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ABSTRACT 

Electrochemical capacitors or supercapacitors or ultracapacitors have been 
identified as a promising technology that has a significant role in the electrical energy 
storage device revolution. The quality of the electrode material is one of the key factors 
that determines the performance of supercapacitors. Among the commonly used 
electrode materials are carbon-based materials, transition metal oxide and conducting 
polymers. A combination of two or more of these electrode materials in a single 
electrode has been found to exploit the relative advantages of the two electrode 
materials and mitigate their relative disadvantages. However, the use of composite 
electrodes for supercapacitors have not been fully exploited due largely to the 
divergence in the synthesis technique of which none have been consolidated. This 
study synthesized nanocomposite electrodes with high power, high energy and long 
cycle life for supercapacitor applications using a simple, fast and economical 
technique. Activated carbon (AC) was prepared via microwave-induced CO2 
activation of oil palm shell (OPS) using bed temperature as the control parameter. The 
response surface methodology (RSM) and Box-Behnken design (BBD) were utilized 
to optimize the operating parameters of the preparation process. The AC prepared at 
optimum conditions had a BET surface area of 574.37 m2 g-1, total pore volume of 
0.244 cm3 min-1, micropore volume of 0.198 cm3 min-1 and yield of 74.06%. A novel 
green activated carbon-nickel oxide nanocomposite electrode was synthesized using 
electroless deposition method for supercapacitor applications. Investigation of the 
electrochemical performance of the nanocomposite electrodes was carried out using 
cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance 
spectroscopy. The results from electrochemical tests showed that the nanocomposite 
electrodes exhibit superior capacitive performance compared with the AC electrode. 
The specific capacitance, power density and energy density were found to increase by 
114.92 – 276.84 F g-1, 29.88 – 250.68 W kg-1 and 3.99 – 9.61 Wh kg-1, respectively 

with respect to the AC electrode. In addition, the specific capacitance as well as the 
energy density was found to reduce with the increment in the calcination temperature 
from 300 oC to 500 oC and time from 1 h to 2 h, suggesting that high calcination 
temperature and long calcination time are detrimental to the electrochemical 
performance of the nanocomposite electrodes. The nanocomposite electrode 
calcinated at 300 oC for 1 hour offers the maximum enhancement of 205% in both 
specific capacitance and energy density, while the nanocomposite electrode calcinated 
at 500 oC for 2 hours offers the maximum power enhancement of 112%. This thesis 
has established the possibility of using temperature as a process parameter in 
microwave heating and proved that electroless plating method is a good synthesis 
method for organizing nanocomposite electrode materials. Furthermore, the good 
structure and superb electrochemical performance of the nanocomposite material 
revealed that it is a promising electrode for supercapacitor applications.
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ABSTRAK 

Kapasitor elektrokimia atau superkapasitor atau ultrakapasitor telah dikenal pasti 
sebagai sebuah teknologi yang berpotensi dan mempunyai peranan yang penting dalam 
revolusi peranti penyimpan tenaga elektrik. Kualiti bahan elektrod merupakan salah satu faktor 
utama yang menentukan prestasi superkapasitor. Antara bahan-bahan yang biasa digunakan 
sebagai elektrod adalah bahan-bahan yang berasaskan karbon, logam teroksida dan polimer 
pengaliran. Gabungan dua atau lebih bahan-bahan ini ke dalam satu elektrod tunggal dapat 
mengeksploitasi kelebihan-kelebihan relatif kedua-dua bahan tersebut dan mengurangkan 
kelemahan-kelemahannya. Namun begitu, penggunaan elektrod komposit untuk 
superkapasitor belum dieksploitasi sepenuhnya disebabkan terdapat pelbagai perbezaan dalam 
teknik sintesisnya yang dapat digabungkan. Kajian ini bertujuan untuk mensintesis elektrod 
komposit nano yang mempunyai kuasa dan tenaga yang tinggi serta kitaran hayat yang panjang 
melalui satu teknik yang mudah, cepat dan menjimatkan. Karbon teraktif (AC) telah 
disediakan daripada tempurung kelapa sawit (OPS) melalui pengaktifan CO2 menggunakan 
ketuhar gelombang mikro dengan ketetapan suhu sebagai parameter kawalan. Metodologi 
sambutan permukaan (RSM) dan reka bentuk Box-Behnken (BBD) digunakan untuk 
mengoptimumkan parameter-parameter pengendalian dalam proses penyediaan. AC yang 
disediakan dalam keadaan optimum mempunyai luas permukaan BET sebanyak 574.37 m2 g-

