particle, wear debris and water spray. Their presence into the disc and pad interfaces 

may create dynamic and physics phenomena induced by friction surface changes 

which lead to the brake noise and vibration issues. Thus, the objective of this 

research is to investigate a characterization of the worn surface of squealing brake 

friction material with the effect of different sizes of foreign particles using laboratory 

scale brake test rig. The correlation between squeal generation and tribological 

characteristics of the pad including surface topography, surface roughness, wear, 

element composition and friction coefficient are established by using squeal index 

and qualitative analysis. The foreign particles (silica sand and road sand particles) 

with the sizes of 100-150, 200-300 and 300-400 pm are introduced into the brake 

disc and pad interfaces. The sensitivity of sand particles in producing squeal noise is 

also examined at different brake pressures, disc temperatures and speeds. The 

experimental results show that both sand particles have a significant effect on the 

brake squeal occurrences. The tribological properties reveal that squeal is more 

affected by smaller sand particle size. The micrometric particles act as punctual 

contact surfaces generating more wear debris which are accumulated and compacted 

inducing a reduction of the friction level. However, the biggest particle size damages 

the pad surface, reduces the real contact surface and decreases the friction 

coefficient, yet generates more wear lost. It was found that foreign particles play an 

important role in reducing the squeal level on the pad surface as well as increasing 

the value of the squeal index number.



ABSTRAK

Bunyi kiuk pada cakera brek sering menimbulkan ketidakselesaan terhadap 
penumpang dan pemandu kereta yang membawa ketidakpuasan kepada pelanggan. 
Terdapat pelbagai kemungkinan terhasilnya bunyi kiuk pada cakera brek samada 
berpunca dari struktur dinamik ataupun dari kesan tribologi. Tidak seperti rekabentuk 
brek gelendung, brek cakera terutamanya cakera dan pelapik adalah terdedah kepada 
partikel asing yang tidak diingini seperti pasir jalan, habuk haus dan percikan air. 
Kehadiran mereka permukaan cakera brek boleh mengakibatkan fenomena dinamik 
dan fizik yang disebabkan oleh perubahan permukaan geseran yang membawa 
kepada bunyi dan getaran. Maka, objektif penyelidikan ini adalah untuk menyelidiki 
ciri-ciri kehausan permukaan bagi bahan geseran yang berkiuk akibat saiz partikel 
asing yang berbeza menggunakan pelantar ujian brek berskala makmal. Hubungan 
antara penghasilan kiuk dan ciri tribologi pada pelapik termasuk permukaan 
topografi, kekasaran permukaan, kehausan, komposisi elemen dan pekali geseran 
adalah dibina menggunakan index kiuk dan analisis kualitatif. Partikel asing (partikel 
pasir silika dan pasir jalan) bersaiz 100-150, 200-300 dan 300-400 pm dimasukkan 
pada permukaan cakera dan pelapik. Kepekaan partikel asing terhadap penghasilan 
kiuk juga diperiksa pada tekanan hidraulik brek, suhu cakera dan halaju cakera yang 
berbeza. Keputusan ujikaji menunjukkan bahawa pasir silika dan pasir jalan memberi 
kesan besar terhadap penghasilan kiuk brek. Sifat tribologi pelapik brek 
mendedahkan bahawa kiuk lebih cenderung terhasil pada saiz partikel asing yang 
lebih kecil. Partikel bersaiz mikrometrik bertindak sebagai permukaan sentuh tepat 
menghasilkan lebih banyak debu haus yang terkumpul dan padat menyebabkan 
penurunan tahap geseran. Walau bagaimanapun, partikel asing bersaiz besar akan 
merosakkan permukaan pelapik, mengurangkan permukaan sentuhan dan 
menurunkan pekali geseran tetapi menghasilkan lebih banyak kehausan. Penemuan 
menunjukkan partikel asing memainkan peranan penting di dalam mengurangkan 
tahap kiuk pada permukaan pelapik dan meningkatkan nilai nombor indek kiuk.
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CHAPTER 1

PRODUCTION

1.1 Background

An automotive braking system is a group of mechanical, electronic and 

hydraulically activated components which use friction materials as a device for 

slowing or stopping the motion of a wheel while it runs at a certain speed. Brake 

friction materials are multi-component composites composed of several basic 

functional parts, abrasives, lubricants, space fillers, fiber or pulp reinforcements, and 

polymer binders. The requirements of the braking system of the vehicle are becoming 

more demanding because of strict regulations on safety and performance. 

