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ABSTRACT 

 

 

 

 

    The oil palm industry is undergoing global expansion as a result of the demand of 

oil palm. Consequently, similar expansion is occurring in amounts of lignocellulosic residues 

generated by the industries. The conversion of these residues to biosugar is limited by the 

uneconomical hydrolysis process and the high cost of lignocellulolytic enzymes. Thus, this 

study aimed at the production of enzymes for efficient degradation of oil palm mesocarp 

fiber (OPMF). The sum of 6 fungi isolates, AK1 to AK6, were isolated from OPMF, and 

screened for lignocellulolytic enzymes production on selective medium. Further screening of 

these isolates were carried out on untreated OPMF using solid state fermentation (SSF). 

Design-Expert software version 7.0, was used to operate the 2 level fractional factorial 

design and Central Composite Design (CCD) for the screening and optimization of 

significant factors affecting lignocelluose degrading enzymes production. The activity of 

crude enzyme, Viscozyme and Celluclast were evaluated based on the generation of biosugar 

from OPMF by determining the effects of pretreatments (2% (v/v) HNO3, 2% (w/v) NaOH 

and 2% (w/v) 1-Butyl-3-methylimidazolium chloride), solid loading (1-4 % w/v) and 

enzyme cocktail (1:1 (v/v), crude enzyme and Viscozyme, crude enzyme and celluclast, 

viscozyme and celluclast, and 1:1:1 (v/v) crude enzyme, Viscozyme and Celluclast). Isolate 

AK2 exhibited potential for lignocellulase enzyme production based on the hydrolysis zones 

>1.5 mm on selective media and producing CMCase (25.4 U/g), FPase, (5.5 U/g), β-

glucosidase (9.8 U/g), Xylanase (68.4 U/g) and MnP (4.9 U/g) at exceptional level. The 

isolate was thus identified by 18S RNA gene sequencing using a universal primer ITS1-F 

and ITS4-R as Rhizomucor pusillus AK2 (KY583064). From the 2 level fractional factorial 

design pH, temperature, inoculum size and moisture content are the significant factors 

affecting the production of lignocellulolytic enzymes. Xylanase was observed to be the 

highest activity in the lignocellulolytic enzymes cocktail (111.01 U/g). Therefore, CCD was 

carried out focussing on xylanase production. At the optimum condition,   xylanase (128 

U/g), was obtained at pH 4.98, temperature 40.27 °C, inoculum size at 10
8.2

 spores/g and 

moisture at 80.64% using CCD. The regression model of the ANOVA was found to be 

significant with p<0.0001 and R
2
 of 0.9831.Biochemical characterization of the crude 

enzymes indicated  that the enzyme was stable at pH of 4 to 6 and temperatures of 30 to 60 

°C. Enzymatic saccharification was carried out with the crude enzymes comparative to 

Viscozyme and Celluclast. Maximum sugar production was obtained from celluclast-

saccharified OPMF (1.2 g/L) using 1% (w/v) NaOH pretreated OPMF. Maximum reducing 

sugar generated from enzyme cocktail was 1.8 g/L obtained from 1% (w/v) NaOH pretreated 

OPMF which translates to polyoses; glucose (2.59 g/L), xylose (2.1 g/L) and arabinose 

(0.254 g/L) at 1:1:1 (v/v) crude enzyme, viscozyme and celluclast. The performance of the 

enzyme cocktail customized in this study is superior to that of the individual and cocktail of 

commercial enzyme. The study also indicates the potential of OPMF as both a substrate for 

biosugar and lignocellulase enzyme production from R. pusillus AK2. 
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        Industri kelapa sawit sedang mengalami perkembangan global berikutan 

permintaan minyak sawit yang tinggi. Kesannya, berlaku peningkatan jumlah sisa tanaman 

sawit oleh industri, terutamanya residu lignoselulosik. Penukaran residu ini kepada biosugar 

adalah terbatas dari segi ekonomi disebabkan proses hidrolisis yang mahal serta kos enzim 

yang tinggi. Justeru, enzim lignoselluosa yang efisien perlu dihasilkan bagi tujuan 

pendegradan serat mesokarp kelapa sawit (OPMF). Sejumlah 6 pencilan kulat, AK1 hingga 

AK6, diasingkan dari OPMF, dan disaring untuk pengeluaran enzim pendegradan 

lignoselluosa menggunakan medium selektif. Penyaringan lanjut terhadap pencilan 

dilakukan terhadap OPMF yang tidak dirawat dengan menggunakan penapaian keadaan 

pepejal (SSF). Perisian Design-Expert versi 7.0 digunakan untuk mengendalikan reka bentuk 

faktorial pecahan 2 dan reka bentuk komposit sentral (CCD) untuk penyaringan dan 

pengoptimuman faktor-faktor penting yang mempengaruhi pengeluaran enzim pendegradan 

lignoselluosa. Aktiviti enzim mentah, Viscozyme dan Celluclast dinilai berdasarkan 

penjanaan biosugar dari OPMF dengan menentukan kesan prarawatan (2% (v/v) HNO3, 2% 