1, jumlah isi padu liang 0.244 cm3 min-1 dan isi padu liang mikro 0.198 cm3 min-1 dengan kadar 
penghasilan sebanyak 74.06%. Elektrod komposit nano mesra alam baharu yang terdiri 
daripada karbon teraktif-nikel teroksida telah disintesis menggunakan kaedah pemendapan 
tanpa-elektrik untuk digunakan di dalam superkapasitor. Kajian terhadap prestasi elektrokimia 
elektrod komposit nano tersebut telah dijalankan menggunakan ujian kitaran voltammetri, 
luahan-cas galvanostatik dan spektroskopi impedans elektrokimia. Hasil daripada ujian-ujian 
elektrokimia tersebut menunjukkan bahawa elektrod komposit nano mempamerkan prestasi 
berkemuatan tinggi berbanding dengan elektrod AC. Berbanding dengan elektrod AC, 
kemuatan khusus, ketumpatan kuasa dan ketumpatan tenaga telah meningkat daripada 114.92 
kepada 276.84 F g-1, 29.88 kepada 250.68 W kg-1 dan 3.99 kepada 9.61 Wh kg-1. Di samping 
itu, kemuatan khusus serta ketumpatan tenaga telah didapati berkurang dengan kenaikan suhu 
pengkalsinan daripada 300 oC kepada 500 oC dan masa daripada 1 jam kepada 2 jam, 
menunjukkan bahawa suhu pengkalsinan yang tinggi dan masa yang panjang akan 
menjejaskan prestasi elektrokimia elektrod komposit nano tersebut. Pengkalsinan elektrod 
komposit nano pada 300 oC selama 1 jam memberikan peningkatan maksimum sebanyak 
205% kepada kedua-dua nilai kemuatan khusus ketumpatan tenaga, manakala pengkalsinan 
elektrod komposit nano pada 500 oC selama 2 jam memberikan peningkatan kuasa maksimum 
sebanyak 112%. Tesis ini berjaya mewujudkan kemungkinan untuk menggunakan suhu 
sebagai parameter proses dalam ketuhar pemanas dan membuktikan bahawa kaedah 
penyaduran tanpa-elektrik adalah kaedah sintesis yang baik bagi menghasilkan bahan-bahan 
elektrod komposit nano. Selain itu, struktur yang baik dan prestasi elektrokimia yang hebat 
daripada bahan komposit nano menunjukkannya sebagai elektrod yang berpotensi untuk 
digunakan di dalam superkapasitor. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Study 

Global energy crisis brought about by soaring increase in global energy 

demand far in excess of energy supply as a result of population growth and industrial 

development resulted in high cost of energy, depletion of fossil fuel on continuous 

basis, global warming and climate change. As such, more attention is being paid to 

clean, efficient, renewable and sustainable energy sources such as solar and wind 

energy that have high potential of meeting the future energy requirement. However, 

the electrical energy being generated from these sources is not continuous but rather 

intermittent hence the needs for efficient energy storage devices to smoothing the 

supply and at the same time store the excess energy. Electrochemical capacitors 

popularly called supercapacitors or sometimes ultracapacitors have been identified as 

a promising technology that has an important role to play in the electrical energy 

storage device revolution. Supercapacitors are special class of capacitors that use 

various electrodes such as carbon-based materials (activated carbons, carbon aerogels, 

carbon fibers, carbon nanotubes), conducting polymers and metal oxides to achieve 

higher energy densities than the conventional electrolytic capacitors, thus lying 

between the electrochemical batteries and convention capacitors (Kotz and Carlen, 

2000; Halper and Ellenbogen, 2006). 
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The electrode material is one of the key factors that determine the performance 

of supercapacitors. And a lot of researches have been carried out in the area of 

electrode materials for supercapacitors. According to Kavaliauskas et al. (2011), 

among the commonly used electrode materials are carbon-based materials (activated 

carbons, carbon nanotubes, carbon blacks and glassy carbons), transition metal oxides 

(such as RuO2, NiO, IrO2, MnO2), and conducting polymers. Each of these 

electroactive materials has merits and demerits which are uniquely associated with 

them and which govern their application in supercapacitors as enumerated below: 

i. Carbon-based materials: Provide high power density due to high 

surface area and have long cycle life but small specific capacitance 

which are mainly double layer capacitance 

ii. Metal oxides/hydroxides: Have wide potential window and combined 

pseudocapacitance with double layer capacitance but have poor cycle 

life and relatively small surface area. 

iii. Conducting polymers: Have good conductivity, high capacitance, low 

cost and ease of fabrication but have poor cycle life and relatively low 

mechanical stability (Yang, 2012). 