Development of brake friction meets many questions till today, such as raw materials 

selections, friction composite formulations, thermal effects, tribochemistry during the 

braking, friction layer formation and its role, noise reduction, and environmental 

friendly components. With the intensity of developing more green technology by 

automotive manufacturers the challenge insists researchers to develop new product 

formulations that respond more effectively to the end users. The minimal knowledge 

about the morphology, chemical composition, and micro-sized particles inside and 

outside brake components is alarming due to the fact that brake pad manufacturers 

currently do not have to deal with the development of eco-friendly formulations. Since 

brake pad and disc are a crucial component from a safety point of view, materials used 

in brake systems should have stable and reliable frictional and wear properties under 

varying road conditions: slippery, wet and dry roads, rough or smooth road, wet and 

dry brakes, new or worn linings, load and pressure, speed and velocity, high durability, 

temperature, environment, dust and grit particle effect.
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Brake Squeal is one of the major problems in the development of new 

automotive disc brake system and large efforts have been made to reduce it. This is 

because the nature of brake squeal is mysterious, unpredicted, and often non- 

repeatable due to its high dependency on a large number of interacting parameters, 

such as contact conditions, material properties and ever-changing operating conditions 

(Oberst and Lai, 2011). Brake squeal can be disturbing and annoying to the driver, 

passengers and people nearby. For car users, this sound quality problem has the highest 

complaint frequency, effect quality, satisfaction ratings and warranty costs. As a result, 

car manufacturers and brake researchers start to explore the noise problem not only in 

the mechanism, theory, and tribological but also in the effect of external source of the 

surrounding road surface.

Numerous different approaches to the problem solution were considered in the 

past and many different explanations of squeal origin were proposed (Oberst and Lai, 

2011), (Chen, 2009) and (Kinkaid et al., 2003). This is due to brake squeal itself is a 

challenging subject to tackle not only due to its strong dependence on various 

parameters, but also the mechanical interactions in the brake system are very 

complicated. Furthermore, it is well accepted in the brake research community that 

squealing brakes are due to one or more triggered mechanism such as stick-slip, sprag- 

slip, negative damping, mode coupling and hammering (Kinkaid et al., 2003), 

(Papinniemi et al., 2002) and (Chen et al., 2005). However, this theoretical perspective 

does not demonstrate the whole brake area in which there is a very limited knowledge 

of what really happens in the material behavior during brake squeal generation. Earlier 

studies have shown that the friction film of brake discs has a strong influence on the 

generation of squeal (Rhee et al., 1991). Sound in the squealing brakes is excited by 

the contact between brake pad and disc. Ericsson et al. (1999) on his wear and contact 

studies found that direct observation of surface between brake pad specimen and a disc 

has contributed a positive result into dynamics and mechanical behavior of surface 

condition.

Researchers in recent years begin to explore tribological behavior of 

automotive brake squeal phenomena which covers the morphology, chemical 

composition, abrasive particle, airborne particle, friction and wear, phase composition,
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third body, wear debris, friction film distribution, health issue and environmental 

pollution (Hetzlerand and Willner, 2012) and (Yoon et al., 2012). However, not much 

effort has been made to study the tribological behavior on the influence of small 

particles with brake squeal phenomenon (Gietl et al., 2010). Despite many 

investigations over the years to clarify the mechanism causing automotive brake squeal 

have been done, the exact phenomenon has not yet been fully understood.

