ZEOLITE/POLYANILINE BASED SELF-HEALING AND SILICON OXIDE COATINGS FOR MICROBIALLY INDUCED CORROSION INHIBITION

ABDELSALAM IBRAHIM SALEM AHDASH

UNIVERSITI TEKNOLOGI MALAYSIA

ZEOLITE/POLYANILINE BASED SELF-HEALING AND SILICON OXIDE COATINGS FOR MICROBIALLY INDUCED CORROSION INHIBITION

ABDELSALAM IBRAHIM SALEM AHDASH

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering UniversitiTeknologi Malaysia

> > JUNE 2016

"To my beloved ones"

ACKNOWLEDGEMENT

First of all I would like to thank to Allah, the most beneficent, the most merciful, for all his guidance and giving while I was preparing, doing and finishing this research project.

I would like to express my deep gratitude to my supervisor, Prof. Dr. Esah Hamzah for her guidance, suggestions, and invaluable encouragement in my study and throughout the development of this thesis.

I would like also to thank my former co-supervisor, Prof. Dr. Ali Ourdjini from Ottawa University, Canada for his invaluable supervision, comments and suggestions to the research work. Also, my appreciation to my Co-Supervisor, Assoc. Prof. Dr Shahrir Hashim from the Faculty of Renewable Energy and Chemical Engineering, UTM. Without their invaluable advice, kind encouragement and trust, I would not have reached this point.

I would like to acknowledge the Malaysian Ministry of Higher Education (MOHE) and UniversitiTeknologi Malaysia for providing the financial support and facilities for this research under Grant No. QJ130000.2524.03H16. I am also grateful for the UniversitiTeknologi Malaysia for awarding the international doctorate fellowship (IDF) through this research.

I am most grateful to my dear family and close friends for their support, patience and encouragements during these years.

ABSTRACT

Microbially induced corrosion (MIC) occurs due to the presence of microorganisms such as bacteria, which form biofilms on the metal surface that can cause corrosion. Among the different methods that have been used to protect against MIC, coating has gained more attention because of its ease of application, low-cost and high effectiveness. Recent research has shown that self-healing coatings concept based on releasing healing agent when microcracks are initiated in the coating surface and hydrophobic silicon oxide based organic and inorganic coatings have great potential for use as antifouling coating. The aim of this research is to investigate the effects of self-healing and silicon oxide (SiO) coatings on inhibiting MIC in saline environment. The self-healing coating was prepared via interfacial polymerization of zeolite, polyaniline, and zeolite/polyaniline composite and then encapsulated with urea fomaldehyde as a shell material to form the microcapsules and embedded in epoxy to form coating material which was applied on mild steel substrate. The SiO coating, on the other hand, was deposited on mild steel substrate using radio frequency (RF) magnetron sputtering physical vapor deposition (PVD) method with different parameters of RF power, temperature, pressure and deposition time in order to achieve optimum parameters based on minimum surface roughness and good adhesion. The surface topography and roughness were examined by atomic force microscope (AFM), while the thickness and morphology of the coatings were observed using field emission scanning electron microscope (FESEM) equipped with energy dispersive spectrometer (EDS). The adhesion test was performed using nano scratch test for SiO coating and Pull off test for self-healing coating and supported by Rockwell C test. The corrosion behavior was investigated through salt spray test for 28 days and immersion tests in nutrient rich simulated seawater (NRSS) medium with pseudomonas aeruginosa bacteria for 70 days. The *Tafel* electrochemical test and electrochemical impedance spectroscopy (EIS) was performed on both bare and coated steel samples. AFM results clearly revealed that by varying the sputtering parameters has a strong influence on the surface roughness of the deposited SiO coating in which its thickness varied between 30 nm to 50 nm. The thickness for self-healing coating was between 50 µm to 175 µm. From the adhesion results, both coating methods produced superior adhesion on steel substrates. Fourier transform infrared spectroscopy (FTIR) results show the successful encapsulation of the three synthesized materials. The total self-healing occurred after the release of the core material when the capsule was ruptured after 21 days left at room temperature. The specimen exposed in salt spray chamber exhibited excellent corrosion resistance for all investigated coating materials, while, the specimens immersed in NRSS medium with pseudomonas aeruginosa bacteria showed varying anti-corrosion properties. Tafel results show that the lowest corrosion rate was observed for SiO coating with a value of 0.219 mm/yr, followed by encapsulated zeolite/polyaniline composite self-healing embedded in epoxy of 0.334 mm/yr. EIS results show that among all the coatings, encapsulated zeolite/polyaniline composite self-healing embedded in epoxy coating has the highest impedance modulus (Z) at a frequency of 0.01 of 7800 ohms. In conclusion, zeolite/polyaniline composite self-healing coating is the best among all the coating materials which shows superior anticorrosive and MIC inhibition property.

ABSTRAK

Kakisan dipengaruhi mikrob (MIC) berlaku disebabkan oleh kehadiran mikroorganisma seperti bakteria, yang membentuk biofilem pada permukaan logam yang boleh menyebabkan kakisan. Terdapat kaedah berbeza yang telah digunakan untuk melindungi permukaan daripada MIC, kaedah salutan yang menjadi perhatian kerana mudah untuk digunakan, kos yang rendah dan keberkesanan yang tinggi. Kajian terkini menunjukkan bahawa konsep penyembuhan sendiri salutan melalui pelepaskan ejen-ejen penyembuhan apabila retakan mikro bermula di permukaan lapisan dan silikon oksida (SiO) hidrofobik berasaskan lapisan organik dan bukan organik mempunyai potensi yang besar untuk digunakan sebagai salutan anti-cemar. Tujuan kajian ini adalah untuk mengkaji kesan salutan penyembuhan sendiri dan salutan silikon oksida (SiO) bagi menghalang kesan MIC dalam persekitaran masin. Lapisan penyembuhan sendiri telah disediakan melalui pempolimeran antara muka dengan menggunakan zeolit, polyanilina dan komposit zeolit/ polianilina dan kemudian disalut dengan urea formaldehid sebagai cengkerang untuk membentuk kapsul mikro yang dimasukkan ke dalam epoksi untuk membentuk salutan yang digunakan pada permukaan keluli. Manakala lapisan SiO telah disadur pada permukaan keluli sederhana menggunakan frekuensi radio (RF) kaedah pengenapan wap fizikal (PVD) permercikan magnetron dengan parameter kuasa RF, suhu, tekanan dan masa pemendapan untuk mencapai parameter optimum berdasarkan kekasaran permukaan minimum dan lekatan yang baik. Topografi permukaan dan kekasaran telah diuji dengan mikroskop daya atom (AFM), manakala ketebalan dan morfologi lapisan dianalisis menggunakan mikroskop elektron imbasan medan pancaran (FESEM) yang dilengkapi dengan spektroskopi tenaga-serakan sinar-x (EDS). Ujian rekatan dilakukan dengan menggunakan ujian calar nano untuk lapisan SiO dan ujian tarikan untuk salutan penyembuhan sendiri dan disokong dengan ujian kekerasan Rockwell C. Kadar kakisan ditentukan melalui ujian semburan garam selama empat minggu dan ujian rendaman di dalam larutan nutrien air laut simulasi (NRSS) dengan Pseudomonas aeruginosa bakteria selama 10 minggu. Ujian elektrokimia Tafel dan spectroskopi impedans elektrokimia (EIS) telah dilakukan ke atas kedua-dua sampel keluli dan keluli tersalut. Keputusan AFM jelas menunjukkan bahawa dengan parameter pemercikan yang berbeza-beza memberi pengaruh yang besar ke atas kekasaran permukaan salutan SiO yang dienapkan dengan tebal yang berbeza diantara 30 hingga 50 nm. Ketebalan untuk lapisan pemulihan sendiri adalah antara 50 hingga 175 mikron. Daripada keputusan ujian rekat, kedua-dua kaedah salutan telah menghasilkan rekatan yang baik pada substrak keluli. Spektroskopi Fourier penjelmaan inframerah (FTIR) menunjukkan keputusan terbaik bagi ketiga-tiga bahan mikro kapsul yang disintesis. Penyembuhan penuh terjadi selepas pembebasan bahan teras apabila kapsul pecah selepas 21 hari dibiarkan pada suhu bilik.Spesimen ujian semburan garam menunjukkan ketahanan kakisan yang sangat baik untuk semua bahan salutan manakala, spesimen ujian rendaman dalam NRSS dengan bakteria Pseudomonas aeruginosa menunjukkan pelbagai ciri-ciri anti-kakisan. Keputusan ujian Tafel menunjukkan bahawa kadar kakisan terendah telah diperhatikan untuk salutan SiO dengan nilai 0.219 mm/tahun, diikuti salutan penyembuhan sendiri komposit zeolit/ polianilina di dalam epoksi dengan nilai 0.334 mm/tahun. Keputusan EIS menunjukkan bahawa di kalangan semua salutan, salutan penyembuhan sendiri komposit zeolit/ polianilina di dalam epoksi mempunyai modulus impedans (Z) yang tertinggi pada frekuensi 0.01 daripada 7800 ohms. Sebagai kesimpulan, salutan penyembuhan sendiri komposit zeolit/ polianilina adalah yang terbaik dikalangan semua bahan salutan, iaitu menunjukkan anti-kakisan dan sifat perencatan MIC yang unggul.