Based on electrode material used, electrochemical capacitors may be classified 

into three main groups; namely electrochemical double-layer capacitor (EDLC), 

pseudocapacitor and hybrid capacitors, each having a unique charge storage 

mechanism (Halper and Ellenbogen, 2006). The electrochemical double-layer 

capacitors use carbon based electrodes and employ electrostatic charge mechanism 

known as a non-Faradaic mechanism for the development of capacitance at the 

electrode/electrolyte interface. On the other hand, pseudocapacitor use transition metal 

oxide and conducting polymer and employ fast Faradaic mechanism such as oxidation-

reduction reactions for the development of capacitive charges either within the 

material itself or at the interface and at potentials which are specific to the redox couple 

of the electrode and electrolyte materials (Conway et al., 1997; Davies and Yu, 2011; 
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Kotz and Carlen, 2000; Pandolfo and Hollenkamp, 2006). Hybrid capacitors, as the 

name suggest, are a combination of electrochemical double-layer capacitors and 

pseudocapacitors. The combination of the two supercapacitors leads to better 

performance characteristics as a result of exploiting the relative advantages of the two 

capacitors while at the same time mitigating their relative disadvantages. 

Among the carbon-based materials, activated carbon is most widely used as 

supercapacitor electrodes because of large surface area due to high surface porosity, 

controlled pore structure, good electrical conductivity, good thermal and chemical 

stability, ease of processability, low framework density, compatibility in 

nanocomposite materials, ready abundance and relatively low cost (Kavaliauskas et 

al., 2011; Pandolfo and Hollenkamp, 2006; Sevilla and Mokaya, 2014). Also, the 

double-layer capacitance can be modified by decorating porous carbon surfaces with 

electrochemically active surface functionalities (Elmouwahidi et al., 2012). In the area 

of energy generation and storage, carbon materials have over the years being playing 

very crucial roles and this date back to prehistoric era when human being started using 

charcoal for heat sources; others are graphite moderators of atomic reactors for power 

plant, the use of cokes in the production of various metals – for melting and reducing 

natural ores, and graphite anode of lithium-ion batteries (Inagaki et al., 2010). Carbon 

electrode, though well polarizable (Frackowiak and Beguin, 2001), its electrical 

conductivity is however sturdily dependent on factors such as the type of thermal 

treatment, its microstructure, the content of heteroatoms and hybridization. More 

importantly, carbon materials are environmentally friendly especially when the green 

method is adopted for the preparation. 

Fabrications of activated carbon are carried out using either a two-stage 

thermal/physical process or a single stage chemical process. The two-stage thermal 

process involves the carbonization (pyrolysis) of the precursor materials at a moderate 

temperature between 400 oC and 850 oC under an inert atmosphere in order to release 

the volatile matters and also produce char with undeveloped pore structure; and the 

activation of the char at elevated temperature between 600 oC and 900 oC using carbon 

dioxide, air, steam or a mixture of these gases – which are environmentally friendly – 

as oxidizing agent to produce activated carbons with well-developed porosity. In 
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single stage chemical process, the carbonization and activation are carried out 

concurrently usually at temperature between 300 oC and 950 oC after the precursor 

material have been mixed with activating agents such as Zinc chloride (ZnCl2), 

Sodium hydroxide (NaOH), Potassium hydroxide (KOH), Potassium carbonate 

(K2CO3), Iron (III) chloride (FeCl3) and Phosphoric acid (H3PO4). These activating 

agents also serve as dehydrating agents and oxidants. High energy cost and low yield 

due to longer activation time and high activation temperature are the main problems 

of physical activation. While chemical activation has the problem of activated carbon 

and the environment being contaminated as a result of the chemical agents used during 

production. However, chemical activation has the advantages of shorter process time 

and lower activation temperature. The advantages of chemical activation over physical 

activation were responsible for its preference by commercial activated carbon 

manufacturers and researchers some years back. However, global concern as regards 

environmental protection and introduction of modern technologies have recently led 

the research and scientific communities shifting interest towards the use of microwave 

heating technology as a viable alternative to conventional activation methods for the 

production of activated carbons (Xin-hui et al., 2011a; Yuen and Hameed, 2009). 

