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The force control of a robot arm is concerned with the subject of how well the 
arm performs and responds under various loading conditions and changes in the 
robot parameters. The performance of the arm should not degrade with the 
presence of these 'disturbances'. Robot force control involves the physical 
interaction of the robot's end effector with the external environment in the forms 
of applied forces or torques, changes in the mass payloads and constrained 
elements. A number of control methods has been proposed to achieve stable and 
robust performance ranging from the classical proportional-derivative (PO) 
control [1] to the more recent intelligent control technique such as those 
employing neural network or fuzzy logic elements. The PO control is simple, 
efficient and provides stable performance when the operational speed is low and 
there are very little or no disturbances. The performance however is severely 
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The paper presents a novel approach to estimate the inertia matrix of a robot arm using a fuzzy 
logic (FL) mechanism in order to trigger the active force control (AFe) strategy. A 
comprehensive study is performed on a rigid three-link manipulator subjected to a number of 
external disturbances. The robustness and effectiveness of the proposed control scheme are 
investigated considering the trajectory track performance of the robotic arm taking into account 
the application of external disturbances and that the arm is commanded to describe a reference 
trajectory given a number of initial and operating conditions. The results show that the FL 
mechanism used in the study successfully computes appropriate estimated inertia matrix value to 
execute the control action. The proposed scheme exhibits a high degree of robustness and 
accuracy as the track error is bounded within an acceptable range of value even under the 
influence of the introduced disturbances. 
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affected with the increase in speed and presence of disturbances. Adaptive control 
method [2,3] improves the stability and robustness of the system via its adaptive 
feature, which enables it to operate in a wider range of parametric uncertainties 
and disturbances. However, this technique is more commonly found in theoretical 
and simulation study as it involves rigorous mathematical manipulation and 
assumptions. Active force control (AFC) of a robot arm has been demonstrated to 
be superior compared to the conventional methods [4,5] in dealing with 
compensating a variety of disturbances. There is a growing trend in robotic 
control to include intelligent mechanism such as iterative learning algorithm, 
neural network, knowledge-based expert system, genetic algorithm and fuzzy 
logic. 

In this paper, a fuzzy logic (FL) mechanism is used together with the AFC 
strategy to control a rigid three-link horizontal planar manipulator. The scheme 
known as AFCAFL (an acronym for Active Force Control And Fuzzy Logic), is 
an extension to the work described in a previous study [6] where the effectiveness 
and practicality of the scheme applied to a two-link planar manipulator has been 
clearly demonstrated. It is the objective of the proposed study to extend the 
application of the AFCAFL control scheme to the control of a three-link 
manipulator. The study also demonstrates that the FL mechanism is able to 
compute the estimated inertia matrix of the manipulator automatically, 
continuously and on-line while the manipulator performs its task under the 
influence of disturbances. 

The paper is structured as follows. The first part presents a description of the 
problem statement and the fundamentals of both the AFC strategy and FL 
mechanism. The integration of the FL and the AFC applied to a rigid three-link 
horizontal planar manipulator is demonstrated in the form of a simulation study. 
Consequently, simulation results of the control scheme are analyzed and 
discussed with a particular attention given to the trajectory track performance of 
the manipulator and the computed estimated inertia matrix of the manipulator. 
Finally, a conclusion is derived and the direction for potential future work is 
outlined. 

2.0 PROBLEM STATEMENT 

AFC is a force control strategy originated by Hewit [4,7] and is primarily 
designed to ensure that a system remains stable and robust even in the presence 
of known or unknown disturbances. In AFC, the system mainly uses the 
estimated or measured values of a number of identified parameters to execute its 
compensation action. In this way, the mathematical complexity of the robotic 
system, which is known to be highly coupled and non-linear can be greatly 
reduced. 

The main setback of AFC is the acquisition of the estimated inertia matrix 
required by the AFC feed-forward loop. Previous methods rely heavily on either 
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perfect modeling of the inertia matrix, crude approximation or the reference of a 
look-up table, which obviously require prior knowledge of the estimated inertia 
matrix. Although the methods are quite effective to implement, they lack in 
systematic approach and flexibility to compute the inertia matrix. Thus, a search 
for better ways to generate efficiently suitable estimated inertia matrix is 
undertaken. If a suitable method of estimating the inertia matrix can be found, 
then the potential of implementing the practical AFC scheme is considerably 
enhanced. Obviously, intelligent methods are viable options and should be 
exploited to achieve the objective as already pointed out in [8,9], i.e. to 
approximate appropriately the estimated inertia matrix in the AFC loop. 