(w/v) NaOH dan 2% (w/v) 1-Butyl-3-methylimidazolium chloride), pembebanan pepejal (1- 

4% w/v) dan koktel enzim (1:1 (v/v), enzim mentah dan Viscozyme, enzim mentah dan 

Celluclast, Viscozyme dan Celluclast 1:1:1 (v/v) enzim mentah, Viscozyme dan Celluclast). 

Pencilan AK2 mempamerkan potensi pengeluaran enzim lignoselulase berdasarkan 

jangkauan zon hidrolisis >1.5 mm pada media selektif dan menghasilkan CMCase (25.4 

U/g), FPase, (5.5 U/g), β-glucosidase (9.8 U/g), Xilanase (68.4 U/g) dan MnP (4.9 U/g) pada 

tahap yang terbaik. Pengecaman pencilan Rhizomucor pusillus AK2 (KY583064) dilakukan 

menerusi urutan gen RNA 18S yang mengguna pakai primer semesta ITS1-F dan ITS4-R. 

Menurut reka bentuk faktorial pecahan 2, faktor pH, suhu, saiz inokulum dan kandungan 

lembapan adalah faktor penting yang mempengaruhi enzim lignosellulase. Dikalangan 

koktel enzim lignosellulase, pengeluaran xilanase adalah tertinggi (111.01U/g). Oleh itu, 

CCD dilakukan bagi memfokuskan peningkatan pengeluaran xilanse. Pada kondisi optimum, 

xilanase (128U/g) dihasilkan pada pH 4.98, suhu 40.27°C, saiz inoculum 10
8.2

 spora/g dan 

kandungan lembapan 80.64%. Model regresi ANOVA didapati signifikan dengan p <0.0001 

dan R
2
 dari 0.9831. Pencirian biokimia enzim mentah menunjukkan enzim stabil pada pH 4 

hingga 6, dan suhu 30 hingga 60°C. Sakarifikasi enzim dilakukan menggunakan Viscozyme 

and Celluclast sebagai perbandingan kepada enzim mentah. Pengeluaran gula maksima 

(1.2g/L) diperoleh hasil sakarifikasi-Celluclast OPMF yang telah dirawat menggunakan 1% 

(w/v) NaOH. Prarawatan OPMF menggunakan 1% (w/v) NaOH juga menghasilkan gula 

penurun secara maksimum 1.8g/L dari koktail enzim, yang mengandungi poliosis; glukosa 

(2.59 g/L), xylose (2.1 g/L) dan arabinose (0.254 g/L) pada 1:1:1 (v/v) enzim mentah, 

Viscozyme dan Celluclast. Prestasi enzim koktail yang disesuaikan dalam kajian ini adalah 

lebih baik daripada enzim individu dan koktail komersil. Kajian juga menunjukkan potensi 

OPMF sebagai substrat untuk pengeluaran biosugar serta enzim lignosellulase dari R. 

pusillus AK2. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the study 

 

 

 Oil palm is one of the most economically and highly potential oil crops, a native 

of West Africa, belonging to the family of Palmacea, species of Elaeis guineensis. Due 

to the favourability of the weather towards this crop, its cultivation covers large hectares 

farm in Malaysia. The overall plantation area in 2007 was 4.17 million hectares, slightly 

increased to 4.48 million hectares in 2008 (Wahid and Chan, 2007) to 5.74 million 

hectares in 2016 (Malaysian Palm Oil Board, 2017). 

 

 

The waste generated in the processing mills are usually in the form of oil palm 

mesocarp fibre, empty fruit bunches (EFB), palm kernel shells (PKS) and palm oil mill 

effluent (POME). Evaluation on the annual generation of the biomass showed that, 

roughly, 77.24 million tons of biomass is yearly generated by oil palm mills. Out of 

which comprises 44.48 million tons of palm oil fronds, 6.93 million tons of empty fruit 

bunches, 13.97 million tons of trunk, 7.29 million tons of palm fibre and 4.21 million 

tons of shell, the increase in these higher values is even expected till 2020 (Ng et al., 



 

2012). Oil palm mesocarp fibre (OPMF) is a lignocellulose waste consisting of 

cellulose, hemicellulose and lignin. Fundamentally, cellulose and hemicellulose 

polymers are pools of sugars, which can be explored after degradation of lignin which is 

a tough compound physically sealing the sugar polymers. Thus, the degradation of 

cellulose and hemicellulose into monomers sugar requires enzyme complexes system 

that are hydrolytic and lignolytic in nature to catalyze in synergy.  