Microwave heating is preferred over conventional heating as it offers a number of 

advantages in addition to the considerable reduction in activation time. 

The search and development of green carbon materials have been the focus of 

research interests in the last decade, during which those with considerable potentials 

for agro-industrial waste mitigation are given special attention. Activated carbon 

belongs to the group of carbonaceous materials, as such is predominantly amorphous 

in nature. Therefore, fabrication and treatment methods are the primary factors 

responsible for the high porosity development in activated carbon (Abechi et al., 

2013). Furthermore, from available literature, memory, chemical polarity, high surface 

area and pore structure of activated carbon have been found to be dependent on the 

precursor material as well as the activation process. Most commercial activated 

carbons are produced from fossil fuel based precursor material (petroleum and coal) 

which made them expensive and environmentally non-friendly hence, the increasing 

focus on biomass precursor materials which are cheaper, readily available, renewable, 

structurally porous and green (Farma et al., 2013). In recent years the use of waste 
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agricultural biomass such as waste coffee beans (Rufford et al., 2008), cassava peel 

waste (Ismanto et al., 2010), apricot shell (Xu et al., 2010), sugarcane bagasse  

(Rufford et al., 2010; Si et al., 2011), rice husk (He et al., 2013), sunflower seed shell 

(Li et al., 2011), coffee endocarp (Valente Nabais et al., 2011), rubber wood sawdust 

(Taer et al., 2011a), oil palm empty fruit bunch (Farma et al., 2013), camellia oleifera 

shell (Zhang et al., 2012), poplar wood (Liu et al., 2012), argan seed shell 

(Elmouwahidi et al., 2012), bamboo species (González-García et al., 2013), peanut 

shell (He et al., 2013) as precursor materials to prepare porous carbons for 

electrochemical double-layer capacitors (EDLCs) have gained much attention due to 

its abundant availability and low cost. The amount of waste agricultural biomass being 

generated across the globe has been on the increase with the increase in agricultural 

activities in various countries. Efforts at diversifying their utilization have, therefore, 

been a serious challenge since direct discharge of some of these wastes causes 

environmental problems. The primary usage of some of these bio-wastes remains as 

feedstock for boilers while the majority are burnt for the purpose of quick disposal. 

Recently, researchers have also focused on the advance of alternative electrode 

materials. Because of high specific capacitance at low resistance, transition metal 

oxides are attractive alternative electrode materials with which high energy and high 

power supercapacitors can easily be constructed. Among the metal oxides, ruthenium 

oxide (RuO2) is the most widely researched and most beneficial; it is known to give 

very high capacitance up to between 720 to 900 F/g (Jayalakshmi and 

Balasubramanian, 2008). The capacitance of hydrous ruthenium oxide has been found 

to surpass that of conducting polymer and carbon-based materials (Zheng et al., 1995). 

However, RuO2 is very expensive and scarce, as such extensive research into RuO2 is 

conducted for military application where cost is not an issue. Other metal oxides such 

as nickel oxide (Basri et al., 2016; Chang et al., 2012; Kavaliauskas et al., 2011), 

nickel hydroxide (Huang et al., 2007), cobalt oxide (Chang et al., 2012; Gomez and 

Kalu, 2013; He et al., 2012; Xie et al., 2013), zinc oxide (Faraji and Ani, 2016; 

Aravinda et al., 2013a; Selvakumar et al., 2010), titanium oxide (Fu et al., 2006; Liang 

et al., 2004; Selvakumar and Bhat, 2012), cerium oxide (Aravinda et al., 

2013b),vanadium oxide (Perera et al., 2013), manganese oxide (Kim et al., 2013; Lee 

et al., 2014; Malak-Polaczyk et al., 2010; Nakayama et al., 2007; Peng et al., 2011; 



6 

Staiti and Lufrano, 2010) have been studied as supercapacitor electrode materials, 

however, none of these metal oxides are used in commercial production of 

supercapacitors because they are yet to obtain capacitances comparable to RuO2. 