In this study, a FL mechanism is employed in conjunction with the AFC 
strategy to control the manipulator. The basic idea of this scheme is to generate 
the estimated inertia matrix of the manipulator continuously, automatically and 
with the actual execution 'on-line' using a suitable FL controller as the 
manipulator is commanded to execute a prescribed task accurately even in the 
presence of disturbances. The FL controller uses manipulator's links rotational 
angle (8) as its input to compute the appropriate estimated inertia matrix (output). 
Figure 1 is a block diagram showing the mechanism of the proposed scheme. 
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Figure 1 Mechanism of the proposed control scheme 

In the following sections, the object of study, i.e. the three-link robotic 
manipulator mathematical model and the fundamentals of both AFC and FL 
mechanisms are adequately presented so that a better understanding of the overall 
proposed scheme can be derived. 

3.0 MATHEMATICAL MODEL OF THE ROBOT ARM 

The dynamic model or the general equation of motion of a robot manipulator [10] 
can be described as follows: 
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In AFC, it is shown that a robotic system subjected to disturbances remains stable 
and robust through the compensating action of the control strategy. The detailed 
mathematical analysis of the AFC scheme can be found in [4,11,12]. The main 
computational burden in AFC is the multiplication of the estimated inertia matrix 
with the angular acceleration of the manipulator before being fed into the AFC 

Figure 2 A representation of a rigid three-link horizontal planar manipulator 
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4.0 ACTIVE FORCE CONTROL 

Figure 2 shows a representation of a rigid three-link horizontal planar 
manipulator under study. The gravitational term can be ommitted here since the 
arm is assumed to move in a horizontal plane. Thus, the dynamic model is 
reduced to: 
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The notation used in Figure 3 is as follows: 
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feed-forward loop. Apart from that, the output of the control system pertaining to 
the Cartesian position (x,y) at the free end of robotic arm needs to be computed 
from the joint angle space via forward kinematics. Also, the basic controller 
(typically, the classic PD type) prior to the AFC loop has to be determined. For a 
given robot arm configuration, the schematic of a basic AFC method applied to 
control a robot arm is shown in Figure 3. The principal advantage of AFC is the 
practical viability of the scheme to accomplish the control action. The torque and 
acceleration of the arm can be accurately measured by means of suitable state-of­
the-art transducers while the estimated inertia matrix can be easily acquired by 
crude approximation, a reference of a look-up table or intelligent methods. It has 
been shown that the estimated inertia matrix needs not be accurately 
approximated; the only requirement is that it should be within a suitable range of 
values [4,10,11,12,13]. 
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vectors of actual and desired positions respectively in 

Cartesian space 

reference acceleration vectors in joint and Cartesian spaces 

respecti vely 

On the left-hand side of Figure 3, a resolved-motion-acceleration-control 
(RMAC) controller is employed with a PD element. It is governed by the 
following equation: 

Xre! = s.: + K d (Xbar - x) + K p (Xbar - x) (3) 

The RMAC produces the acceleration command vector signal (Jre! which 

when multiplied with a decoupling transfer function gives the required command 
vector to the main AFC loop. The equation describing the disturbances is given 
as: 

(4) 

In AFC, the disturbances can be effectively accommodated by obtaining the 
measurements of the acceleration and the torque using physical accelerometer 
and torque sensor respectively. Based on the torque-current relationship, 
Equation (4) can be conveniently rewritten in the following form: 

(5) 

Thus, the controlled current It to the motor can be measured instead and 

similar outcome can be achieved. The AFC concept has been successfully 
implemented to robot arm via simulation and experimental works [4,8,11, 
14,15,16]. The only additional and necessary requirement is the acquisition of an 
appropriate estimated inertia matrix of the arm to be multiplied with the 
'measured' acceleration as in Equation (5). Previous cited works on AFC use 
conventional techniques that are rather crude, not systematic and mostly based on 
rough estimation. Thus, it is highly desirable that a method should be devised in 
such a manner that the inertial parameter can be identified intelligently without 
having to resort to the approaches described above. A number of intelligent 
methods have been proposed using neural network and iterative learning 
algorithms [8,9,17,18]. The proposed study described in the paper considers 
fuzzy logic (FL) as the estimator of the inertial parameters of the robot arm. The 
control scheme is known as AFCAFL. The scheme applied to control a robot arm 
can be seen in Figure 4. 
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Figure 6 Fuzzy concept 

Figure 4 The proposed AFCAFL scheme 
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The FL component can be treated as a black box as shown in Figure 5 where 
the input is the vector of joint angles (e) and the required estimated inertia 
matrix (IN) of the arm is the output to be fed into the AFe loop. The description 
of the FL mechanism is described in the following section. 