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE
	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	KNOWLEDGEMENT	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	TAB	BLE OF CONTENTS	vii
	LIST	Г OF TABLES	XV
	LIST	FOF FIGURES	xvii
	LIST	Γ OF ABBREVIATIONS	xxi
	LIST	Γ OF APPENDICES	xxii
1	INT	RODUCTION	1
	1.1	Research Background	1
	1.2	Problem Statement	3
	1.3	Objectives of Research	4
	1.4	Scope of Research	5
	1.5	Significance of Research	5
2	LITI	ERATURE REVIEW	7
	2.1	Introduction	7
	2.2	Corrosion	8
	2.3	Microbial-Induced Corrosion and Biofouling	12
		2.3.1 Bacteria	15
		2.3.1.1 Gram Positive Bacteria	16

		2.3.1.2 Gram Negative Bacteria	16
	2.3.2	Biofilm	17
	2.3.3	Differential Aeration Cell	19
	2.3.4	Corrosion Causing Bacteria	19
2.4	Mecha	nisms of Microbial-Induced Corrosion of Steel	20
	2.4.1	Microbial-induced Corrosion due to	
		Anaerobic Bacteria	21
		2.4.1.1 Sulphate Reducing Bacteria	21
		2.4.1.2 Iron Reducing Bacteria	23
	2.4.2	Microbial-Induced Corrosion System	
		Resulting from Aerobic Bacteria	24
		2.4.2.1 Metal Oxidizing Bacteria	24
		2.4.2.2 Slime Former Bacteria	25
	2.4.3	Microbial-Induced Corrosion Mechanism	
		through Extracellular Polymeric	
		Substances -Metal Interaction	26
2.5	Microb	bial-Induced Corrosion Caused by Pseudomonas	
	aerugii	nosa Bacteria	27
	2.5.1	Pseudomonas aeruginosa	27
		2.5.1.1 The Interaction of EPS of	
		Pseudomonas aeruginosa with Steel	28
		2.5.1.2 Function of Siderophore Produced	
		by Pseudomonas aeruginosa in Iron	
		Reduction	29
	2.5.2	Microbial-Induced Corrosion of Steels in	
		Presence of Pseudomonas aeruginosa	30
2.6	Microb	bial-Induced Corrosion Inhibition Methods	38
	2.6.1	Antibacterial Coatings	39
		2.6.1.1 Contact-Killing Strategy	40
		2.6.1.2 Adhesion-Resistance Strategy	41
		2.6.1.3 Biocide-Leaching Strategy	45
	2.6.2	Bi-functional Antibacterial Strategy	46
		2.6.2.1 Adhesion Resistance-Biocide	
		Leaching	47

		2.6.2.2	Biocide Leaching-Contact Killing	48
		2.6.2.3	Contact Killing -Adhesion	
			Resistance	49
2.7	Metho	ds of Coat	ings Application	49
2.8	Coatin	gs to Inhib	pit Microbial-induced Corrosion in	
		Marine E	nvironment	52
	2.8.1	Self-hea	ling Coatings	53
	2.8.2	Micro o	r Nanocapsules Embedment	53
	2.8.3	Micro o	r Nano-capsules Synthesis	54
	2.8.4	Self-Hea	aling Coatings as Anti-Fouling and	
		Corrosio	on Resistance Material	57
	2.8.5	Zeolite,	Polyaniline and Zeolite/Polyaniline	
		Compos	ite for Anti-Fouling Applications	59
2.9	Physic	al Vapor I	Deposition Coatings (PVD)	63
	2.9.1	Vacuum	Evaporation	64
	2.9.2	Sputter	Deposition	64
	2.9.3	Ion Plat	ing	65
		2.9.3.1	Cathodic Arc Deposition	66
		2.9.3.2	Electron Beam Physical Vapor	
			Deposition	66
		2.9.3.3	Evaporative Deposition	67
		2.9.3.4	Pulsed Laser Deposition (PLD)	67
		2.9.3.5	Sputter Deposition	68
	2.9.4	Silicon	Oxide as an Antifouling Coating	68
2.10	Summ	ary		69
RESI	EARCH	І МЕТНО	DOLOGY	71
3.1	Introd	uction		71
3.2	Prepar	ation of S	ubstrate Material	73
3.3	Prepar	ation of Se	elf-Healing Coatings	73
	3.3.1	Synthes	is of the Core Materials	73
	·	3.3.1.1	Functionalization of Zeolite	74
		2210	Synthesis of Polyaniline	75

		3.3.1.3 Synthesis of Zeolite/Polyaniline	
		Composite	76
	3.3.2	Preparation of Microcapsules Containing Core	
		Material (Zeolite, Polyaniline or	
		Zeolite/Polyaniline Composite)	79
3.4	Coating	g Process of Self-Healing Material	81
3.5	Silicon	Oxide Coating by Radio Frequency (RF)	
	Magnet	tron Sputtering	82
	3.5.1	Physical Vapor Deposition Parameters	83
	3.5.2	Deposition Process of Silicon Oxide Coating	
		by RF Magnetron Sputtering Physical Vapor	
		Deposition	83
3.6	Prepara	ation of the Nutrient Rich Simulated Seawater	
	(NRSS) Medium	85
3.7	Bacteri	al Inoculation in the Nutrient Rich Simulated	
	Seawat	er (NRSS) Medium	86
3.8	Corrosi	ion Test	88
	3.8.1	Immersion Test	89
	3.8.2	Electrochemical Test	91
	3.8.3	Salt Spray Corrosion Test	93
3.9	Charac	terization Techniques	93
	3.9.1	Analysis by Electron Microscopy (FESEM	
		and TEM)	95
	3.9.2	Analysis by X-Ray Diffractometry (XRD	
		Analysis)	95
	3.9.3	Analysis by Fourier Transform Infrared	
		Spectroscopy (FTIR)	96
	3.9.4	Differential Scanning Calorimetry (DSC)	96
	3.9.5	Analysis by Atomic Force Microscopy (AFM)	97
3.10	Mechai	nical Testing	97
	3.10.1	Rockwell C Adhesion Test for SiO ₂ Coating	97
	3.10.2	Nano-Scratch Test for SiO ₂ Coating	98
	3.10.3	Pull off Adhesion Test for Self-Healing	
		Coatings	98

RES	ULTS A	ND DISC	USSIONS	100
4.1	Introduction			
4.2	Microl	vial-Induce	ed Corrosion Behaviour of Bare Mild	
	Steel S	ubstrate ir	NRSS Solution	101
	4.2.1	Visual In	nspection	105
	4.2.2	Observa	tion Using Electron Microscope	106
	4.2.3	Determin	nation of Corrosion Rate	117
4.3	Effects	of Self-	Healing Coatings on the Microbial-	
	Induce	d Corrosic	on Behaviour of Mild Steel	120
	4.3.1	Self-hea	ling Coating with Zeolite	
		Microca	psules	121
		4.3.1.1	Microstructures and Properties of	
			Encapsulated Zeolite Self-healing	
			Embedded in Epoxy Coating	121
		4.3.1.2	Adhesion Property of Encapsulated	
			Zeolite Self-healing Embedded in	
			Epoxy Coating	125
		4.3.1.3	Performance of Encapsulated	
			Zeolite Self-healing Embedded in	
			Epoxy Coating	127
		4.3.1.4	Corrosion Behaviour of	
			Encapsulated Zeolite Self-healing	
			Embedded in Epoxy Coating in	
			3.5% NaCl Solution	130
		4.3.1.5	Microbial-Induced Corrosion	
			Behaviour of Encapsulated Zeolite	
			Self-healing Embedded in Epoxy	
			Coating	136
	4.3.2	Self-hea	ling Coating with Polyaniline	
		Microca	psules	142
		4.3.2.1	Microstructures and Properties of	
			Encapsulated Polyaniline Self-	
			healing Embedded in Epoxy	
			Coating	143

xi

4.3.2.2	Adhesion Property of Encapsulated	
	Polyaniline Self-healing Embedded	
	in Epoxy Coating	147
4.3.2.3	Performance of Encapsulated	
	Polyaniline Self-healing Embedded	
	in Epoxy Coating	149
4.3.2.4	Corrosion Behaviour of	
	Encapsulated Polyaniline Self-	
	healing Embedded in Epoxy	
	Coating in 3.5 % NaCl Solution	152
4.3.2.4	Microbial-Induced Corrosion	
	Behaviour of Encapsulated	
	Polyaniline Self healing	
	Embedded in Epoxy	
	Coating	158
Self-heal	ing Coating with Zeolite/Polyaniline	
Composi	te Microcapsules	165
4.3.3.1	Microstructures and Properties of	
	Encapsulated Zeolite/Polyaniline	
	Composite Self-healing Coating	166
4.3.3.2	Adhesion Property of Encapsulated	
	Zeolite/ Polyaniline Composite	
	Self-healing Embedded in Epoxy	
	Coating	170
4.3.3.3	Performance of Encapsulated	
	Zeolite/ Polyaniline Composite	
	Self-healing Embedded in Epoxy	
	Coating	172
4.3.3.4	Corrosion Behaviour of	
	Encapsulated Zeolite/ Polyaniline	
	Composite Self-healing Embedded	
	in Epoxy Coating in 3.5% NaCl	
	Solution	175

4.3.3

		4.3.3.5	Microbial-Induced Corrosion	
			Behaviour of Encapsulated Zeolite/	
			Polyaniline Composite Self-healing	
			Embedded in Epoxy Coating	181
4.4	Effects	of Silico	n Oxide Coating on the Microbial-	
	Induce	d Corrosio	n Behaviour of Mild Steel	188
	4.4.1	Effect of	f Radio Frequency (RF) on Surface	
		R	oughness and Adhesion on Silicon	
		C	xide Coating on Mild Steel	188
		4.4.1.1	Phase Analysis using X-ray	
			Diffraction (XRD)	188
		4.4.1.2	Topography and Surface Roughness	190
		4.4.1.3	Top Surface Analysis by EDS and	
			FESEM	192
		4.4.1.4	Adhesion Test Result Analysis	194
	4.4.2	Effect of	Temperature on Surface Roughness	
		and Adh	esion on Silicon Oxide Coating on	
		Mild Ste	el	198
		4.4.2.1	Phase Analysis using X-ray	
			Diffraction (XRD)	198
		4.4.2.2	Topography and Surface Roughness	200
		4.4.2.3	Top Surface Analysis by FESEM	202
		4.4.2.4	Adhesion Test Result Analysis	203
	4.4.3	Effect of	Pressure on Surface Roughness and	
		Adhesion	n on Silicon Oxide Coating on Mild	
		Steel		206
		4.4.3.1	Phase Analysis using X-ray	
			Diffraction (XRD)	206
		4.4.3.2	Topography and Surface Roughness	207
		4.4.3.3	Top Surface Analysis by FESEM	210
		4.4.3.4	Adhesion Test Result Analysis	211
	4.4.4	Effect	of Deposition Time on Surface	
		Roughne	ss and Adhesion on Silicon Oxide	
		Coating	on Mild Steel	213