Although pseudocapacitors can achieve higher capacitance than EDLCs, however, 

they often suffer from the poor electrical conductivity of the electroactive materials 

resulting in low power density and cycling stability (Chen and Dai, 2013).  

The combination of these disparate capacitive materials to form a 

nanocomposite electroactive material constitutes an important approach to the 

development, control and optimization of the structure and properties of the electrode 

material to augment their performance for supercapacitors. For example, 

supercapacitors with high specific capacitance and rate capability could be obtained 

when a small amount of transition metal oxide is uniformly dispersed on the high 

surface area, porous and conductive carbon materials carbon materials (Tai and Teng, 

2004; Wang and Hu, 2004; Yuan et al., 2005). The properties of nanocomposite 

electrodes are dependent on the individual components and the morphology and 

interfacial characteristics of the nanocomposites. In the last decade there has been an 

increase in research interest towards the development of nanocomposite electrode 

materials. As a result researchers have come up with all kind of nanocomposite 

materials such as activated carbon mixed with either metal oxides or conducting 

polymers, metal oxides mixed with conducting polymers, graphene mixed with metal 

oxides or conducting polymers and carbon nanotube with metal oxides or conducting 

polymers. Material selection, surface area, particle size, synthesis method, fabrication 

process parameters and electrical conductivity are some of the factors to be considered 

during design and fabrication of nanocomposite electrode materials (Yang, 2012). 

Many researchers have used different experimental techniques to synthesize 

nanocomposite electrode materials. Among these experimental techniques wet 

impregnation and electrodeposition are the most widely used synthesis methods, 

however, good control of morphology and particle size is lacking in wet impregnation 

while in electrodeposition additional electricity and electrodes are needed. In recent 

times, electroless deposition is gaining more ground among researchers as an effective 

synthesis method of depositing metal nanoparticles (Ramani et al., 2001; Selvakumar 
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et al., 2010) due to its low cost, simple process, high reproducibility and simple 

equipment requirement (Faraji et al., 2014; Faraji et al., 2012; Faraji et al., 2011). 

Despite the fact that a lot of progress has been made in the development of 

nanocomposite electrode materials for supercapacitor applications, there are still more 

hurdles to cross and challenges to overcome if supercapacitors are to replace batteries.  

1.1.1 Why Green? 

The renewable energy source is one of the three top options for sustainable 

production of carbon-free energy; others are nuclear energy system and 

decarbonization of fossil energy. Renewable energy sources include solar, wind, 

geothermal, hydropower, biomass, municipal solid waste. The use of biomass as 

precursor material for the production of activated carbons is considered as a zero or 

neutral greenhouse gas emission because CO2 released during combustion of biomass 

is equivalent to the CO2 captured from the atmosphere by the plant while growing 

(photosynthesis) (Muradov and Vezirog˘lu, 2008). Thus, it is referred to as zero carbon 

emissions or the carbon cycle and is depicted in Figure 1.1. Solar energy is converted 

to chemical energy through the process of photosynthesis and stored in biomass. 

Furthermore, since microwave heating equipment does not emit greenhouse 

gasses, there is no need for air quality monitoring. Hence, malfunctioning or outdated 

microwave system does not incur any fine or penalty. 
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Figure 1.1: The carbon cycle (Saidur et al., 2011) 

1.2 Research Problem and Hypotheses 

Supercapacitors have been identified as electrochemical energy storage 

devices capable of replacing the batteries as the number one choice energy storage 

device. However, substantial improvement is required through the development of 

new materials before supercapacitors can meet the energy demand of the future 

systems such as large scale industrial equipment, hybrid electric vehicles and portable 

electronics. For this reason, production of high surface area carbon electrodes from 

biomass and the development of composite electrodes have been on the increase in 

recent years. Physical activation (Misnon et al., 2015; Taer et al., 2011b; Valente 

Nabais et al., 2011), chemical activation (Bhattacharjya and Yu, 2014; Kalyani et al., 

