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ABSTRACT 

 

 

 

 

Microbially induced corrosion (MIC) occurs due to the presence of microorganisms 

such as bacteria, which form biofilms on the metal surface that can cause corrosion. Among 

the different methods that have been used to protect against MIC, coating has gained more 

attention because of its ease of application, low-cost and high effectiveness. Recent research 

has shown that self-healing coatings concept based on releasing healing agent when micro-

cracks are initiated in the coating surface and hydrophobic silicon oxide based organic and 

inorganic coatings have great potential for use as antifouling coating. The aim of this research 

is to investigate the effects of self-healing and silicon oxide (SiO) coatings on inhibiting MIC 

in saline environment. The self-healing coating was prepared via interfacial polymerization of 

zeolite, polyaniline, and zeolite/polyaniline composite and then encapsulated with urea 

fomaldehyde as a shell material to form the microcapsules and embedded in epoxy to form 

coating material which was applied on mild steel substrate. The SiO coating, on the other 

hand, was deposited on mild steel substrate using radio frequency (RF) magnetron sputtering 

physical vapor deposition (PVD) method with different parameters of RF power, temperature, 

pressure and deposition time in order to achieve optimum parameters based on minimum 

surface roughness and good adhesion. The surface topography and roughness were examined 

by atomic force microscope (AFM), while the thickness and morphology of the coatings were 

observed using field emission scanning electron microscope (FESEM) equipped with energy 

dispersive spectrometer (EDS). The adhesion test was performed using nano scratch test for 

SiO coating and Pull off test for self-healing coating and supported by Rockwell C test. The 

corrosion behavior was investigated through salt spray test for 28 days and immersion tests in 

nutrient rich simulated seawater (NRSS) medium with pseudomonas aeruginosa bacteria for 

70 days. The Tafel electrochemical test and electrochemical impedance spectroscopy (EIS) 

was performed on both bare and coated steel samples. AFM results clearly revealed that by 

varying the sputtering parameters has a strong influence on the surface roughness of the 

deposited SiO coating in which its thickness varied between 30 nm to 50 nm. The thickness 

for self-healing coating was between 50 µm to 175 µm. From the adhesion results, both 

coating methods produced superior adhesion on steel substrates. Fourier transform infrared 

spectroscopy (FTIR) results show the successful encapsulation of the three synthesized 

materials. The total self-healing occurred after the release of the core material when the 

capsule was ruptured after 21 days left at room temperature. The specimen exposed in salt 

spray chamber exhibited excellent corrosion resistance for all investigated coating materials, 

while, the specimens immersed in NRSS medium with pseudomonas aeruginosa bacteria 

showed varying anti-corrosion properties. Tafel results show that the lowest corrosion rate 

was observed for SiO coating with a value of 0.219 mm/yr, followed by encapsulated 

zeolite/polyaniline composite self-healing embedded in epoxy of 0.334 mm/yr. EIS results 

show that among all the coatings, encapsulated zeolite/polyaniline composite self-healing 

embedded in epoxy coating has the highest impedance modulus (Z) at a frequency of 0.01 of 

7800 ohms. In conclusion, zeolite/polyaniline composite self-healing coating is the best 

among all the coating materials which shows superior anticorrosive and MIC inhibition 

property. 
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ABSTRAK 

 

 

 

 
Kakisan dipengaruhi mikrob (MIC) berlaku disebabkan oleh kehadiran mikroorganisma 

seperti bakteria, yang membentuk biofilem pada permukaan logam yang boleh menyebabkan 

kakisan. Terdapat  kaedah berbeza yang telah digunakan untuk melindungi permukaan daripada 