5.1 Fuzzy Logic Concept 
The concept of applied FL was pioneered by Lotfi Zadeh in the mid-60s. A fuzzy 
controller is an expert control system capable of performing smooth interpolation 
between hard boundary crisp rules [19]. The basic FL concept is as shown in 
Figure 6. 

5.0 FUZZY LOGIC CONTROL 
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The first step of the FL process is fuzzification in which crisp input values are 
transformed into fuzzy input involving the construction of suitable membership 
functions representing the fuzzy sets. This is followed by the process of rules 
evaluation normally in the form of linguistic statements (e.g., if-then rules) to 
determine the dynamics of the controller as a response to the given fuzzy inputs. 
It is then passed through a defuzzification process using an averaging technique 
to produce crisp output values. The application of the FL concept to AFC strategy 
to control a three-link arm is described in the following section. 

5.2 Application of FL in AFC Scheme 
The main purpose of using the FL in the study is to compute the estimated inertia 
matrix of a robot arm intelligently so that it can be utilized by the AFC 
mechanism to execute its control strategy. The three-link manipulator in the study 
is assumed to operate horizontally, thereby ignoring the effect of the gravitational 
torque. Throughout the study, only the diagonal elements of the manipulator 
inertia matrix (H) are considered and that for convenience, the elements of the 
matrix are denoted as H 11 = IN I' H 22 = IN 2 and H 33 = IN 3' The off-diagonal 

terms are disregarded since it has been shown that the coupling terms can be 
safely ignored by the AFC strategy [4]. 

The design procedure of the fuzzy logic controller used in the study is 
described as follows: 

1.	 Membership functions representing the input (joint angles of the arm) and 
output (estimated inertia matrix) of the FL component were determined as 
part of the fuzzification process. Approximate values within specific 
bounds were obtained based on crude approximation and also from the 
results previously acquired in [8,9,18]. The membership functions used in 
the study can be seen in Figures 7 and 8 (a) through (c). 
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Figure 8 Output membership functions for (a) IN\, (b) IN2 and (c) IN 3 

2.	 A set of rules was designed in the form of if-then structure. In the study, 
Mamdani fuzzy inference system was used [20]. Mamdani proposed to 
control the plant (or dynamic system) by realising some fuzzy rules or 
fuzzy conditional statements. In this manner, one can measure the outputs 
of a dynamic system and calculate a control action according to the 
devised rules. This can be illustrated in the following example that is 
directly related to the study. One of the rules can be written as 

If(thetal is VSl) and (theta? is VS2) and (theta3 is VS3) 
then (INl is VS l)(IN2 is VL2)(IN3 is VS3) 

The above statement implies that if the first joint angle of the manipulator 
is very small (VSl), the second joint angle is very small (VS2) and the 
third joint angle is very small (VS3), then the estimated inertia matrix 
(IN) of the first link is very small (VS 1), the second link is very large 
(VL2) and the third link is very small (VS3). 

3.	 A crisp output was obtained through a defuzzification process using an 
averaging technique called centroidal or center of gravity method and is 
described by the following equation: 

_ JJi x (x) -xdx 
x =.=........;;,------- (6)

JJix (x)dx 

The method is depicted in Figure 9. 
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Figure 9 Centroidal method in defuzzification process 

---t'---------------,------"'------...,X 

Once the FL black box was appropriately designed, it was embedded in 
the overall control strategy for the on-line implementation and 
computation of the estimated inertia matrix. 