2015; Misnon et al., 2015; Rufford et al., 2008) and combined physical and chemical 

activation (Farma et al., 2013; Ismanto et al., 2010) are the most widely used activation 

processes. However, there are issues and concerns emanating from the use of these 

conventional heating methods such as thermal gradient, long process time, additional 

cost of washing the activated carbon and danger posed to human being and the 

environment by the chemicals being use as activating agents. In an attempt to solve 

the problem of associated with the conventional heating method, microwave-induced 

activation was developed. A major concern in microwave heating is the inability to 

monitor and control the temperature inside the microwave leading to the adoption of 
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microwave power as process parameter. Furthermore, microwave-induced chemical 

activation was the choice of the majority of the researchers probably due to the short 

process time. Thus, the issue of safety with the chemical activating agents and 

additional cost of washing the activated carbons came up. As far as my knowledge 

there are few works on the production of activated carbon via microwave-induced 

activation. And none of the activated carbons produced have been evaluated as 

supercapacitor electrode. Therefore there no available information on the effect of the 

preparation condition. From available literature on microwave-induced physical 

activation, use of high microwave power and long process time are the main issues (Li 

et al., 2009; Xin-hui et al., 2011a; Yang et al., 2010) 

The development of nanocomposite electrode material constitutes an important 

approach towards the improvement in the performance of supercapacitors. Fabrication 

of nanocomposite electrodes have been on the increase in recent years, as such, 

different types of synthesis techniques have been employed. Wet impregnation method 

is the most widely use technique, however, the method lacks good control of the 

morphology and particles size. Aravinda et al. (2013b) and Selvakumar et al. (2010) 

used mechanical mixing to organize nanocomposite electrodes but the method surfer 

from inability to coat intricate shape. Other synthesis methods such as magnetron 

sputtering (Kavaliauskas et al., 2011) require cutting-edge equipment. Extended 

process time is the major concern of the hydrothermal process (Madhu  et al., 2015). 

Fabrication of nanocomposite electrodes by electroless deposition is gaining more 

ground amount researchers (e.g. Faraji and Ani (2016)), however, the effect of heat 

treatment on the electrochemical performance has not been study. 

1.2.1 Statement of the Research Problem 

How does activated carbon prepared by microwave-induced activation of 

waste agricultural biomass and decorated with nickel oxide lead to improve 

performance of supercapacitor? 
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1.2.2 Research Questions 

i. Of what significance are the preparation conditions of activated carbons 

on their properties? 

ii. How does the use of activated carbons from waste agricultural biomass 

coated with nickel oxide contribute to the capacity of the 

supercapacitor? 

iii. How does one configure supercapacitor for better performance? 

1.2.3 Research Hypotheses 

Unlike physical and chemical activation processes using convention heating 

method microwave-induce activation process is expected to take a shorter time due to 

the interior and volume heating of microwave irradiation. Many reported works on 

microwave-induced activation process are carried out by chemical activation with only 

a few reports on physical activation. Among the published works on microwave-

induced physical activation, none had used microwave heating for the 

pyrolysis/carbonization. Instead, they all used convention heating method for the 

carbonization. As such, there is no information on the pyrolysis conditions for 

obtaining good char suitable for activation. Also, longer pyrolysis time could lower 

the carbon yield; no information yet because most microwave induced pyrolysis were 

optimized for optimum liquid yield, for example, Salema and Ani (2012). 

Activated carbon if well prepare is expected to have a large surface area and 

porosity, good electrical and thermal conductivity needed to enhance the capacities of 

the supercapacitor. The features could be improved upon through optimization of the 

activation process and surface modification of the activated carbon that may invariably 

lead to better performance. One purpose of surface modification of activated carbons 

is to either improve or introduce oxygen functional groups on the surface of activated 

carbons. It have been reported by many researchers e.g. Ismanto et al. (2010); Liu et 
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al. (2012); Jin et al. (2013) that surface modification of activated carbons leads to 

improvement in electrochemical capacitive behavior of the activated carbons despite 

the fact that no significant effect was noticed on the surface area of the modified 

activated carbons. Presently, research into the coating of the surface of activated 

carbon with transition metal oxides is being pursued by researchers because of the 

observed improvement in the electrochemical capacitive behavior in the reported 

works. However, information on the electroless deposition of metal oxides on 

activated carbons is limited since the area is relatively new. Till date, there is no study 

reported on the electroless deposition of metal oxides on activated carbon from oil 

palm shell. As such there is the need for investigation so as to establish the optimum 

conditions.  