In addition, the environmental concerns related to grit particles have only 

brought more attention in recent years. Road traffic represents a significant source of 

grit particle released into the environment. Road particle and wear of automotive 

friction composites is known to be associated with the generation of noticeable 

amounts of road particles Figure 1.0. When brakes are applied, friction between pads 

and disc always leads to the release of wear particles. Depending on conditions, 

released wear debris can be partially attracted to the vehicle brake system. The released 

wear particles can be categorized as airborne particles (released into the air and 

typically deposited away from the roadside) and non-airbome particles (deposited on 

vehicle/ brake hardware or falling on the road surfaces).

(a) (b)

Figure 1.0: The particle and contaminant from the. road surface (a) Road Grit 

Particle and (b) Particle at contact pad and disc surface

Furthermore, there is little information on the contribution of external particles 

on brake squeal occurrences available in the open literature. The influence of pad 

surface characteristics on the generation of brake squeal has recently gained a new
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interest in many brake researchers as a new insight of understanding squeal 

occurrence.

1.2 Problem Statement

Today, most car manufacturers have managed to slightly reduce brake 

squeals through changes in design, careful selection of friction materials and 

mounting of vibration damping shims on the back plate of the brake pads. However, 

the mechanism causing brake squeals has not yet been fully understood. Earlier 

studies have shown that the reaction on the sliding surface has a strong influence 

on the generation of squeal (Eriksson, 2000) and (Bergman et al., 1999). Rhee et 

al. (1991) among the early researchers who study the effect of the tribological 

behavior on automotive brakes believes that the surface changes contribute to a 

major factor for controlling noise, friction and wear. This is true, where Eriksson et 

al. (1999) related the squeal phenomenon with that the friction behavior on brake 

surface is closely related to the formation of plateaus which is due to wear resistance 

of components. His finding is confirmed by Sheriff (2004) who identified an 

evidence to prove squeals are generated or eliminated at the surface topography of 

the pad and disc. Rush and Okuma (2007) who studied the effect of surface 

topography of dry sliding surface found that squeal noise tends to be generated on 

both smooth and rough surfaces.

Despite the fact that brake squeal is caused by different mechanisms, many 

researchers have not yet reached a comprehensive understanding of the surface 

behavior during braking operation. Furthermore, research in foreign particles on 

brake squeal is rather limited since much interest in the past researches were related to 

the effect of abrasive particle, composition, wear particles, airborne particles, wear 

debris and friction film, on surface characteristics and vibration (Wahlstrom et al., 

2010), (Kim et al., 2011) and (Hinrichs et al., 2011) and only a limited number of 

research articles considered this aspect (Abdul Hamid et al., 2010 and 2011). Eriksson 

et al. (2000) and later Bergman et al. (1999) among the early researcher who related 

the noise effect of brakes contact condition with the wear particles forming during the
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sliding process between pad and disc. While some researchers had found that the third 

body formation of trapped material of the pad and disc during the braking process 

which influence the braking process and brake performance (Osterle et al., 2009). 

Wahlstrom et al. (2010) and Sanders et al. (2003) has found the effect of airborne wear 

particle which comes from various sources and occurs in size intervals contribute to 

the wear mechanism of the vehicle brake. Abdul Hamid (2010) studied the effect of 

different particle grit size on the accumulation and friction characteristic of brake 

system and found that the particle size affects the friction performance at certain 

sliding speed and pressure.

The design of brake system which is exposed to the environment condition 

such wet, humidity and foreign particles (grid particle, hard particle, airborne particle) 

with a different size and shapes will affect the tribological characteristics of the brake 

friction. Furthermore, the location of the disc brake makes it possible for the presence 

of dust, airborne particles and other environmental particles to enter the brake gap 

between the pad and disc and it is very difficult to recognize these particles in the 

surrounding environment. As described in Wahlstrom et al. (2010) external particles 

also known as debris particles could possibly come from various sources and present 

in different shapes and sizes. These elements may contribute to a serious tribological 

problem of braking performance, including squeal generation on the brake interface. 

Another factor that influences the tribological characteristic is the material transfer 

between the two brake components. During braking, the interaction between the pad 

and disc interface which rubs against each other will generate wear particles or wear 

debris. Researchers have found that some of these particles are compacted and trapped 

on the brake surface, becoming second body and third body, and others become 

airborne particles spread to the surrounding. When the contact of two surfaces occurs, 

the adhesion of the roughness and arbitrary shapes, sizes and heights of surface 

interaction generates friction force. This process will destroy the interface conditions. 