Figure 10 A SIMULINK block diagram representing the AFCAFL scheme 
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6.0 SIMULATION OF THE AFCAFL CONTROL SCHEME 

Simulation work was performed using MATLAB and SIMULINK software 
packages. In addition, a complimentary toolbox known as Planar Manipulator 
Toolbox [21J was also utilized in the simulation. Figure 10 shows the 
SIMULINK block diagram of the proposed scheme. 
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The system comprises the trajectory planner, RMAC section, main AFC loop, 
manipulator (robot dynamic model), fuzzy logic controller, disturbance model as 
well as the output scope. These models are linked by means of a series of 
connecting lines representing the flow of signals. The relevant blocks used in this 
model were obtained from SIMULINK library as well as the Planar Manipulator 
Toolbox [21]. A number of simulation parameters needs to be specified before 
simulation work is carried out and is described in the following section. 

6.1 Simulation Parameters 
The following parameters were used in the simulation study: 

Robot parameters: 

Link length l] = 0.25 m lz=0.2236 m l3 = 0.2 m 

Link mass m1=0.25 kg mz = 0.2236 kg m3=0.2 kg 

Payload mass =0.01 kg mpl 

Controller parameters: 

Controller gain: K p =800 K d =600
 

Motor torque constant: K( =0.263 Nm/A
 

Main simulation parameters: 

Integration algorithm: odel13 (Adams)
 
Simulation time start, tstart: 0.0 s
 
Simulation time stop, tstop: 7tS (3.142 s)
 
Minimum step size: 0.001 s
 
Maximum step size: 0.01 s
 
Relative tolerance: 5xlO-4
 

Absolute tolerance: lxl0-3
 

Fuzzy logic parameters: 

Fuzzy inference engine: Mamdani model
 
Defuzzification method: Centroid
 

Other parameters: 

Sampling time: 0.01 S 

Endpoint tangential velocity: V
CU

( =0.2 m/s
 

Center of circle: [0.5, 0.2]
 
Radius of circle: 0.1 m
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K p and K d were assumed to be satisfactorily tuned heuristically prior to the 

simulation work while K, was derived from the actual data sheet for a de torque 

motor [22]. Simulation was first performed without considering any external 
disturbances acting on the system. Later, a number of applied disturbances was 
introduced to test the system's robustness and effectiveness. 

6.2 The Prescribed Trajectory 
Figure 11 shows the prescribed circular trajectory considered in the simulation 
study. It serves as the reference trajectory that the arm should accurately track via 
the control strategy. The trajectory is generated using the time (t) dependent 
functions given below: 

=C, + R cos[(V / R)t] =0.5 +0.lcos[(0.2/0.l)t] (7a) X bar l cut 

=C y + R sin[(V / R)t] =0.5 +0.lsin[(0.2/ O.l)t] (7b)xbar 2 cur 

where s.: vector of end positions of link-3 in Cartesian space 

C position of the center of circle in Cartesian space 
R radius of the circle 

tangential velocity 

0.3 

0.25 

g 0.2 

~ 
.0 

~ 0.15 

0.1 

005 L-.- .L...- -'--- -'--__------J 

0.3 0.4 0.5 06 0.7 

Xbarl (m) 

Figure 11 The desired circular trajectory of the arm 

6.3 The Applied Disturbances 
A number of disturbances was modelled and introduced to test the system's 
robustness in compensating the disturbances. The analysis starts by first 
considering no external disturbances acting on the system, i.e., Fa =0 N; this was 
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done to facilitate comparison. Later, three types of external disturbances were 
modelled as follows: 

I.	 A constant torque, Tq acting at the joint of each link, the magnitude of which 

is equal to 100 Nm. 

11.	 A sequence of pulsating force Fp applied at the free end of the third link 

parallel to the horizontal axis. Fp can be described as shown in Table 1. 

Table 1 The pulsating force cycle 

r, (N) Time interval 

0 0.00 s < t < 0.40 s 

p 0.40 s < t < 0.41 s 

0 0.41 s < t < 0.90 s 

p 0.90 s < t < 0.91 s 

where the magnitude of the applied force P is equal to 100 N. The pulsating 
force is applied for 0.01 s for every 0.5 s until the simulation stops. 

111.	 A spring force F, also applied at the free end of the third link parallel to the 

horizontal axis. The spring force F, can be described as 

F,	 = kill (8) 

where III represents the linear extension of the spring and k is the spring 
constant. One end of the spring is attached to the free end of the third link of 
the manipulator while the other end is located at a fixed point corresponding 
to the coordinate [0.6, 0.1] in Cartesian space. The spring constant k used in 
the simulation is 400 N/m. 