			4.4.4.1	Phase	Analysis	using	X-ray	
				Diffract	tion (XRD)			214
			4.4.4.2	Topogr	aphy and Su	rface Ro	ughness	215
			4.4.4.3	Top Su	rface Analys	is by FE	SEM	217
			4.4.4.4	Adhesi	on Test Resu	It Analy	sis	218
		4.4.5	Corrosic	on Behavi	our of Silico	n Oxide	Coating	
			in 3.5%	NaCl Sol	ution			223
		4.4.6	Microbia	al-Induce	d Corrosio	n Behav	vior of	
			Silicon (Oxide Coa	ating Using I	PVD		228
	4.5	Summ	ary					233
5	CON	JCI USI	ONS ANI) RECON	MMFNDAJ	JONS F	OR	
5	EUT	ULUSI VIDE W	ONS ANI				UK	244
	FUI 5 1	Introdu	UKK					244
	5.1	Introd		. –				244
	5.2	Recon	nmendation	ns for Fut	ure			247
REFEREN	CES							248
Appendices	A - C						26	9 - 272

LIST OF TABLES

TITLE

PAGE

2.1	Industries known to be influenced by MIC	13
2.2	Occurrence of MIC in energy plants	14
2.3	Common microorganisms which caused MIC	15
2.4	Common properties of silicon oxide coating by	
	PVD	69
3.1	Variable parameters used in the RF magnetron	
	sputtering PVD method	83
3.2	PVD parameters with different values of RF power	
	for silicon oxide deposition on mild steel substrate	84
3.3	PVD parameters with different values of	
	Temperature on mild steel substrate	84
3.4	PVD parameters with different values of pressure	
	on mild steel substrate	85
3.5	PVD parameters with different values of deposition	
	time on mild steel substrate	85
3.6	NRSS medium components in 1 liter of distilled	
	water	86
3.7	Types of samples used for immersion test	89
3.8	Salt spray test samples and parameters	93
4.1	Chemical composition of mild steel substrate	101
4.2	Weight loss of uncoated mild steel substrate	
	immersed in sterile medium	117

4.3	Weight Loss of uncoated mild steel substrate	
	immersed in bacteria-inoculated medium	117
4.4	Weight loss of bare mild steel substrate after salt	
	spray test	119
4.5	Average surface roughness (Ra) for different RF	
	values for carbon steel substrates coated with	
	silicon oxide	192
4.6	Average surface roughness (Ra) for different	
	temperature oh the PVD process for silicon oxide	
	coating,	202
4.7	Average surface roughness (Ra) for different	
	pressures for carbon steel substrates coated with	
	SiO	210
4.8	Average surface roughness (Ra) for different	
	deposition time values for carbon steel substrates	
	coated with SiO	217

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
2.1	A schematic diagram of how coating minimizes the	8
	bacterial adhesion on the metal surfac	
2.2	A typical corrosion in pipeline system	9
2.3	Free energy curve of the metal in diverse forms	9
2.4	Refining corrosion cycle	10
2.5	Schematic of the electrochemical character of	
	oxidization reaction in acidic environment	11
2.6	Schematic of the electrochemical character of	
	oxidization procedure in alkyd environments	11
2.7	Diagrammatic summary of the various types of	
	corrosion	12
2.8	Schematic of biofilm formation stages	17
2.9	Schematic demonstration of the cathode	
	depolarization response of a ferrous substance in an	
	oxygenated biofilm presence	18
2.10	Schematic of differential cell	19
2.11	Sulphate-reducing bacteria (anaerobic bacteria)	22
2.12	Cathodic depolarization of iron resulting from SRB	23
2.13	Schematic of corrosion reactioin under tubercles	
	created by metal-depositing bacteria	25
2.14	Pseudomonas aeruginosa (aerobic bacteria)	27
2.15	Chemical arrangement of pyochelin, the siderophor	
	of P. aeruginosa	30

2.16	Atomic energy microscopy pictures of the presence	
	of pits on the oxidized stainless steel surfaces 304	
	coupon following dissimilar exposure periods: (a)	
	14 days, (b) 28 days, and (c) 49 days	31
2.17	Tafel plots for the coupon 304 SS surfaces in	
	existence of Pseudomonas-inoculated medium	
	after (a) short-term exposure of 7, 14, 21, and 35	
	days, and (b) long-term exposure of 49, 63, and 77	
	days	32
2.18	SEM micrograph and EDX spectra of the pits	
	created on the coupon 304 S surfaces in existence	
	of Pseudomonas bacteria after 28 days of exposure	33
2.19	Atomic force microscopy micrographs of biofilm	
	layer created on bare substrates of 304 SS	
	following (a) 3 days, 7days, (c) 14 days, (d) 28	
	days and (e) 42 days in Pseudomonas medium	35
2.20	Atomic force microscopy micrographs of pits	
	formed on 304 SS substrates (a) 14 days and (b) 49	
	days of exposure into Pseudomonas medium	36
2.21	(a) AFM micrograph of pitting damage following	
	49 days of exposure with microorganism NRSS	
	inoculated matrix; (b) SEM micrograph of biofilm	
	layer of P. aeruginosa created on the 304 substrate	
	of stainless steel following 21 days of exposure in	
	bacteria inoculated NRSS medium	38
2.22	The main strategies to combat antimicrobial	
	surface	39
2.23	The adhesion of bacteria and biofilm formation on	
	the metal surface	41
2.24	Schematic of Hydrophobic marine antifouling	
	coating approach	44

2.25	Schematic of self-healing process: (a) Self-healing	
	coating containing microencapsulated catalyst	
	(yellow) and phase-separated healing agent	
	droplets (blue) in a matrix (light orange) on a	
	metallic substrate (grey); (b) Damage to the coating	
	layer releases catalyst (green) and healing agent	
	(blue); (c) Mixing of healing agent and catalyst in	
	the damaged region and (d) Damage healed,	
	protecting the substrate from the	
	environmentstructural composite matrix having a	
	catalyst able of polymerizing the healing agent	54
2.26	Contrast between the dissimilar encapsulation	
	techniques	55
2.27	Encapsulation techniques for organizing UF	
	capsules having DCPD by means of sonication. (a)	
	Procedure flow chart; (b) Chart illustrating the	
	emulsion before sonication; (c) in sonication	56
2.28	Size circulation of manufactured capsules readied	
	(a) with no sonication method, (b) having	
	sonication method	57
2.29	Visual micrograph of cross section of	
	microcapsules self-healing coating	58
2.30	The chemical structure for zeolite/polyaniline	
	composite	60
2.31	Schematics of the deposition chamber for RF	
	magnetron sputtering technique	63
2.32	Schematics of the film deposition by using	
	magnetron sputtering technique	65
3.1	Flowchart for the research methodology	72
3.2	(a) A schematic diagram of self-healing	
	microcapsule consists of core material and shell	
	material and (b) A schematic of self-healing	
	coating containing microcapsules on substrate	73

3.3	Flow of the process of producing functionalized	
	zeolite	75
3.4	Schematic flow of the process for synthesis of	
	polyaniline by the conventional method	76
3.5	Schematic of work process to synthesize the	
	solution A for zeolite/polyaniline composite	77
3.6	Schematic of work process to synthesize the	
	solution B for zeolite/polyaniline composite	78
3.7	Schematic of work process to synthesize the	
	zeolite/polyaniline composite	78
3.8	Formation of zeolite/polyaniline composite after	
	(a) 5 minutes, (b) 10 minutes, and (c) 15 minutes	79
3.9	Preparation of the microcapsules using the core	
	materials	80
3.10	Self-healing coating process using a spin coater	81
3.11	Physical vapor deposition coating process using RF	
	sputtering machine	82
3.12	Visual appearance of <i>P.aeruginosa</i> bacteria	
	cultured on the agar plate	87
3.13	Schematic of preparation of bacteria-inoculated	
	NRSS medium for immersion test (a) first batch	
	and (b) second batch	88
3.14	Immersion test of steel substrate immersed in	
	bacteria inoculated medium: (a) Schematic and (b)	
	Actual experimental setup	90
3.15	Examples of different coated samples immersed in	
	bacteria inoculated medium in 7 days	90
3.16	Electrochemical corrosion test set up: (a) actual	
	and (b) schematic set up	92
3.17	The scratched samples before the salt spray test	94
3.18	The samples placed inside the chamber during the	
	salt spray test	94
3.19	Principle of Nano-scratch Test	98

3.20	Pull off adhesion test	99
4.1	The microstructure of the mild steel substrate using	
	optical microscope	102
4.2	Visual inspection of bare steel substrate exposed to	
	bacteria-inoculated medium for different exposure	
	times: (a) 7 days, (b) 14 days, (c) 28 days, (d) 42	
	days, (e) 56 days and (f) 70 days	103
4.3	Visual inspection of steel substrate exposed to	
	sterile NRSS medium at different exposure times:	
	(a) 7 days, (b) 14 days, (c) 28 days, (d) 42 days, (e)	
	56 days, and (f) 70 days	104
4.4	Visual inspection of corrosion products formed on	
	steel substrate exposed to (a) sterile and (b)	
	bacteria-inoculated NRSS medium for 42 days	
	after contact with the environment	105
4.5	Visual inspection of corrosion products formed on	
	steel substrate after salt spray test at different	
	exposure times: (a) 3 days, (b) 7 days, (c) 14 days,	
	(d) 21 days, and (e) 28 days	106
4.6	FESEM micrograph of mild steel substrate (a)	
	before immersion and after exposure to P.	
	aeruginosa inoculated NRSS medium for (b) 7	
	days, (c) 14 days, (d) 28 days, (e) 42 days, (f) 56	
	days and (g) 70 days	107
4.7	FESEM and EDS spectra of the a) biofilm layer	
	formed on the bare mild steel after 70 days of	
	immersion in bacteria-inoculated medium and b)	
	low carbon steel before immersion test	108
4.8	SEM micrograph of mild steel substrate exposed to	
	sterile NRSS medium at different exposure times:	
	(a) 7 days, (b) 14 days, (c) 28 days, (d) 42 days, (e)	
	56 days, and (f) 70 days	110