Some of the debris particles leave the particles and others will remain forming a new 

contact patch on the pad and disc interface. The remaining particles (second body and 

third body) will mix with the external particle which entered into the brake gap 

agglomerate and form a new surface layer called contact plateaus and friction film 

several millimeters thick (Kukutschova et al., 2011), (Osterle and Urban, 2006) and
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(Ertan and Yavuz, 2010). As a result, the frictional forces and wear behavior of the 

brake surface change continuously during braking (Sheriff 2004), (Hetzler and 

Willner, 2012) and (Cho et al., 2003). Coupled with the initial composition and the 

friction layer evolution, these environmental sources act in synergy and affect the 

brake performance, particularly squeal noise occurrences. Although numerous 

researches have related the effects of foreign particles on brake performance, there 

exists only a limited number of research articles considered with this issue. There is 

also no recommended standard procedure suitable on the relevant research of 

tribological behavior of brake system such as the Society of Automotive Engineers 

Procedures J 886 (a laboratory-scale, coupon test for determining lining friction), J 

2430 (a multi-stage dynamometer test for disc brakes), and SAE J 1802 (a test 

procedure for drum brake linings), (Blau and McLaughlin, 2003).Yet a complete 

understanding that relate of these particles with the effect on squeal mechanism needs 

to be found. Thus, research towards it must cover a wide range of area in order to 

gather full information on the whole aspect of brake behavior. The effect of external 

particles on braking operation is the most interesting study since not yet fully discover 

by many researchers in recent years.

1.3 Objectives of Research

The objective of this research aims to:

(i) To investigate the effects of different size of road grit particles on 

squeal generation using laboratory scale brake test rig. Comparison of 

squeal generation is also made between pad with and without grit 

particles.

(ii) To identify correlation between squeal generation and tribological 

characteristics of the pad based on the surface topography, wear and 

friction coefficient. Squeal index proposed by Sheriff (2004) and
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qualitative analysis of elemental composition is performed in order to 

verity the correlation.

1.4 Scope of Study

In order to achieve the objectives of the research, the following scopes have been 

determined:

(i) The research is limited to available non organic, asbestos (NAO) brake 

pads on passenger car.

(ii) The experiment is performed using drag-type brake squeal test rig 

available at UTM with the power output of 11 kW and hydraulic 

pressure 20 bars matching with the maximum brake line pressure for 

squeal occurrence.

(iii) The squeal test procedure is based on surface vehicle recommended 

practice SAE J2521 test procedure. Since the limited output of power 

and pressure of the test rig the SAE J2521 test practice is operated 

between 0 to 15 bars of pressure with initial speed between 3 to 10 km/h 

and maximum temperature level 100°C as recommended from an SAE 

test procedure.

(iv) Only two (2) types of grit particles are involved in the study, namely 

road grit particles and silica sand particles with a size range between 

100 to 150 pm, 200 -  300 pm and 300 to 400 pm. These particles were 

selected due to the common presence of Malaysian road surface. These 

particles are investigated through laboratory test scanning 

electromagnetic microscopic (SEM), field emission scanning 

electromagnetic microscope (FESEM) with energy dispersive X-ray 

analysis (EDX), optical microscope, surface roughness and hardness 

test.

(v) Qualitative study is performed to gain an understanding of the data and 

find the significant correlation of the external grit particle effect of pad 

surface topography on squeal propensity.
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1.5 Significance of Study

The study of surface characterization with the effect of external particle on 

squealing brake has not been considered by previous researchers. It is, therefore, 

necessary for current research work to explore and investigate such study in an attempt 

to identify the root cause of brake squeal in relation to the surface characterization. 

Having known the main source that excites squeal in the brake system, it is expected 

that an appropriate brake squeal reduction/elimination solution can be proposed and 

implemented. Hence, the brake system can become quieter than before.