MIC, kaedah salutan yang menjadi perhatian kerana mudah untuk digunakan, kos yang rendah 

dan keberkesanan yang tinggi. Kajian terkini menunjukkan bahawa konsep penyembuhan sendiri 

salutan melalui pelepaskan ejen-ejen penyembuhan apabila retakan mikro bermula di permukaan 

lapisan dan silikon oksida (SiO) hidrofobik berasaskan lapisan organik dan bukan organik 

mempunyai potensi yang besar untuk digunakan sebagai salutan anti-cemar. Tujuan kajian ini 

adalah untuk mengkaji kesan salutan penyembuhan sendiri dan salutan silikon oksida (SiO) bagi 

menghalang kesan MIC dalam persekitaran masin. Lapisan penyembuhan sendiri telah disediakan 

melalui pempolimeran antara muka dengan menggunakan zeolit, polyanilina dan komposit zeolit/ 

polianilina dan kemudian disalut dengan urea formaldehid sebagai cengkerang untuk membentuk 

kapsul mikro yang dimasukkan ke dalam epoksi untuk membentuk salutan yang digunakan pada 

permukaan keluli. Manakala lapisan SiO telah disadur pada permukaan keluli sederhana 

menggunakan frekuensi radio (RF) kaedah pengenapan wap fizikal (PVD) permercikan 

magnetron dengan parameter kuasa RF, suhu, tekanan dan masa pemendapan untuk mencapai 

parameter optimum berdasarkan kekasaran permukaan minimum dan lekatan yang baik. 

Topografi permukaan dan kekasaran telah diuji dengan mikroskop daya atom (AFM), manakala 

ketebalan dan morfologi lapisan dianalisis menggunakan mikroskop elektron imbasan medan 

pancaran (FESEM) yang dilengkapi dengan spektroskopi tenaga-serakan sinar-x (EDS). Ujian 

rekatan dilakukan dengan menggunakan ujian calar nano untuk lapisan SiO dan ujian tarikan 

untuk salutan penyembuhan sendiri dan disokong dengan ujian kekerasan Rockwell C. Kadar 

kakisan ditentukan melalui ujian semburan garam selama empat minggu dan ujian rendaman di 

dalam larutan nutrien air laut simulasi (NRSS) dengan Pseudomonas aeruginosa bakteria selama 

10 minggu. Ujian elektrokimia Tafel dan spectroskopi impedans elektrokimia (EIS) telah 

dilakukan ke atas kedua-dua sampel keluli dan keluli tersalut. Keputusan AFM jelas menunjukkan 

bahawa dengan  parameter pemercikan yang berbeza-beza memberi pengaruh yang besar ke atas 

kekasaran permukaan salutan SiO yang dienapkan dengan tebal yang berbeza diantara 30 hingga 

50 nm. Ketebalan untuk lapisan pemulihan sendiri adalah antara 50 hingga 175 mikron. Daripada 

keputusan ujian rekat, kedua-dua kaedah salutan telah menghasilkan rekatan yang baik pada 

substrak keluli. Spektroskopi Fourier penjelmaan inframerah (FTIR) menunjukkan keputusan 

terbaik bagi ketiga-tiga bahan mikro kapsul yang disintesis. Penyembuhan penuh terjadi selepas 

pembebasan bahan teras apabila kapsul pecah selepas 21 hari dibiarkan pada suhu bilik.Spesimen 

ujian semburan garam menunjukkan ketahanan kakisan yang sangat baik untuk semua bahan 

salutan manakala, spesimen ujian rendaman dalam NRSS dengan bakteria Pseudomonas 

aeruginosa menunjukkan pelbagai ciri-ciri anti-kakisan. Keputusan ujian Tafel menunjukkan 

bahawa kadar kakisan terendah telah diperhatikan untuk salutan SiO dengan nilai 0.219  

mm/tahun, diikuti salutan penyembuhan sendiri komposit zeolit/ polianilina di dalam epoksi 

dengan nilai 0.334 mm/tahun. Keputusan EIS menunjukkan bahawa di kalangan semua salutan, 

salutan penyembuhan sendiri komposit zeolit/ polianilina di dalam epoksi mempunyai modulus 

impedans (Z) yang tertinggi pada frekuensi 0.01 daripada 7800 ohms. Sebagai kesimpulan, 

salutan penyembuhan sendiri komposit zeolit/ polianilina adalah yang terbaik dikalangan semua 

bahan salutan, iaitu menunjukkan anti-kakisan dan sifat perencatan MIC yang unggul. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background  

 

 