4.9	FESEM and EDS analysis of corrosion products	
	formed on uncoated mild steel exposed to bacteria-	
	inoculated medium	111
4.10	FESEM image of mild steel substrate exposed to	
	(a) sterile and (b) bacteria inoculated NRSS	
	medium after 4 months of immersion	112
4.11	FESEM with corresponding EDS analysis of	
	corrosion products and mineral deposits on bare	
	mild steel substrate	113
4.12	Electrochemical Tafel extrapolation of bare	
	substrate exposed to 3.5% NaCl solution	114
4.13	EIS result (Bode) plot for the bare substrates in 3.5	
	wt% NaCl solution	115
4.14	FESEM with corresponding EDS analysis of	
	corrosion products formed on bare steel coupons	
	during salt spray test after (a, b) 3 days (c, d) 7	
	days (e, f) 14 days (g, h) 21 days, and (i, j) 28 days	116
4.15	The corrosion rate trends for bare steel substrate	
	exposed to sterile and bacteria-inoculated medium	
	at different immersion times	118
4.16	The corrosion rate trends for the bare steel	
	substrate exposed to salt spray test at different	
	immersion times	120
4.17	Functionalized zeolite (a) FESEM images and (b)	
	EDS analysis	122
4.18	Encapsulated zeolite (a) FESEM images and (b)	
	EDS analysis	122
4.19	XRD analysis of zeolite and zeolite microcapsules	123
4.20	FTIR analysis of zeolite and zeolite microcapsules	124
4.21	DSC analysis of zeolite and zeolite microcapsules	125
4.22	Visual inspection of adhesion test for encapsulated	
	zeolite self-healing embedded in epoxy coating (a)	
	before and (b) after dolly removal	126

4.23	FESEM image of (a) top view surface of	
	encapsulated zeolite self-healing embedded in	
	epoxy coating, (b) cross section view of	
	encapsulated zeolite self-healing coating, c) EDS	
	of zeolite self-healing coating	127
4.24	Visual inspection of encapsulated zeolite self-	
	healing embedded in epoxy coating after scratch	
	and before healing	128
4.25	FESEM image of (a, e, g) top view surface of	
	zeolite self-healing coating before healing	
	embedded in epoxy, (c, f, h) top view surface of	
	encapsulated zeolite self-healing embedded in	
	epoxy coating after healing, (b) EDS of	
	encapsulated zeolite self-healing coating before	
	healing and (d) EDS of zeolite self-healing coating	
	after healing	129
4.26	Cross-section view of encapsulated zeolite self-	
	healing embedded in epoxy coating (a) FESEM	
	micrograph and (b) EDS results	130
4.27	Electrochemical Tafel extrapolation of	
	encapsulated zeolite self-healing embedded in	
	epoxy coated substrate exposed to 3.5% NaCl	
	solution	131
4.28	EIS result (Bode) plot for encapsulated zeolite self-	
	healing embedded in epoxy coated substrates in 3.5	
	wt% NaCl solution	132
4.29	Visual inspection of corrosion products formed on	
	encapsulated zeolite self-healing embedded in	
	epoxy coated steel substrate after salt spray test at	
	different exposure times: (a) 3 days, (b) 7 days, (c)	
	14 days, (d) 21 days, and (e) 28 days	133

xxiii

4.30	FESEM with corresponding EDS analysis of	
	corrosion products formed on encapsulated zeolite	
	self-healing embedded in epoxy coating during salt	
	spray test after (a, b) 3 days, (c, d) 7 days, (e, f) 14	
	days, (g, h) 21 days, and (i, j) 28 days	135
4.31	The cross-sectional area of encapsulated zeolite	
	self-healing embedded in epoxy coating after 14	
	days exposure in salt spray chamber (a) FESEM	
	micrograph and (b) EDS results	136
4.32	Visual inspection of encapsulated zeolite self-	
	healing embedded in epoxy coated steel substrate	
	exposed to sterile NRSS medium at different	
	exposure times: (a) 7 days, (b) 14 days, (c) 28 days,	
	(d) 42 days, (e) 56 days, and (f) 70 days	137
4.33	SEM micrograph of encapsulated zeolite self-	
	healing embedded in epoxy coated steel substrates	
	exposed to sterile NRSS medium at various	
	exposure times: (a) 7 days, (b) 14 days, (c) 28 days,	
	(d) 42 days, (e) 56 days, and (f) 70 days	138
4.34	Visual inspection of encapsulated zeolite self-	
	healing embedded in epoxy coated substrates	
	exposed to bacteria-inoculated medium after	
	various immersion times: (a) 7 days, (b) 14 days,	
	(c) 28 days, (d) 42 days, (e) 56 days and (f) 70 days	139
4.35	FESEM image of encapsulated zeolite self-healing	
	embedded in epoxy coated substrate exposed to P.	
	aeruginosa-inoculated medium at various	
	immersion times: (a) 7 days, (b) 14 days, (c) 28	
	days, (d) 42 days, (e) 56 days, (f) 70 days	140
4.36	The ruptured microcapsules and bacteria cells on	
	encapsulated zeolite self-healing embedded in	
	epoxy coating after 140 days of immersion (a)	
	FESEM micrograph, (b,c) EDS analysis	141

xxiv

4.37	Schematic of contact killing behaviour of	
	encapsulated zeolite self-healing embedded in	
	epoxy coating layer on bacteria	142
4.38	Synthesis of polyaniline (a) FESEM micrograph	
	and (b) EDS analaysis	143
4.39	Illustration of (a) FESEM images and (b) EDS of	
	polyaniline microcapsules	144
4.40	XRD analysis of polyaniline and polyaniline	
	microcapsules	144
4.41	FTIR analysis of polyaniline and polyaniline	
	microcapsules	145
4.42	DSC analysis of polyaniline and polyaniline	
	microcapsules	146
4.43	Visual inspection of adhesion test for polyaniline	
	self-healing coating (a) before and (b) after the test	147
4.44	FESEM images: (a) top view surface of	
	encapsulated polyaniline self-healing embedded in	
	epoxy coating, (b) cross-section view of	
	encapsulated polyaniline self-healing coating and	
	(c) EDS of polyaniline self-healing coating	148
4.45	Visual inspection of encapsulated polyaniline self-	
	healing embedded in epoxy coating after scratching	
	and before healing	149
4.46	FESEM micrograph of top view surface of	
	encapsulated polyaniline self-healing embedded in	
	epoxy coating: (a, e, g) after scratching and before	
	healing, (f) after 7 days, (h) after 14 days, (c) 21	
	days, (b) EDS of encapsulated polyaniline self-	
	healing coating after scratch and before healing and	
	(d) EDS of encapsulated polyaniline self-healing	
	coating after healing	151

4.47	Cross-section view of encapsulated polyaniline	
	self-healing embedded in epoxy coating (a)	
	FESEM micrograph and (b) EDS results	152
4.48	Electrochemical Tafel extrapolation of	
	encapsulated polyaniline embedded in epoxy self-	
	healing coated substrate exposed to 3.5% NaCl	
	solution	153
4.49	EIS result (Bode) for encapsulated polyaniline self-	
	healing embedded in epoxy coated substrates in 3.5	
	wt% NaCl solution	154
4.50	Visual inspection of corrosion products formed on	
	encapsulated polyaniline self-healing embedded in	
	epoxy coated steel substrate after salt spray test	
	with different exposure times: (a) 3 days, (b) 7	
	days, (c) 14 days, (d) 21 days and (e) 28 days	155
4.51	FESEM with corresponding EDS analysis of	
	corrosion products formed on encapsulated	
	polyaniline self-healing embedded in epoxy	
	coating during salt spray test after (a, b) 3 days, (c,	
	d) 7 days, (e, f) 14 days, (g, h) 21 days, and (i, j) 28	
	days	157
4.52	The cross-sectional area of encapsulated	
	polyaniline self-healing embedded in epoxy	
	coating after 28 days exposure in salt spray	
	chamber (a) FESEM micrograph and (b) EDS	
	results	158
4.53	Visual inspection of encapsulated polyaniline self-	
	healing embedded in epoxy coated steel substrate	
	exposed to sterile NRSS medium with different	
	exposure times: (a) 7 days, (b) 14 days, (c) 28 days,	
	(d) 42 days, (e) 56 days, and (f) 70 days	159

4.54	SEM micrograph of encapsulated polyaniline self-	
	healing embedded in epoxy coated steel substrates	
	exposed to sterile NRSS medium at different	
	exposure times: (a) 7 days, (b) 14 days, (c) 28 days,	
	(d) 42 days, (e) 56 days, and (f) 70 days	160
4.55	Visual inspection of encapsulated polyaniline self-	
	healing embedded in epoxy coated substrates	
	exposed to bacteria inoculated medium after	
	various immersion times: (a) 7 days, (b) 14 days,	
	(c) 28 days, (d) 42 days, (e) 56 days and (f) 70 days	161
4.56	FESEM image of encapsulated polyaniline self-	
	healing embedded in epoxy coated substrate	
	exposed to P. aeruginosa-inoculated medium at	
	various immersion times: (a) 7 days, (b) 14 days,	
	(c) 28 days, (d) 42 days, (e) 56 days, (f) 70 days	162
4.57	Ruptured microcapsules and bacteria cells on	
	encapsulated polyaniline self-healing embedded in	
	epoxy coating after 140 days of immersion (a)	
	FESEM micrograph and (b,c) EDS analysis	163
4.58	Schematic of contact killing behaviour of the	
	encapsulated polyaniline self-healing embedded in	
	epoxy coating layer against bacteria 70 days	164
4.59	Penetration of the bacteria from beneath the	
	coating layer towards the substrate after 140 days	
	of immersion	165
4.60	Synthesised zeolite/polyaniline composite (a)	
	FESEM image and (b) EDS results	166
4.61	Zeolite/polyaniline composite microcapsules (a)	
	FESEM image and (b) EDS results	167
4.62	XRD analysis of zeolite/polyaniline composite and	
	zeolite/polyaniline composite microcapsules	168
4.63	FTIR analysis of zeolite/polyaniline composite and	
	zeolite/polyaniline composite microcapsules	169