 

 

To enable the accessibility of the enzymes to the fibres for degradation, various 

works suggested pretreatment using chemicals (Sun and Cheng, 2002; Auxenfans et al., 

2017). However, such harsh treatments result in losses of sugars from cellulose and 

hemicellulose, and the lignin can be degraded into inhibitory products (Mussatto and 

Roberto, 2004). The size reduction process which is a form of physical pretreatment 

enables enzymatic conversion of biomass (Ang et al., 2015a). Besides physical process, 

biological treatment for lignin degradation is an oxidative process, involving three major 

enzymes, lignin peroxidases (LiP), manganese peroxidases (MnP) and laccases (Lac). 

LiP and MnP oxidize the substrate by two successive one-electron oxidation steps with 

cation radical formation as intermediate (Sánchez, 2009).  

 

 

Cellulases and xylanases are two major hydrolytic enzymes responsible for 

degradation of lignocellulosic resources into biosugar. Cellulases include 

endoglucanase, exoglucanase and β-glucosidase that act synergistically to degrade 

cellulose to glucose. Xylanase is an enzyme that catalyses the hydrolysis of xylan 

backbone to produce pentose sugars as xylose and arabinose, and hexose sugar as 

mannose and galactose (Chávez et al., 2006). The glucose and xylose produce as a result 

of cellulases and xylanases action become available as substrate for producing biofuel. 

 

 

The cost of enzyme production together with the raw material are the two leading 

contributors to the overall biosugar and biofuel cost such as bioethanol (Wingren et al., 
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2003; Galbe and Zacchi, 2007). In the year 2010, the demands in industrial enzymes in 

the global market were valued at $3.6 billion; which grow at a compounded annual 

growth rate of 9.1% to reach $6 billion by 2016 (Dewan, 2012). World record on sugar, 

estimated in 2010 that the production of sugar was 159 7 million metric tons (MMT) 

below the need estimate of 161.7 MMT, and 178 MMT less than 181 MMT in 2017 

(Licht, 2017). Global consumption continues to expand between 1.5 to 2%, driven 

largely by population growth (Nyberg, 2006). Since the key obstacle hindering biosugar 

and biofuel production from biomass is the general absence of low cost technology for 

lignocellulosic degrading enzyme production and the development of an economically 

viable hydrolysis process (Kuhad et al., 2016). Development of an economically viable 

lignocellulosic degrading enzyme for the hydrolysis process is a key solution to 

identifying competent strains that can degrade lignocellulosic biomass considering the 

vast majority of the fungal kingdom remains unexplored for industrial applications 

(Seppälä et al. (2017). 

 

 

Filamentous fungi are good producers of extracellular lignocellulolytic enzymes 

and can be cultivated very easily (Adhyaru et al., 2015). Research findings have 

indicated that the fermentation method can markedly influence enzyme production 

(Elisashvili et al., 2001). Solid state fermentation has been ranked as the most suitable 

method for fungi cultivation and lignocellulolytic enzyme production, because SSF 

growth condition is similar to their natural niche (Pandey et al., 1999). The productions 

of lignocellulosic degrading enzymes in the form of cellulase, xylanase, ligninase from 

oil palm biomass such as oil palm trunk (Ang et al., 2015b) Palm kernel (Kheng and 

Omar, 2005), palm oil mill (Prasertsan et al., 1997), oil palm empty fruit bunch 

(Ottenheim et al., 2014) have been intensively studied. None of the available literature 

reported the production of lignocellulose degrading enzymes using treated or untreated 

mesocarp fibre. This is a clear indication that the biomass in question has been pint-sized 

in literature and requires exploration to unfold its biotechnological potentials. As a 

lignocellulose they may serve as an inducer for producing large titres of low cost 

enzymes that can be applied in producing biosugar at increased solid loading. 
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1.2 Statement of the problem 

 

 

Global record on sugar forecast has shown that in 2010 the production of sugar 

was 159 MMT below the consumption value of 161.7 million metric tons (MMT) while 

in 2011 the production was 165.4 MMT against the consumption 162.7 MMT. In 2016 

production was 174.7 below the consumption value of 180. The production in 2017 was 

178 MMT below consumption 181 MMT in food and biofuel industries (Licht et al., 

2017). This imbalance of consumption against the production is posing a threat in world 

sugar production that necessitates a drastic measure to upset the production and the 

consumption. Conversely, oil palm production has been on increase as a result of global 

demand, which caused a significant increase in the area of cultivation (Yacob, 2008). 

For that reason, it is believed that enormous sugar polymer rich lignocellulose biomass 

will consistently be generated in the mills. 