1.6 Thesis Organization

The thesis consists of five chapters which summarized as follows:

Chapter Two (2) consists of a literature review of the studies of the function of 

disc brake system, brake material formulation, automotive disc brake noise and the 

study of brake squeal, The review also discusses on tribological study of brake squeal 

which consists of surface topography, brake surface contact condition, friction layer, 

third body and wear debris, wear mechanism, surface roughness, particle 

characterization and embedment and effect of water and humidity. The review also 

discusses on a qualitative approach since the studies involved both application 

(quantitative and qualitative) methods. At the end of the literature, the discussion of 

vibration studies of brake squeal is also discussed to find the correlation of squeal 

occurrence with tribological approach.

Chapter Three (3) focuses on the experimental details such as the development 

of the test rig, experimental apparatus, setting-up and calibration, sample preparations 

and test procedures. This chapter also explains the external grit particles used in the 

experiments, the methodology used during the experiments and the analysis involved 

in analyzing the test result. The overall structure of the analyses conducted is described 

in this chapter.
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Chapter Four (4) presents all the experimental results obtained which consist 

of the summary of squeal test results, the absolute percentage noise occurrence on 

sound pressure level, the absolute percentage noise occurrence of different pressure, 

the absolute percentage of noise occurrence on speed, the analysis of sound pressure 

level against frequency, the coefficient of friction against sound pressure level, relative 

humidity against sound pressure level in the form of graphs.

Chapter Five (5) contains discussion on tribological aspects divided into four 

(4) sections. The first section discusses roughness measurement and the analysis 

consist of surface roughness average data for brake pad and disc assembly, squeal 

index analysis, the determination of squeal factor with the generation of squeal noise, 

the relation between surface profile and the height distribution, statistical study 

on roughness parameter and its relation to squeal. This is followed by second (2) 

section discussion on analysis of energy dispersive X-Ray (EDX) composition result, 

the weight percentage (%) analysis of elemental composition of new and with particle 

effect. The qualitative analysis through an index number together with the analysis of 

drain particle outside sliding surface is also discussed. The third (3) section covers the 

analysis of surface topography and wear debris formation analysis of new pad samples, 

road particles and silica sand effect. Finally the fourth section discusses on the wear 

test analysis which consist of new pad samples (original samples), squeal pad without 

particle effect, squeal pad with road particle effect and squeal pad with silica sand 

effect.

Chapter six (6) presents the result and conclusion of the study and some 

recommendations for future work
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Gupta, A. K., Dan, T. K., & Rohatgi, P. K. (1986). Aluminium alloy-silica sand 

composites: preparation and properties. JoMrMa/ q/zwaferza/s sczewce, 27(10), 

3413-3419.

Hamid, M.A., Stachowiak, G.W. and Syahrullail, S., (2013). The Effect of External 

Grit Particle Size on Friction Coefficients and Grit Embedment of Brake 

Friction Material. Procedia Engineering, 68, 7-11.

Hassan, M.Z., Brooks, P.C. and Barton, D.C., 2009. A predictive tool to evaluate disk 

brake squeal using a fully coupled thermo-mechanical finite element model. 

TMferHafzoMa/JoM??!#/ q^Fe/zzc/e Daszg7!, 37(1-2), pp.124-142.

Hee, K. W., & Filip, P. (2005). Performance of ceramic enhanced phenolic matrix 

brake lining materials for automotive brake linings. H^ar, 23P(7), 1088-1096.

Hetzler, H., & Willner, K. (2012). On the influence of contact tribology on brake 

squeal. 7WAo/ogy THfernafzona/, 46(1), 237-246.

Hinrichs, R., Soares, M. R., Lamb, R. G., Soares, M. R., & Vasconcellos, M. A. Z. 

(2011). Phase characterization of debris generated in brake pad coefficient of 

friction tests. 270(7), 515-519.

Hoffmann, N. P., & Gaul, L. (2008). Tvzcfzozz zuJMced vz&rafzo?M q/̂ r#%e<y. 7?aye<37Y% 

yze/Js a^J acfzvzfzes (No. 2008-01-2579). SAE Technical Paper.

Holinski, R., & Hesse, D. (2003). Changes at interfaces of friction components during 
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