4.64	DSC analysis of zeolite/polyaniline composite and	
	zeolite/polyaniline composite microcapsules	170
4.65	Visual inspection of adhesion test for encapsulated	
	zeolite/polyaniline composite self-healing	
	embedded in epoxy coating (a) before and (b) after	
	the pull-off adhesion test	171
4.66	FESEM image of (a) top view surface of	
	encapsulated zeolite/polyaniline composite self-	
	healing coating, (b) cross-section view of	
	encapsulated zeolite/polyaniline composite self-	
	healing embedded in epoxy coating, and (c) EDS	
	of zeolite/polyaniline composite self-healing	
	coating	172
4.67	Visual inspection of encapsulated	
	zeolite/polyaniline composite self-healing	
	embedded in epoxy coating after scratching and	
	before healing	173
4.68	FESEM image of top view surface of encapsulated	
	zeolite/polyaniline composite self-healing	
	embedded in epoxy coating: (a, e, g) after	
	scratching and before healing, (f) after 7 days, (h)	
	after 14 days, (c) 21 days, (b) EDS of encapsulated	
	zeolite/polyaniline composite self-healing	
	embedded in epoxy after scratch and coating before	
	healing and (d) EDS of encapsulated	
	zeolite/polyaniline composite self-healing	
	embedded in epoxy coating after healing	174
4.69	Cross-section view of encapsulated	
	zeolite/polyaniline composite self-healing	
	embedded in epoxy coating (a) Fesem images and	
	(b,c,d,e) are the corresponding EDS analysis	175

4.70	Electrochemical Tafel extrapolation of	
	encapsulated zeolite/plyaniline composite self-	
	healing embedded in epoxy coated substrate	
	exposed to 3.5% NaCl solution	176
4.71	EIS result (Bode) plot for zeolite/polyaniline	
	composite self-healing embedded in epoxy coated	
	substrates in 3.5 wt% NaCl solution	177
4.72	Visual inspection of corrosion products formed on	
	encapsulated zeolite/polyaniline composite self-	
	healing embedded in epoxy coated steel substrate	
	after salt spray test after different exposure times:	
	(a) 3 days, (b) 7 days, (c) 14 days, (d) 21 days and	
	(e) 28 days	178
4.73	FESEM with corresponding EDS analysis of	
	corrosion products formed on encapsulated	
	zeolite/polyaniline composite self-healing	
	embedded in epoxy coating during salt spray test	
	after (a, b) 3 days (c, d), 7 days (e, f), 14 days (g,	
	h), 21 days and (i, j) 28 days	180
4.74	The cross-sectional area of encapsulated	
	zeolite/polyaniline self-healing embedded in epoxy	
	coating after 14 days exposure in salt spray	
	chamber (a) FESEM micrograph and (b) EDS	
	results	181
4.75	Visual inspection of encapsulated	
	zeolite/polyaniline composite self-healing	
	embedded in epoxy coated steel substrate exposed	
	to sterile NRSS medium with different exposure	
	times: (a) 7 days, (b) 14 days, (c) 28 days, (d) 42	
	days, (e) 56 days and (f) 70 days	182

4.76	SEM micrograph of encapsulated				
	zeolite/polyaniline composite self-healing				
	embedded in epoxy coated steel substrates exposed				
	to sterile NRSS medium at varying exposure times:				
	(a) 7 days, (b) 14 days, (c) 28 days, (d) 42 days, (e)				
	56 days and (f) 70 days	183			
4.77	Visual inspection of encapsulated				
	zeolite/polyaniline composite self-healing				
	embedded in epoxy coated substrates exposed to				
	bacteria-inoculated medium after various				
	immersion times: (a) 7 days, (b) 14 days, (c) 28				
	days, (d) 42 days, (e) 56 days and (f) 70 days	184			
4.78	FESEM image of encapsulated zeolite/polyaniline				
	composite self-healing embedded in epoxy coated				
	substrate exposed to P. aeruginosa-inoculated				
	medium after various immersion times: (a) 7 days,				
	(b) 14 days, (c) 28 days, (d) 42 days, (e) 56 days				
	and (f) 70 days	186			
4.79	Ruptured microcapsules and bacteria cells on				
	encapsulated zeolite self-healing coating embedded				
	in epoxy after 140 days of immersion (a,b) FESEM				
	micrographs and (c,d) EDS analysis	187			
4.80	Schematic of contact killing behaviour of				
	encapsulated zeolite/polyaniline composite self-				
	healing embedded in epoxy coating layer to kill the				
	bacteria on contact with the coating	187			
4.81	XRD patterns for SiO coating on steel substrates				
	with different values of Radio Frequency (RF)				
	power, (a) 150 watts, (b) 200 watts, (c) 250 watts				
	and (d) 300 watts	189			

4.82	3-D images of AFM for SiO coating on steel	
	substrates (5 μ m x 5 μ m) with different values of	
	Radio Frequency (RF) power, (a) 150 watts, (b)	
	200 watts, (c) 250 watts, and (d) 300 watts	190
4.83	AFM images analysis for SiO coated onto the	
	carbon steel substrate with 150, 200, 250 and 300	
	watts of RF power (a, c, e, and g) and 2-D top view	
	graphs for surface roughness cross section (b, d, f,	
	and h)	191
4.84	EDS analysis at different RF power: (a) 150 watts,	
	(b) 200 watts, (c) 250 watts, and (d) 300 watts	193
4.85	FESEM micrograph of SiO coating thin film on	
	steel substrate with different RF power sources; (a)	
	150 watts, (b) 200 watts, (c) 250 watts, and (d) 300	
	watts	194
4.86	Images from FESEM at the surface of the steel	
	substrates coated with SiO after the indentation test	
	with RF power of 150, 200, 250 and 300 watts (a,	
	c, e, and g), respectively. Indentation spot near to	
	the surface of the substrate with 700X	
	magnification (b, d, f and h), respectively	196
4.87	Variation of friction coefficient with scratch	
	displacement for different RF values of SiO	
	coating on steel substrate	197
4.88	XRD patterns for SiO coating on steel substrates at	
	different temperatures of the PVD process (a)	
	150°C(b) 200 °C and (c) 250°C	199
4.89	3-D images of AFM for SiO coating on steel	
	substrates (5 μ m x 5 μ m) with different values of	
	temperature of the PVD process: (a) 150°C, (b)	
	200°C, and (c) 250°C	200

4.90	AFM images analysis for SiO coated onto the	
	carbon steel substrate with temperatures of the	
	PVD 150°C, 200°C, and 250°C (a, c, and e). 2-D	
	top view graphs for surface roughness cross section	
	(b, d, and f).	201
4.91	FESEM micrograph of SiO coating thin film on	
	steel substrate with different temperatures of the	
	PVD process: (a) 150°C, (b) 200°C, and (c) 250°C	203
4.92	Images from FESEM at the surface of the steel	
	substrates coated with SiO after the indentation	
	process with temperatures of 150°C, 200°C and	
	250°C(a, c, and e). Indentation spot near the	
	surface of the substrate with 700X magnification	
	(b, d and f)	204
4.93	Variation of friction coefficient with scratch	
	displacement for different temperature values of	
	SiO coating on steel substrate	205
4.94	XRD patterns for SiO coating on steel substrates	
	with different values of Pressure (a) 20mTorr,(b)	
	30 mTorr, and (c) 40mTorr	207
4.95	3-D view images of AFM for SiO coating on steel	
	substrates (5 μ m x 5 μ m) with different values of	
	pressure. (a) 20mTorr, (b) 30mTorr, and (c)	
	40mTorr	208
4.96	AFM images analysis for silicon oxide coated onto	
	the carbon steel substrate with pressures of 20	
	mTorr, 30 mTorr and 40 mTorr (a, c, and e). 2-D	
	top view graphs for surface roughness cross section	
	(b, d, and f)	209
4.97	FESEM micrograph of SiO coating thin film on	
	steel substrate with different pressures: (a)	
	20mTorr, (b) 30mTorr, and (c) 40mTorr	210

4.98	Images from FESEM at the surface of the steel	
	substrates coated with SiO after the indentation	
	process with pressures of 20 mTorr, 30 mTorr and	
	40 mTorr(a, c, and e), Indentation spot on the	
	center surface of the substrate with 700X	
	magnification, (b, d and f) and area near the	
	indentation spot with 700X magnification	212
4.99	Variation of friction coefficient with scratch	
	displacement for different pressure values of SiO	
	coating on steel substrate	213
4.100	XRD patterns for SiO coating on steel substrates	
	with different values of Deposition Times: (a) 60	
	minutes and (b) 90 minutes	214
4.101	3-D images of AFM for SiO coating on steel	
	substrates (5 μ m x 5 μ m) with different values of	
	deposition time: (a) 60 minutes and (b) 90 minutes	215
4.102	AFM images analysis for silicon oxide coated onto	
	the carbon steel substrate with deposition times of	
	60 minutes and 90 minutes (a and c), 2-D top view	
	graphs for surface roughness cross section (b and	
	d)	216
4.103	FESEM micrograph of silicon oxide coating thin	
	film on steel substrate with different deposition	
	times: (a) 60 minutes and (b) 90 minutes	217
4.104	Images from FESEM at the surface of the steel	
	substrates coated with SiO after the indentation	
	process with deposition times of 60 minutes and 90	
	minutes (a and c), Indentation spot on near to the	
	surface of the substrate with 700X magnification (b	
	and d)	218
4.105	Variation of friction coefficient with scratch	
	displacement for different deposition times of SiO	
	coating on steel substrate	219