7.0 RESULTS AND DISCUSSION 

The results of the simulation work are shown in Figures 12 through 15 which 
respectively relate to the four types of disturbances (Fo, Tq, Fp and F s) considered 
in the study. The graphical results show the actual trajectory generated, the 
trajectory track error obtained and the estimated inertia matrix computed. 
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7.1 Actual Trajectory and Trajectory Track Performance 
The graphs (a) of Figures 12 through 15 show the actual trajectory generated by 
the manipulator. These four graphs show that the actual trajectory almost 
replicates the desired trajectory without implying the system's robustness against 
the disturbances introduced. A similar conclusion can be deduced from the 
trajectory track error graphs shown by graphs (b) of Figures 12 through 15. All 
the trajectory track error curves demonstrate very small differences between 
actual and desired trajectories, i.e., all the maximum errors are less than 1%. 
These results clearly imply that the AFCAFL scheme is very robust and effective 
due to the fact that it is able to track the reference trajectory very accurately even 
under the influence of applied disturbances. Table 2 summarizes the maximum 
trajectory track errors produced by the four types of disturbances. 

Table 2 Maximum trajectory track errors produced by the applied disturbances 

Type of Disturbances Maximum Trajectory Track Error 

No disturbances, Fa = 0 N 0.24 mm (0.24%) 

Constant Torque, Tq = 100 Nm 0.22 mm (0.22%) 

Pulsating Force, F p =100 N 0.88 mm (0.88%) 

Spring Force, F, = 400 Ax 0.98 mm (0.98%) 
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Figure 14 Results for the AFCAFL scheme, pulsating force, Fp 

L_ _'-:_:-:_:-:_:-O.:-:_:-:_~_ _ _ 
, , 

Esti 
0075,...----,--­

0.3 

0.25 

(-'"""' 02 
§ 
r':><: 015 

01 

0.05 
03 0.4 

N 
E 
~ 0.07 

3 

3 

2.5 

2.5 

lOON 

2 

, , , , , , 
-1-----_1_ , , , , , , 

, ,
-1 _ 

, , , , , 

, , , , 
I I I I 
,. - - - - -1­ - - - - -.­ - - - - - r , , , , , , , , , , , , 

I I I I 
, - - - - - -, - - - - - -1­ - - - - - I'" 

, " , " , , , , , , 
-I------t­, , , , , , , 

----I­, , , 

1.5 
Time, t (5) 

(d) 

1.5 2 
Time, t (5) 

3 

, , , , , 
1 - - -­

Estimated Inertia Matrix, IN2 

0.5 

2.5 

0.5 

, , , , , , , , , , , , , , , , , 
- - - - - ; - - - - -

, 
- - - - -

, - - - - - - - ­ - ­ - - - ~-r "­ -r­ -r­, , , , , , , , , , , , 
- , , , , , , , , , , , 

- - - - r - - - - - , ­ - ­ - - "- ­ - - - -r- ­ - - - -rr­ - - - - -r , , , , , , , , , , , , , , , , , 
- - - -~~- - -.- - - - - ,- ­ - -­ -,- ­ - - - -,-- ­ - - -. , , , , , , , , , , , , , , , , , , , , 
- - - - .­ - ---.-- ­ - ­ ,­ - - ­ - -,- ­ - - - -,-­ - ­ --., , , , , , 

'---------+ '-­
, , , , , , , , , , , , , , , , 

- - - - - , ­ - - - - <- ­ - - ~- - - - - -,--­ - - -,-­ - - - -. , , , , , , , , , , , , , , , , , , , 
ci-­

, , , 

(b) 

Trajectory Track Error, TE 

, , , 
-----r---­, , , , , 

,.- ­ -­, , , 

, , , , , 
-----r---­

O'-----'-----'-------'---'----"--------'----'---J 
o 

08 

0.6 

0.2 ---­

I 
ui 
f­ 04 

0.0435 

0.043 

00425 
N 
E 
'" 0042e-

N 
~ 

0.0415 

0.041 

--~-- l------,------~ 

I I I I 

I I I I 
, I I I 
, , I I 

--~-----~------I------~ 
I I I I 
, I I I 

f I I I 

I I I I 

(e) 

15 2 
Time, t (5) 