In the majority of engineering structures operated in the marine environment, 

microbiological induced corrosion (MIC) is of great concern [1]. The issue of MIC 

could be particularly dangerous in marine structures such as ships and maritime 

platforms as well as offshore jetties and rigs [2]. Such constructions have to be 

protected against attack from the main components of the marine setting such as sea 

water, temperature, and biological attack, also referred to as ―biofouling‖. Indeed, 

biofouling is the colonization of submerged structure surfaces by organisms such as 

barnacles, bacteria, and algae. Maritime biofouling is a long-standing and pricey 

problem for the marine industry because the development of fouling assemblies on ship 

hulls, for instance, raises drag, decreases maneuverability, and increases fuel use and 

greenhouse gas release [3-6], leading to both high financial and ecological expenses [7]. 

Maritime fouling, or the settlement and growth of marine organisms on waterlogged 

structures, is predicted to have a worldwide expenditure of above $3 billion yearly 

[8]. Shipping accounts for approximately 90% of global business, and seaborne trade 

has increased by four-fold during the previous 40 years [9, 10]. Generally, MIC is 

not a novel kind of corrosion. Most commonly it appears in the shape of localized 
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corrosion, whether pitting or crevice. MIC is instigated, extended, or proliferated 

because of the existence of microorganisms such as bacteria [11, 12]. 

 

 

Pseodomonas aeruginosa is one of the dominant bacterium found in the 

maritime surrounding, and is an aerobic slime-forming bacteria that creates a biofilm 

coat on the surface of the steel. The reaction of the biofilm layer with the steel 

surface and the generation of differential aeration cells provide conditions on the 

steel surface that instigate and hasten the corrosion process. The production of these 

concentration cells is harmful to the integrity of the oxide layer and increases the 

vulnerability of steels to corrosion [13-15]. 

 

 

Numerous conventional antifouling systems are in the form of paints, which 

is an inclusive word covering a diversity of substances: lacquers, enamels, varnishes, 

surfacers, undercoats, primers, fillers, sealers, plugs, and several others. The use of 

non-environmentally friendly and toxic antifoulants on ship hulls is one of the most 

widely used techniques of managing fouling even though biocides such as lead, 

mercury, arsenic, and their natural derivatives are banned owing to environmental 

concerns. Antifoulants comprise one of the numerous additives typically 

incorporated in the top-layer paint of a maritime defensive coating system [2].  

 

 

In recent years, a new technique has shown a great promise for autonomic 

healing of micro-cracks and mechanical damage, this technique is the use of self-

healing polymers [16]. Self-healing coatings are an extremely enhanced group of 

smart substances in which the aim is to repair the micro-cracks completely, in a 

passive way, with no necessity for detection or any kind of foreign interference [17-

21]. 

 

 

A different method of mitigating against biofouling is the physical vapor 

deposition (PVD) coating approach, which features a set of diverse methods that can 

be employed to deposit silicon oxide coating onto steel substrates. PVD comprises 



3 

 

several vacuum deposition approaches and is a universal term employed to explain a 

process that deposits thin films through the concentration of a vaporized form onto 

diverse substrate surfaces. The basic process of PVD falls into two universal classes: 

sputtering and evaporation. The commercial applications of PVD methods vary over 

a broad range of uses from decorative, to extreme temperature superconducting 

layers [22]. 

 

 

 

 

1.2 Problem Statement 

 

 

MIC of immersed structures in maritime environments is the effect of 

biological organisms colonization and adhesion on the surface. Given that the 

significant bio-interfacial processes which lead to fouling are nano-scale or micro-

scale in size, the surface properties of the structures to manage biofouling are 

assumed to be on a similar size scale. An area of specific interest in recent years is 

the use of nanotechnology in combating MIC. There is a necessity to find 

ecologically harmless coatings to hinder MIC successfully. Certainly, current 

research has demonstrated the significant of coating protection with minimal 

environmental impact of self-healing coatings based on the release of healing agents 

when micro-cracks are instigated in the coated surface. Silicon oxide-based organic 

and inorganic coatings in addition to diamond-like carbon coatings have shown great 

potentials to combat antifouling with fewer negative impacts on the environment. 