4.106	The use of Focused Ion Beam (FIB) in TEM	
	analysis	221
4.107	TEM micrograph of the thickness of thin film SiO	
	coating	221
4.108	TEM images of silicon oxide coating with EDS	
	analysis	222
4.109	High resolution TEM (HRTEM) image of silicon	
	oxide coating showing amorphous structure	223
4.110	Electrochemical Tafel extrapolation of SiO coated	
	substrate exposed to 3.5% NaCl solution	224
4.111	(a) Nyquist and (b) Bode plots for SiO coated	
	substrates in 3.5 wt% NaCl solution	225
4.112	Corrosion products formed on the SiO coated steel	
	substrate after the salt spray test for different	
	exposure times: (a) 3 days (b) 7 days (c) 14 days	
	(d) 21 days, and (e) 28 days	
	(d) 21 days, and (e) 28 days	226
4.113	(d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of	226
4.113	(d) 21 days, and (e) 28 daysFESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt	226
4.113	(d) 21 days, and (e) 28 daysFESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d),	226
4.113	 (d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d), 14 days (e and f), 21 days (g and h), and 28 days (i 	226
4.113	 (d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d), 14 days (e and f), 21 days (g and h), and 28 days (i and j) 	226 227
4.113	 (d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d), 14 days (e and f), 21 days (g and h), and 28 days (i and j) Visual inspection of SiO coated steel substrate 	226 227
4.113	 (d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d), 14 days (e and f), 21 days (g and h), and 28 days (i and j) Visual inspection of SiO coated steel substrate exposed to sterile NRSS medium within different 	226 227
4.113 4.114	 (d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d), 14 days (e and f), 21 days (g and h), and 28 days (i and j) Visual inspection of SiO coated steel substrate exposed to sterile NRSS medium within different exposure times: (a) 7 days, (b) 14 days, (c) 28 days, 	226 227
4.113	 (d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d), 14 days (e and f), 21 days (g and h), and 28 days (i and j) Visual inspection of SiO coated steel substrate exposed to sterile NRSS medium within different exposure times: (a) 7 days, (b) 14 days, (c) 28 days, (d) 42 days, (e) 56 days, and (f) 70 days 	226 227 228
4.1134.1144.115	 (d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d), 14 days (e and f), 21 days (g and h), and 28 days (i and j) Visual inspection of SiO coated steel substrate exposed to sterile NRSS medium within different exposure times: (a) 7 days, (b) 14 days, (c) 28 days, (d) 42 days, (e) 56 days, and (f) 70 days SEM micrograph of SiO coated steel substrates 	226 227 228
4.1134.1144.115	 (d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d), 14 days (e and f), 21 days (g and h), and 28 days (i and j) Visual inspection of SiO coated steel substrate exposed to sterile NRSS medium within different exposure times: (a) 7 days, (b) 14 days, (c) 28 days, (d) 42 days, (e) 56 days, and (f) 70 days SEM micrograph of SiO coated steel substrates exposed to sterile NRSS medium for different 	226 227 228
4.1134.1144.115	 (d) 21 days, and (e) 28 days FESEM with corresponding EDS analysis of corrosion formed on the SiO coating during the salt spray test after: 3 days (a and b), 7 days (c and d), 14 days (e and f), 21 days (g and h), and 28 days (i and j) Visual inspection of SiO coated steel substrate exposed to sterile NRSS medium within different exposure times: (a) 7 days, (b) 14 days, (c) 28 days, (d) 42 days, (e) 56 days, and (f) 70 days SEM micrograph of SiO coated steel substrates exposed to sterile NRSS medium for different exposure times: (a) 7 days, (b) 14 days, (c) 28 days, (c) 28	226 227 228

4.116	Visual inspection of SiO coated substrates exposed	
	to bacteria inoculated medium after various	
	immersion times: (a) 7 days, (b) 14 days, (c) 28	
	days, (d) 42 days, (e) 56 days, and (f) 70 days	230
4.117	FESEM image of SiO coated substrate exposed to	
	P.aeruginosa inoculated medium after various	
	immersion times (a) 7 days, (b) 14 days, (c) 28	
	days, (d) 42 days, (e) 56 days, and (f) 70 days	232
4.118	Schematic illustrating the detachment of the	
	bacteria when it comes into contact with the SiO	
	coating	233
4.119	Types of coating and synthesis/deposition methods	
	used in the research	234
4.120	Comparison of the adhesion strength between the	
	self-healing coated substrates	236
4.121	Comparison of the corrosion rate (mm/yr) for the	
	bare and coated substrates according to biofilm	
	formation	239
4.122	Comparison of the corrosion rate (mm/yr) for the	
	bare and coated substrates according to	
	electrochemical Tafel	239
4.123	Comparison of the corrosion rate (mm/yr) for the	
	bare and coated substrates according to salt spray	
	test	240

4.124 bare and coated substrates according to salt spray test 240 Comparison of the corrosion resistance for the bare and coated substrates 242

LIST OF ABBREVIATIONS

-	Aluminum
-	Aluminum alloy
-	Atom transfer radical polymerisation
-	Copper
-	Deoxyribonucleic acid
-	Extracellular polymeric substances
-	Elastic modulus
-	Corrosion potential
-	Corrosion current density
-	Iron oxidizing bacteria
-	Iron reducing bacteria
-	Microbial-Induced Corrosion
-	Manganese oxidizing bacteria
-	Mild steel
-	Positively charged nitrogroups
-	Nanoparticles
-	Poly (4- vinylpyridine)-co-poly (4-vinyl-N-
	hexylpyridinium
-	Polyaniline
-	Poly (dopamine)
-	Poly (2-methyl-2-oxazoline)
-	Poly (ethylene glycol)
-	Polyethylene oxide
-	Perfluoropolyethers
-	Polytetrafluoroethylene

QASs	-	Quaternary ammonium salts
SI-ATRP	-	Surface initiated atom transfer radical polymerisation
SRB	-	Sulphate reducing bacteria
SEM	-	Scanning electron microscopy
FESEM		Field immision scanning electron microscopy
TBT	-	Tributyltin
EDS		Energy dispersive spectroscopy
Ti	-	Titanium

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

А	XRD Analysis for Silicon Oxide Coating	263
В	FESEM Results for Nano-scratch Test	264
С	Publications	267

CHAPTER 1

INTRODUCTION

1.1 Research Background

In the majority of engineering structures operated in the marine environment, microbiological induced corrosion (MIC) is of great concern [1]. The issue of MIC could be particularly dangerous in marine structures such as ships and maritime platforms as well as offshore jetties and rigs [2]. Such constructions have to be protected against attack from the main components of the marine setting such as sea water, temperature, and biological attack, also referred to as "biofouling". Indeed, biofouling is the colonization of submerged structure surfaces by organisms such as barnacles, bacteria, and algae. Maritime biofouling is a long-standing and pricey problem for the marine industry because the development of fouling assemblies on ship hulls, for instance, raises drag, decreases maneuverability, and increases fuel use and greenhouse gas release [3-6], leading to both high financial and ecological expenses [7]. Maritime fouling, or the settlement and growth of marine organisms on waterlogged structures, is predicted to have a worldwide expenditure of above \$3 billion yearly [8]. Shipping accounts for approximately 90% of global business, and seaborne trade has increased by four-fold during the previous 40 years [9, 10]. Generally, MIC is not a novel kind of corrosion. Most commonly it appears in the shape of localized

corrosion, whether pitting or crevice. MIC is instigated, extended, or proliferated because of the existence of microorganisms such as bacteria [11, 12].

Pseodomonas aeruginosa is one of the dominant bacterium found in the maritime surrounding, and is an aerobic slime-forming bacteria that creates a biofilm coat on the surface of the steel. The reaction of the biofilm layer with the steel surface and the generation of differential aeration cells provide conditions on the steel surface that instigate and hasten the corrosion process. The production of these concentration cells is harmful to the integrity of the oxide layer and increases the vulnerability of steels to corrosion [13-15].

Numerous conventional antifouling systems are in the form of paints, which is an inclusive word covering a diversity of substances: lacquers, enamels, varnishes, surfacers, undercoats, primers, fillers, sealers, plugs, and several others. The use of non-environmentally friendly and toxic antifoulants on ship hulls is one of the most widely used techniques of managing fouling even though biocides such as lead, mercury, arsenic, and their natural derivatives are banned owing to environmental concerns. Antifoulants comprise one of the numerous additives typically incorporated in the top-layer paint of a maritime defensive coating system [2].

In recent years, a new technique has shown a great promise for autonomic healing of micro-cracks and mechanical damage, this technique is the use of self-healing polymers [16]. Self-healing coatings are an extremely enhanced group of smart substances in which the aim is to repair the micro-cracks completely, in a passive way, with no necessity for detection or any kind of foreign interference [17-21].

A different method of mitigating against biofouling is the physical vapor deposition (PVD) coating approach, which features a set of diverse methods that can be employed to deposit silicon oxide coating onto steel substrates. PVD comprises several vacuum deposition approaches and is a universal term employed to explain a process that deposits thin films through the concentration of a vaporized form onto diverse substrate surfaces. The basic process of PVD falls into two universal classes: sputtering and evaporation. The commercial applications of PVD methods vary over a broad range of uses from decorative, to extreme temperature superconducting layers [22].

1.2 Problem Statement

MIC of immersed structures in maritime environments is the effect of biological organisms colonization and adhesion on the surface. Given that the significant bio-interfacial processes which lead to fouling are nano-scale or microscale in size, the surface properties of the structures to manage biofouling are assumed to be on a similar size scale. An area of specific interest in recent years is the use of nanotechnology in combating MIC. There is a necessity to find ecologically harmless coatings to hinder MIC successfully. Certainly, current research has demonstrated the significant of coating protection with minimal environmental impact of self-healing coatings based on the release of healing agents when micro-cracks are instigated in the coated surface. Silicon oxide-based organic and inorganic coatings in addition to diamond-like carbon coatings have shown great potentials to combat antifouling with fewer negative impacts on the environment. The new methods are based on "fouling release" and "contact killing". The former method, does not involve the discharge of biocides in maritime water and therefore should be ecologically responsible. The "contact killing" method may be considered a favorable approach, and polycationic coatings are utilized to hinder MIC using this method. Nevertheless, to attain such an objective, the coating should be modified so its surface properties have excellent smoothness and corrosion resistance, high hardness, good thermal stability, and low cost. Zeloite and polyaniline have good adhesion to the steel substrate and only destroy the microorganisms that come into contact with them without leaking out, while silicon oxide owing to its unique characteristics of providing a smooth film which could minimize the adhesion of the microorganism on the steel substrates. Due to their biocide behavior and anticorrosive properties as well as environmental responsiveness, silicon oxide, polyaniline, and zeolite are excellent candidates to protect metal surfaces against MIC.