07 

Estimated Inertia Matrix, IN3 

0.5 

0.6 

, ,, 
I I I I , I 

-----r-----~-----,------I------r-----r 

I I I I , I 
I I , I I 
I I , I I 
I I I I I I 

---r-­ --,-----,------l------I------r 
I I I I I I
I I I I I I 
I I I I I I 
I I I I , 

- ---r-----'-----,------I------r-----r 
I I I I I , 
I , I I I I 

, I I I I , 

'----------. 
----­ .... -----'t-­, , , , , , 
_____ lo .. _ 

, ,, , , , , , 

r­
8.8 

X 10.3 

8.9 ,...-----,-----,----.-----,--,-----,-----, 

8.7 

8.65 

8.85 

"i
6 8.75 

~ 

0.4 

(c) 

I I I I I I 

t I I I I 
t I I I I 

I I I I I I

---r-----'-----,------,------,------r 
I I I I I I 

I I I I I I 

I I I I I I 
I I I I I I 

- - - ,. - - - - - .. - - - - - "'1 ­ - - - - -1­ - - - - -1­ - - - - - l-

I I I I I I 

1 I I I I I 

:-: : : : : 
---~----- -----"'1-----~------I------ ... 

I I I I I 
I I I I I 

I 'I I I 
I I I , I 

---~----- -----~------I------,------~ 
I I I I I 
, I I • I 

~ I 111 

0.5 1.5 2 2.5 3 
Time, t (5) 

, ,, 
I I I , I I

-----r-----l-----'------,------.------r 
-

74 

(a) 

Estimated Inertia Matrix, IN1 

0072 

o1 

0.3 

Jurnal Mekanikal, Disember 2003 

Actual Trajectory 

0.075 

0.071 

0.074 

0.076 ,...------,--,----r---.------,----,-, 

0.25 

0.05 L­ -'---­ --'-­ ---'­ --l 

0.3 

N 
E 
6 00 73 

~ 



- -

3 

Actual Traiector 

03 

0.25 

"""' 0 2 
5 
~'015 

0.1 

0.05 "----__-----l'-----__---' 

0.3	 0.4 0.5 

XI (m) 

(a) 

---'- ---J 

0.6 0.7 

Estimated Inertia Matrix, IN1 
0.075 ,-----.---,.--,------,---,-----,---, 

0.065 '-----_---'--__'--_---L__"'----_---L__.l--J 

N 0.042N E 
6
E

0.07 60.0415 
N 

;;::: 0.041 

0.0405 

0.04 

Jurnal Mekanikal, Disember 2003 

Trajectory Track Error, TE 

, 
, 

---I.. ­, 

, 
- - -.­, , 

, 
--r 

2.51.5 20.5o 

4 

8 

,, 
I I I	 I I I

10 - - - - - to - - - - - - - - - - "1 - - - - - - - - - -1- - - ­1 -1- --t-

Time, t (s) 

(b) 

Estimated Inertia Matrix, IN2 
0.0435 ,...----.---,.--,-------.--.,.----,--, 

, , , 
I , 
------r 

, , , 
I------r , , , , 
I ,

1------,.., , , , , 
- ----I ­, , , 

5 3 

, 
I I I I I I-----r-----T-----'------I------.------r 
I I I I I I 

_ I _ __ J. I 
~ 

I.J I
1 

I
1 L 

I I I I r I 
I I I I I I 
I ___ ... I ... I...J I

.1. 
I

.1. 
I
L 

I I I I I I 
I I I I I I 
I I I I I I 

- - - .. ­ - - - _ .. - - - - - -+_ - - - - -1­ 1_ _ _ _ _ l-

I I , I I I I , 
I I I I I 

- - - - - r - - - - - "l - - - - - - - - - - -. ­ - - - - -. - - - - - I'" 

I I I I I 

I I I I I 

I 
- - - - - r - - - - - T ­ - - - - - -

I 
-. ­ - - - -

I 
-1­ - - - - -

I 
r 

I I I I 1 

I I I I I 

I I-----i-----i- ­ I I I 
------I------I------r 

I I I I I 
I I I' I 

,,,, , 
I------r , , , , , , , ,
1------ r­., , , , , , , ,
t------"", , , , , , , ,
,e------,., , , ,, ,
1------1­

0.043 

0.0425 

, , ,, 
,5 

N 

, , ,, 
0.0395 '---~--~-~--~-~---'--' 

o 0.5o 0.5	 2 2.5 3 

(c) 