The configuration of the supercapacitor would start from the electrode’s 

preparation. Classic electrodes can be fabricated by co-precipitation and cathodic 

deposition with the use of additives and polymer binders. The polymer binder fuses 

active materials and permits the electrode to adhere to a current collector (Sonia et al., 

2013). However, the polymetric binder material leads to increased resistance and 

reduced capacitance in the supercapacitor. Other experimental techniques in use to 

organize the carbon nanocomposite electrodes are wet impregnation, 

electrodeposition, sputtering, pulse laser, thermal evaporation and plasma reduction. 

Among these techniques wet impregnation is the most widely used, but good control 

of morphology and particle size are missing. Electrodeposition requires additional 

electricity and electrodes. Moreover, some of these techniques involve lengthy 

processing, sophisticated equipment and may make demolition of the carbon structure 

possible. On the other hand, electroless deposition is an effective route to deposit metal 

nanoparticles (Ramani et al., 2001; Selvakumar et al., 2010) and polymers (Sonia et 

al., 2013). The use of activated carbon-metal oxide nanocomposite electrode either as 

the positive electrode or negative electrode or both is a function of electrolyte and is 

expected to have an impact on the performance of the supercapacitor. 



12 

1.2.4 Objectives of the Work 

The primary aim of this research was to prepare nanocomposite materials by 

electroless deposition of nickel oxide nanoparticles on oil palm shell-based activated 

carbons and investigate their performance as supercapacitor electrodes. The specific 

objectives of the study are: 

i. To characterize activated carbons from oil palm shells prepared by 

microwave-induced CO2 physical activation using bed temperature as 

control parameter in order to establish the critical parameters of the 

activated carbons. 

ii. To synthesize activated carbon-nickel oxide nanocomposite electrodes 

using the electroless deposition (plating) method. 

iii. To evaluate the performance of activated carbon-nickel oxide 

nanocomposite electrodes for supercapacitor. 

1.3 Scope of Work 

This research covers the preparation of powder activated carbons from oil palm 

shells via microwave-induced CO2 physical activation. The response surface 

methodology (RSM) and Box-Behnken design (BBD) features of the Desert Expert 

software (version 7.1.6, Stat-Ease, Inc. Minneapolis) was employed to design the 

experimental runs to reduce the number of experiments. The preparation of the 

activated carbon was tailored towards electrode for supercapacitor. For improve 

performance, the activated carbon was modified by electroless deposition of nickel 

oxide, which is a transition metal oxide, onto the activated carbon to obtain activated 

carbon-nickel oxide nanocomposite electrode. The performance of the activated 
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carbon-nickel oxide nanocomposite was investigated via a typical two-electrode test 

cell using Gamry Instrument (Interface1000). 

1.4 Significance of Study 

The research proposes the use of microwave for the pyrolysis and activation 

processes and electroless plating for the synthesis of AC-nickel oxide nanocomposite 

electrode. The benefit of microwave heating is that it can be used for other biomass 

materials. The activated carbons from this research can be used as electrodes for 

different types of supercapacitor. The use of waste agricultural biomass as precursor 

materials will serve as waste management and promote environmental pollution 

mitigation considering the vast amount of biomass waste being generated by oil palm 

mills in Malaysia. 

1.5 Organization of the Thesis 

This thesis comprises of five chapters with each chapter discussing specific 

areas of the research. Introductory background of the study is covered in Chapter 1. 

The aim and objective of the research study are highlighted in this chapter. Also, the 

chapter outlines the scope and significance of the study. 

Review of works relevant to the study is the focus of Chapter 2. The production 

processes of AC and synthesis of AC-metal oxide nanocomposite electrode for 

supercapacitor applications were adequately covered. Also, the use of microwave 

heating technology and RSM for optimization of activated carbon production was 

covered. 
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Chapter 3 gives a detail explanation of the raw materials selection, equipment 

employed for the research, experimental conditions and procedures followed in 

carrying out the research. 

Detail description and analysis of the experimental results obtained from the 

production of activated carbon and the optimization of production process, synthesis 

of activated carbon-nickel oxide nanocomposite electrodes and evaluation of the 

electrochemical performance of the nanocomposite electrodes are presented in Chapter 

4. 

The general conclusion from the experimental findings and recommendations 

for future research are presented in Chapter 5. 
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