1.3 Objectives of the Research

The aim of this research work is to investigate on coatings that would be capable of inhibiting MIC. Foremost, the research induces an exploration on the mechanisms of MIC-on steel surfaces in bacteria-inoculated medium, which could be helpful to facilitate the use of efficient procedures to mitigate against MIC. Next, the research is also aimed at exploring the capabilities of the encapsulated zeolite, polyaniline, zeolite/polyaniline composite self-healing embedded in epoxy and silicon oxide hydrophobic coatings strategies in inhibiting MIC. The output of this research is anticipated to enhance the properties of MIC inhibition of coated steel that is exposed to bacteria-inoculated medium, and also to provide an environmentally friendly and suitable coating for the mitigation against MIC of steels in the marine environment.

The specific objectives of the research include:

- To develop encapsulated zeolite, polyaniline, zeolite/polyaniline composite self-healing and silicon oxide coatings that can be utilized as coating materials to inhibit microbial-induced corrosion.
- (ii) To charcterise the properties of newly developed self-healing and silicon oxide coatings on mild steel substrates.
- (iii) To evaluate the performance of self-healing and silicon oxide coatings as MIC inhibitive coatings.

1.4 Scope of the Research

The scope of research includes:

- (i) Synthesis of the self-healing core substances encompassing polyaniline, zeolite, and zeolite-polyaniline composites and their microcapsules by the in-situ chemical polymerization technique and applying them on steel substrates.
- (ii) Deposition of silicon-oxide based coatings on steel substrates with enhanced properties using the physical vapor deposition method.
- (iii) Characterization of the properties of synthesised and deposited coatings, including hardness and coating adhesion, using various characterization techniques such as Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), X-ray, Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), Electrochemical Impedance Spectroscopy (EIS), and Electrochemical Tafel Analysis.
- (iv) Performance of biological assays to assess the antifouling capacities of the developed coatings versus *P. aeruginosa* microorganisms.
- (v) Determine the corrosion rate using immersion tests
- (vi) Microscopic examination of samples upon completion of immersion tests using standard characterization equipment.

1.5 Significance of Research

Many types of coatings used by the marine industries are toxic and affect the marine life. Therefore, many researchers are investigating on alternative coatings which are friendly to the environment but at the same time are effective on protecting the metal against MIC.

The fundamental goal of this research is to investigate the performance of encapsulated based self-healing and hydrophobic concept by physical vapor deposition coated steel substrates in inhibiting MIC when exposed to bacteriainoculated medium. Therefore, the outcome of this study would benefit various sectors, particularly the marine, gas, and oil industries.

REFERENCES

- Javaherdashti, R., Microbiologically Influenced Corrosion. An Engineering Insight. 2008.
- Chambers, L.D., et al., Modern approaches to marine antifouling coatings. Surface and Coatings Technology, 2006. 201(6): p. 3642-3652.
- D, S., Understanding marine fouling and assessing antifouling approaches. Marine Antifouling Conference, London, 2010.
- Grant A. Hopkins , B.M.F.A.D.M.C., The effectiveness of rotating brush devices for management of vessel hull fouling. Biofouling: *The Journal of Bioadhesion and Biofilm Research*, 2010. 26(5): p. 555-566.
- 5. Williams, D., Challenges in developing antifouling coatings. *Marine Antifouling Conference, London*, 2010.
- Munk, T., D. Kane, and D.M. Yebra, 7 The effects of corrosion and fouling on the performance of ocean-going vessels: a naval architectural perspective, *in Advances in Marine Antifouling Coatings and Technologies*, C. Hellio and D. Yebra, Editors. 2009, Woodhead Publishing. p. 148-176.
- 7. Yebra, D.M., S. Kiil, and K. Dam-Johansen, Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. *Progress in Organic Coatings*, 2004. 50(2): p. 75-104.
- Jacobson, A.H. and G.L. Willingham, Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants. *Science of The Total Environment*, 2000. 258(1–2): p. 103-110.
- 9. Federation, I.C.o.S.a.I.S., Overview of the international shipping industry. (accessed 14.12.09), 2009.
- Dafforn, K.A., J.A. Lewis, and E.L. Johnston, Antifouling strategies: History and regulation, ecological impacts and mitigation. *Marine Pollution Bulletin*, 2011. 62(3): p. 453-465.
- 11. Javaherdashti, R., A brief review of general patterns of MIC of carbon steel

and biodegradation of concrete. *IUFS journal of biology*, 2009. 68(2): p. 65-73.

- 12. Little, B.J., J.S. Lee, and R.I. Ray, The influence of marine biofilms on corrosion: A concise review. *Electrochimica Acta*, 2008. 54(1): p. 2-7.
- Hamzah, E., et al., Influence of Pseudomonas aeruginosa bacteria on corrosion resistance of 304 stainless steel. Corrosion Engineering, *Science* and Technology, 2013. 48(2): p. 116-120.
- Hamzah, E., et al., Corrosion Behaviour of Carbon Steel in Sea Water Medium in Presence of P. aeruginosa Bacteria. *Arabian Journal for Science* and Engineering, 2014. 39(10): p. 6863-6870.
- 15. Abdolahi, A., et al., Microbially influenced corrosion of steels by Pseudomonas aeruginosa, in *Corrosion Reviews*. 2014. p. 129.
- Ghosh, S.K., Self-Healing Materials: Fundamentals, Design Strategies, and Applications, in Self-Healing Materials. Wiley-VCH Verlag GmbH & Co. KGaA. 2009.p. 1-28.
- White, S.R., et al., Autonomic healing of polymer composites. *Nature*, 2001. 409(6822): p. 794-7.
- Chen, X., et al., A thermally re-mendable cross-linked polymeric material. *Science*, 2002. 295(5560): p. 1698-702.
- Chen, X., et al., New Thermally Remendable Highly Cross-Linked Polymeric Materials. *Macromolecules*, 2003. 36(6): p. 1802-1807.
- 20. Lee, J.Y., G.A. Buxton, and A.C. Balazs, Using nanoparticles to create selfhealing composites. *The Journal of Chemical Physics*, 2004. 121(11): p. 5531-5540.
- Pang, J.W.C. and I.P. Bond, A hollow fibre reinforced polymer composite encompassing self-healing and enhanced damage visibility. *Composites Science and Technology*, 2005. 65(11–12): p. 1791-1799.
- Mattox, D.M., Chapter 7 Physical Sputtering and Sputter Deposition (Sputtering), in Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), D.M. Mattox, Editor. William Andrew Publishing: Boston. 2010. p. 237-286.
- Little, B.J., et al., Chapter 5 The Mineralogy of Microbiologically Influenced Corrosion A2 - Demadis, Zahid AmjadKonstantinos D, in Mineral Scales and Deposits. *Elsevier: Amsterdam.* 2015, p. 107-122.

- 24. Javaherdashti, R., Microbiologically Influenced Corrosion An Engineering Insight.London Springer-Verlag London Limited. 2008.
- Valix, M., et al., Microbiologically Induced Corrosion of Concrete and Protective Coatings in Gravity Sewers. *Chinese Journal of Chemical Engineering*, 2012. 20(3): p. 433-438.
- Liao, J., et al., Effect of biofilm on ennoblement and localized corrosion of stainless steel in fresh dam-water. *Corrosion Science*, 2010. 52(4): p. 1393-1403.
- 27. Karlsson, J., E. Ytreberg, and B. Eklund, Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels. *Environmental Pollution*, 2010. 158(3): p. 681-687.
- Mehta, N.K. and M.N. Bogere, Environmental studies of smart/self-healing coating system for steel. *Progress in Organic Coatings*, 2009. 64(4): p. 419-428.
- 29. Lines, M., Silica Silicon Dioxide (SiO2). *Retrieved, from Azom.com*, December 5, 2015.
- 30. Lewis, K. and A.M. Klibanov, Surpassing nature: rational design of sterilesurface materials. *TRENDS in Biotechnology*, 2005. 23(7): p. 343-348.
- Akesso, L., et al., The potential of nano-structured silicon oxide type coatings deposited by PACVD for control of aquatic biofouling. *Biofouling*, 2009. 25(1): p. 55-67.
- Lejars, M., A. Margaillan, and C. Bressy, Fouling Release Coatings: A Nontoxic Alternative to Biocidal Antifouling Coatings. *Chemical Reviews*, 2012. 112(8): p. 4347-4390.
- 33. Revie, R.W. and H.H. Uhlig, Definition and Importance of Corrosion, in Corrosion and Corrosion Control. *John Wiley & Sons, Inc.* 2008, p. 1-8.
- 34. Fontana, M.G., Corrosion engineering. *Tata McGraw-Hill Education*. 2005.
- U.S. Army Corps Of Engineers, N.F.E.C., Air Force Civil Engineer Support Agency, Unified facilities criteria (UFC) cathodic protection in UFC3-570-02A. 2005.
- Activity, P. and U. Superseding, USACE/NAVFAC/AFCEC/NASA UFGS-40 05 13 (October 2007).
- 37. Ahmad, Z., Principles of corrosion engineering and corrosion control.:

Butterworth-Heinemann. 2006

- 38. Revie, R.W. and H.H. Uhlig, Uhlig's corrosion handbook.: *John Wiley & Sons*. Vol. 51. 2011
- 39. T.P. Chaturvedi, B., MDS, Corrosion behavior of orthodontic alloys 2008.
- 40. Javaherdashti, R., Microbiological contribution to accelerated low water corrosion of support piles. *Port Technology International*, 2006: p. 59-61.
- 41. Gehrke T, S.W., Interactions between micro-organisms and physicochemical factors cause MIC of steel pilings in harbours. (ALWC). CORROSION, *NACE International, Houston, Texas USA*, 2003.
- 42. Hutchinson C, F.P., Vallini D The effectiveness of petrolatum tapes and wraps on corrosion rates in a marine service environment. *Corrosion and Prevention (CAP04) Perth, Australia.* 2004, p. Paper No. 033.
- 43. Coetser, S. and T.E. Cloete, Biofouling and biocorrosion in industrial water systems. *Critical reviews in microbiology*, 2005. 31(4): p. 213-232.
- Javaherdashti, R., A review of some characteristics of MIC caused by sulfatereducing bacteria: past, present and future. Anti-Corrosion Methods and Materials, 1999. 46(3): p. 173 - 180.
- Lichter, J.A., K.J. Van Vliet, and M.F. Rubner, Design of Antibacterial Surfaces and Interfaces: Polyelectrolyte Multilayers as a Multifunctional Platform. *Macromolecules*, 2009. 42(22): p. 8573-8586.
- 46. Frankel, R.B. and D.A. Bazylinski, Biologically induced mineralization by bacteria. Reviews in Mineralogy and Geochemistry, 2003. 54(1): p. 95-114.
- 47. Palmer, J., S. Flint, and J. Brooks, Bacterial cell attachment, the beginning of a biofilm. *Journal of Industrial Microbiology & Biotechnology*, 2007. 34(9): p. 577-588.
- Clare, A., et al., Molecular approaches to nontoxic antifouling. Invertebrate Reproduction & Development, 1992. 22(1-3): p. 67-76.
- 49. Beech, I.B. and J. Sunner, Biocorrosion: towards understanding interactions between biofilms and metals. *Current Opinion in Biotechnology*, 2004. 15(3):
 p. 181-186.
- 50. Flemming, H.-C., et al., Marine and industrial biofouling. Springer, 2009.
- 51. Pillay, C. and J. Lin, Metal corrosion by aerobic bacteria isolated from stimulated corrosion systems: Effects of additional nitrate sources.