X 10.3 Estimated Inertia Matrix, IN3 
884 

- -.- - - - - ; - - - - - ;- - - - --,-- - - - -::..::.-- ­8.82 - , , 
- - - - ,

, 
8.8 

- - - - T - ­~ 8.78 ,co , , 
~ 8.76 
6 

- ---., - ­, , 
8.74 - ---+ -­, 

,
- - - T - ­8.72 

8.7 o 0.5 

,
 
,
-- , - - - - ­
,- - T - -- ­, , , 

--., ----­
, , ,--f ----- -----.:. ----- ---­, , : 

- - - -- - - - -- -- -,--- - - -, - - - ­T , , , 

1.5 
Time,t (s) 

2 2.5 

(e) 

, 
: , ,, 
, - - - - - -- - - -- -, ­ -,, ,- -- - -- - - -r 

: 
-r-

: , 
- -----,------,, ---=-= 

, , 

15 
Time, t (s) 

(d) 

2 2.5 3 

3 

- , 
, 

- L, 
, 
r­, , , 
" 
, 
~ 

, 
r­

-

Figure ]5 Results for the AFCAFL scheme, spring force 
with spring constant, k = 400 N/m 

75 



76 

Jurnal Mekanikal, Disember 2003 

The system with applied torque disturbance Tq experiences the smallest 
maximum trajectory track error, which is 0.22 mm. On the other hand, the one 
with spring force F; has the largest maximum trajectory track error, which is 0.98 
mm. For the no disturbance and pulsating force conditions, the maximum 
trajectory track errors are 0.24 mm and 0.88 mm respectively. The trajectory 
track error curves for E; Tq and F; systems exhibit sinusoidal curve patterns 
whereas the Fp system exhibits a series of spikes that indicates the direct effect of 
the pulsating and intermittent nature of the applied force. 

7.2 Estimated Inertia Matrix 
With reference to graphs (c), (d) and (e) of Figures 12 through 15, the estimated 
inertia matrix (IN) curves for all the figures exhibit discrete signal patterns in the 
form of a series of 'steps' with or without very little time lag and varies positively 
within certain limits. Moreover, it was found that the inertial value of link-l (IN!) 
always has the largest positive value followed by that of link-2 (IN2) and finally 
of link-3 (IN3 ) where IN 3 always has the smallest positive value. This is because 

at the joint of link-I, the forces and torques with respect to every link are 
accumulated here, whereas it can be easily seen that the joint of link-3 has to 
support only the force/torque in link-3. Table 3 summarizes the range of IN!, IN2 

and IN3 computed by the fuzzy logic controller under the influence of the four 
types of disturbances. 

Table 3 Ranges of IN!, IN2 and IN3 computed by the fuzzy logic controller 

Type.of 

Disturbances 
.. 

No disturbance, 

Fu=ON 

Constant Torque, 

T= 100Nm q 

Pulsating Force, 

Fp=100N 

Spring Force, 

Fs= 400Lix 

............
 

0.06583-0.07457 

0.06583-0.07457 

0.07020-0.07457 

0.06583-0.07457 

..•.Estirpated Inerl~~ Matrix Range, IN (kgm') 

IN3 

0.008709­
0.04055-0.04263 

0.008816 

0.008709­
0.04055-0.04263 

0.008816 

0.008603­
0.04055-0.04263 

0.008816 

0.008709­
0.03986-0.04263 

0.008816 
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8.0 CONCLUSION 

The proposed AFCAFL performs excellently even under the influence of external 
disturbances. The FL controller embedded in the APC scheme used in the study 
has been shown to be very effective in generating the required estimated inertia 
matrix automatically, continuously and on-line, which when implemented to the 
main control scheme with or without disturbances, produces favorable results. 
The estimated inertia matrix varies within a range of values as expected. Thus, 
the integration of the FL in the AFC strategy is shown to be feasible and 
practical. The trajectory track error obtained is reasonably small (less than 1%) 
showing the excellent capability of AFCAFL scheme to accommodate the 
disturbances very effectively. The finding further substantiates previous works in 
similar area, thereby verifying the robustness and effectiveness of the AFC 
scheme. For future development, this work can be extended to applications 
involving a more intricate design of the fuzzy logic controller and designing 
hybrid intelligent control with adaptive features applied to the system to enhance 
the system capability. Also, other form of complicated prescribed trajectories 
within the robot workspace and different disturbances should be considered to 
further investigate the dynamic performance of the system. 
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