The new methods are based on ―fouling release‖ and ―contact killing‖. The former 

method, does not involve the discharge of biocides in maritime water and therefore 

should be ecologically responsible. The ―contact killing‖ method may be considered 

a favorable approach, and polycationic coatings are utilized to hinder MIC using this 

method. Nevertheless, to attain such an objective, the coating should be modified so 

its surface properties have excellent smoothness and corrosion resistance, high 

hardness, good thermal stability, and low cost. Zeloite and polyaniline have good 

adhesion to the steel substrate and only destroy the microorganisms that come into 

contact with them without leaking out, while silicon oxide owing to its unique 
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characteristics of providing a smooth film which could minimize the adhesion of the 

microorganism on the steel substrates. Due to their biocide behavior and 

anticorrosive properties as well as environmental responsiveness, silicon oxide, 

polyaniline, and zeolite are excellent candidates to protect metal surfaces against 

MIC. 

 

 

 

 

1.3 Objectives of the Research 

 

 

The aim of this research work is to investigate on coatings that would be 

capable of inhibiting MIC. Foremost, the research induces an exploration on the 

mechanisms of MIC on steel surfaces in bacteria-inoculated medium, which could be 

helpful to facilitate the use of efficient procedures to mitigate against MIC. Next, the 

research is also aimed at exploring the capabilities of the encapsulated zeolite, 

polyaniline, zeolite/polyaniline composite self-healing embedded in epoxy and 

silicon oxide hydrophobic coatings strategies in inhibiting MIC. The output of this 

research is anticipated to enhance the properties of MIC inhibition of coated steel 

that is exposed to bacteria-inoculated medium, and also to provide an 

environmentally friendly and suitable coating for the mitigation against MIC of steels 

in the marine environment. 

 

 

The specific objectives of the research include: 

 

(i) To develop encapsulated zeolite, polyaniline, zeolite/polyaniline 

composite self-healing and silicon oxide coatings that can be utilized 

as coating materials to inhibit microbial-induced corrosion. 

(ii) To charcterise the properties of newly developed self-healing and 

silicon oxide coatings on mild steel substrates. 

(iii) To evaluate the performance of self-healing and silicon oxide coatings 

as MIC inhibitive coatings. 
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1.4 Scope of the Research 

 

 

The scope of research includes: 

 

(i) Synthesis of the self-healing core substances encompassing 

polyaniline, zeolite, and zeolite-polyaniline composites and their 

microcapsules by the in-situ chemical polymerization technique and 

applying them on steel substrates. 

(ii) Deposition of silicon-oxide based coatings on steel substrates with 

enhanced properties using the physical vapor deposition method. 

(iii) Characterization of the properties of synthesised and deposited 

coatings, including hardness and coating adhesion, using various 

characterization techniques such as Atomic Force Microscopy (AFM), 

X-Ray Diffraction (XRD), Field Emission Scanning Electron 

Microscopy (FESEM), X-ray, Energy Dispersive Spectroscopy (EDS), 

Fourier Transform Infrared Spectroscopy (FTIR), Electrochemical 

Impedance Spectroscopy (EIS), and Electrochemical Tafel Analysis. 

(iv) Performance of biological assays to assess the antifouling capacities of 

the developed coatings versus P. aeruginosa microorganisms. 

(v) Determine the corrosion rate using immersion tests 

(vi) Microscopic examination of samples upon completion of immersion 

tests using standard characterization equipment. 

 

 

 

 

1.5 Significance of Research 

 

 

Many types of coatings used by the marine industries are toxic and affect the 

marine life. Therefore, many researchers are investigating on alternative coatings 

which are friendly to the environment but at the same time are effective on protecting 

the metal against MIC. 
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The fundamental goal of this research is to investigate the performance of 

encapsulated based self-healing and hydrophobic concept by physical vapor 

deposition coated steel substrates in inhibiting MIC when exposed to bacteria-

inoculated medium. Therefore, the outcome of this study would benefit various 

sectors, particularly the marine, gas, and oil industries. 
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