 

 

Lignocellulosic wastes could be harnessed as potential raw materials for 

economic production of high added value products such as biosugar, biocatalysts, and 

biofuel that currently remains the subject of considerable attention (Iqbal and Kamal, 

2012). The high cost of converting lignocellulose by enzymatic hydrolysis is a recurring 

problem that limits the production of biosugar and to subsequently bioethanol from a 

renewable biomass (Hess, 2008). Low hydrolysis rates remain the main obstacle in 

lignocellulosic biosugar production with enzymes, which could be improved through 

using more digestible feedstocks in combination with increases in lignocellulase activity. 

To fully realize the potential of sustainable biosugar production, there is a great need to 

identify novel organisms, enzymes and molecules with activities that can be harnessed 

for a range of breakdown and lignocellulosic conversion applications (Monciardini et 

al., 2014, Seppälä et al., 2017). Thus, the need for the exploration of a new type of 

fungus that can produce enzymes to convert lignocellulosic biomass to biosugar.   
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1.3 Research objectives 

 

 

This study aims at finding a new source of biosugar and competent 

lignocellulosic degrading fungi for biosugar production. In order to achieve the 

mentioned objectives, the following need to be addressed: 

 

I. To characterize the composition of lignin, cellulose and hemicellulose of oil 

palm mesocarp fibre (OPMF). 

II. To isolate, screen and identify lignocellulosic degrading fungi from oil palm 

mesocarp fibre using 18S rDNA gene sequencing. 

III. To screen the significant parameters influencing the production of lignocellulosic 

degrading enzymes using 2-Level fractional factorial design.  

IV. To optimize the significant parameters influencing the production of 

lignocellulosic degrading enzymes by using Response Surface Methodology 

(RSM). 

V. To compare the performance of crude lignocellulolytic degrading enzyme 

cocktail produced by Rhizomucor pusillus AK2 and commercial enzyme in 

saccharification of oil palm mesocarp fibre for biosugar production.  

 

 

 

 

1.4 Scope of research 

 

 

The research was conducted within the following limits: 

 

I. The characterization of OPMF was conducted to determine the content of lignin, 

cellulose and hemicellulose.  
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II. The media used for the fungi isolation was Potato dextrose agar (PDA) agar. 

Qualitative screening to determine the potential lignocellulase enzymes 

producers was based on hydrolysis zones on Carboxymethyl cellulose (CMC) 

and Xylan agar plates. Quantitative screening was conducted based on CMCase, 

FPase, β-glucosidase, xylanase and manganese peroxidase activities via solid 

state fermentation of OPMF. Identification of the potential isolates based on 18S 

rRNA gene sequencing was based on universal primer ITS 1 (F) and ITS 4 (R).  

III. The parameters screen for the 2-Level fractional factorial design was based on 

physiological factors, namely; pH, temperature, incubation days, inoculum size 

and moisture content. The available software used for the experiment was Design 

expert software (version 7.0). 

IV. Optimization of significant factors was carried using Central composite design 

(CCD) of Response surface methodology (RSM) based on the data generated by 

Design expert software (version 7.0). 

V. Evaluation of the crude lignocellulosic degrading enzyme cocktail produced by 

Rhizomucor pusillus enzyme was evaluated alongside two commercial enzymes 

celluclast and viscozyme based on the production of biosugar from OPMF.  

  

 

 

 

1.5 Significance of study 

 

 

Residues from oil palm mill such oil palm mesocarp fibre (OPMF) is a 

lignocellulose waste containing cellulose and hemicellulose. Fundamentally, cellulose 

and hemicellulose polymers are pools of fermenting sugars that can be used by various 

industries such as biofuel, pharmaceuticals and food and beverages. Enzymatic 

conversion of the OPMF to the biosugar does not inflict any pollution problem. OPMF 

seems to be a bioresource which can be entirely converted into biosugar, a concept of 

―waste to wealth approach‖. The growing interest on use of OPMF for bioconversion to 
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biosugar is justified as the substrate is of lower cost and renewable. The study gives 

insight into the better combination of parameters from the use of Central Composite 

Design (CCD) statistical optimization in achieving enzymes production, thus paving a 

way for reduced enzyme cost a major factor contributing to higher biosugar and biofuel 

cost. This study provides a better understanding of the synergy between cellulases and 

hemicellulases application via the saccharification of OPMF substrates, thereby enable 

effective biosugar production at elevated solid loading in enzymatic hydrolysis.  

 

 

Furthermore, every palm oil processing company is aiming at avoiding 

unnecessary waste accumulation. The application of OPMF in fermentation and 

saccharification will improve the revenue of the palm oil mill industry. By and large 

contribute to the nation's economy in addition attaining environmental sustainability.  
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