International Biodeterioration & Biodegradation, 2013. 83: p. 158-165.

- Dinh, H.T., et al., Iron corrosion by novel anaerobic microorganisms. *Nature*, 2004. 427(6977): p. 829-832.
- 53. Videla, H.A. and L.K. Herrera, Microbiologically influenced corrosion: looking to the future. *International microbiology*, 2005. 8(3): p. 169.
- Beech, I.B., J.A. Sunner, and K. Hiraoka, Microbe-surface interactions in biofouling and biocorrosion processes. *International microbiology*, 2010. 8(3): p. 157-168.
- 55. Xu, C., et al., Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria. *Materials Science and Engineering: A*, 2007. 443(1): p. 235-241.
- Herrera, L.K. and H.A. Videla, Role of iron-reducing bacteria in corrosion and protection of carbon steel. *International Biodeterioration & Biodegradation*, 2009. 63(7): p. 891-895.
- Sheng, X., Y.-P. Ting, and S.O. Pehkonen, The influence of sulphatereducing bacteria biofilm on the corrosion of stainless steel AISI 316. *Corrosion Science*, 2007. 49(5): p. 2159-2176.
- Yuan, S., et al., Corrosion behavior of type 304 stainless steel in a simulated seawater-based medium in the presence and absence of aerobic Pseudomonas NCIMB 2021 bacteria. *Industrial & Engineering Chemistry Research*, 2008. 47(9): p. 3008-3020.
- Moran, A.P., Microbial glycobiology: structures, relevance and applications. Elsevier. 2009
- 60. Lee, W., et al., Role of sulfate-reducing bacteria in corrosion of mild steel: A review. Biofouling, 1995. 8(3): p. 165-194.
- 61. Sudhakar, M., et al., Biofouling and biodegradation of polyolefins in ocean waters. *Polymer Degradation and Stability*, 2007. 92(9): p. 1743-1752.
- Railkin, A.I., Marine Biofouling Colonization Processes and Defenses. CRC Press LLC, 2004.
- 63. Xiaodong, Z., et al., Effect of sulfate-reducing bacteria on corrosion behavior of mild steel in sea mud. *材料科学技术学报*(英文版, 2007. 23(3).
- 64. https://www.pinterest.com/pin/24840235414983888/, 30/01/2016.
- 65. Javaherdashti, R., Impact of sulphate-reducing bacteria on the performance of

engineering materials. *Applied microbiology and biotechnology*, 2011. 91(6): p. 1507-1517.

- Palraj, S. and G. Venkatachari, Corrosion and biofouling characteristics of mild steel in Mandapam waters. *Materials performance*, 2006. 45(6): p. 46-50.
- 67. Videla, H.A., et al. MIC of steels by iron reducing bacteria. NACE International. 2008.
- Chamritski, I.G., et al., Effect of Iron-Oxidizing Bacteria on Pitting of Stainless Steel. *Corrosion*, 2004. 60(7): p. 658-669.
- Weber, K.A., L.A. Achenbach, and J.D. Coates, Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. *Nat Rev Micro*, 2006. 4(10): p. 752-764.
- Ray, R.I., J.S. Lee, and B.J. Little, Iron-Oxidizing Bacteria: A Review Of Corrosion Mechanisms In Fresh Water And Marine Environments. NACE International.
- 71. Flemming, H.-C. and J. Wingender, The biofilm matrix. *Nat Rev Micro*, 2010. 8(9): p. 623-633.
- Beech, I.B., Corrosion of technical materials in the presence of biofilms current understanding and state-of-the art methods of study. *International Biodeterioration & Biodegradation*, 2004. 53(3): p. 177-183.
- 73. Kuang, F., et al., Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. *Electrochimica Acta*, 2007. 52(20): p. 6084-6088.
- Boyd, A. and A.M. Chakrabarty, Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. *Journal of Industrial Microbiology*, 1995. 15(3): p. 162-168.
- 75. Tapia, J., et al., Mechanism of adsorption of ferric iron by extracellular polymeric substances (EPS) from a bacterium Acidiphilium sp. *Water Science & Technology*, 2011. 64(8): p. 1716-1722.
- 76. Brandel, J., et al., Pyochelin, a siderophore of Pseudomonas aeruginosa: Physicochemical characterization of the iron(iii), copper(ii) and zinc(ii) complexes. *Dalton Transactions*, 2012. 41(9): p. 2820-2834.
- Saha, R., et al., Microbial siderophores: a mini review. *Journal of Basic Microbiology*, 2013. 53(4): p. 303-317.
- 78. Morales, J., et al., The role of Pseudomonas aeruginosa on the localized

corrosion of 304 stainless steel. Corrosion Science, 1993. 34(9): p. 1531-1540.

- 79. Yuan, S.J. and S.O. Pehkonen, Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Colloids and Surfaces B: *Biointerfaces*, 2007. 59(1): p. 87-99.
- Yuan, S.J. and S.O. Pehkonen, AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater. *Corrosion Science*, 2009. 51(6): p. 1372-1385.
- Franklin, M.J., et al., Effect of Chlorine and Chlorine/Bromine Biocide Treatments on the Number and Activity of Biofilm Bacteria and on Carbon Steel Corrosion. *Corrosion*, 1991. 47(2): p. 128-134.
- Guezennec, J.G., Cathodic protection and microbially induced corrosion. International Biodeterioration & Biodegradation, 1994. 34(3–4): p. 275-288.
- Videla, H.A., Prevention and control of biocorrosion. *International Biodeterioration & Biodegradation*, 2002. 49(4): p. 259-270.
- 84. Ye, S., et al., Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly (dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy[†]. *Langmuir*, 2010. 26(21): p. 16455-16462.
- Qian, L., et al., Synthesis of modified guanidine-based polymers and their antimicrobial activities revealed by AFM and CLSM. ACS applied materials & interfaces, 2011. 3(6): p. 1895-1901.
- 86. Kanazawa, A., T. Ikeda, and T. Endo, Polymeric phosphonium salts as a novel class of cationic biocides. III. Immobilization of phosphonium salts by surface photografting and antibacterial activity of the surface-treated polymer films. *Journal of Polymer Science Part A: Polymer Chemistry*, 1993. 31(6): p. 1467-1472.
- 87. Le Roux, I., et al., Use of chitosan as an antifouling agent in a membrane bioreactor. *Journal of membrane science*, 2005. 248(1): p. 127-136.
- 88. Glinel, K., et al., Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. *Bioconjugate chemistry*, 2008. 20(1): p. 71-77.
- Rajasekar, A. and Y.-P. Ting, Inhibition of Biocorrosion of Aluminum 2024
 Aeronautical Alloy by Conductive Ladder Polymer Poly(o-

phenylenediamine). *Industrial & Engineering Chemistry Research*, 2011. 50(4): p. 2040-2046.

- Xu, F., K. Neoh, and E. Kang, Bioactive surfaces and biomaterials via atom transfer radical polymerization. *Progress in polymer science*, 2009. 34(8): p. 719-761.
- 91. Iarikov, D.D., et al., Antimicrobial surfaces using covalently bound polyallylamine. *Biomacromolecules*, 2013. 15(1): p. 169-176.
- Ferreira, L. and A. Zumbuehl, Non-leaching surfaces capable of killing microorganisms on contact. *Journal of Materials Chemistry*, 2009. 19(42): p. 7796-7806.
- Klibanov, A.M., Permanently microbicidal materials coatings. *Journal of Materials Chemistry*, 2007. 17(24): p. 2479-2482.
- Charnley, M., M. Textor, and C. Acikgoz, Designed polymer structures with antifouling–antimicrobial properties. *Reactive and Functional Polymers*, 2011. 71(3): p. 329-334.
- Detty, M.R., et al., Environmentally Benign Sol–Gel Antifouling and Foul-Releasing Coatings. Accounts of Chemical Research, 2014. 47(2): p. 678-687.
- 96. Grozea, C.M. and G.C. Walker, Approaches in designing non-toxic polymer surfaces to deter marine biofouling. *Soft Matter*, 2009. 5(21): p. 4088-4100.
- 97. Martinelli, E., et al., Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials. *Biofouling*, 2012. 28(6): p. 571-582.
- Wang, Y., et al., Photocurable Amphiphilic Perfluoropolyether/Poly(ethylene glycol) Networks for Fouling-Release Coatings. *Macromolecules*, 2011. 44(4): p. 878-885.
- 99. Wang, Y., et al., Amphiphilic co-networks with moisture-induced surface segregation for high-performance nonfouling coatings. *Langmuir*, 2011. 27(17): p. 10365-10369.
- Telegdi, J., et al., Inhibition of copper corrosion by self assembled amphiphiles. *Chemical and biochemical engineering quarterly*, 2007. 21(1): p. 77-82.
- 101. Telegdi, J., et al., Coatings against corrosion and microbial adhesion.

Materials and Corrosion, 2010. 61(12): p. 1000-1007.

- 102. Liu, T., et al., Investigations on reducing microbiologically-influenced corrosion of aluminum by using super-hydrophobic surfaces. *Electrochimica Acta*, 2010. 55(18): p. 5281-5285.
- Genzer, J. and K. Efimenko, Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review. *Biofouling*, 2006. 22(5): p. 339-360.
- 104. Zhang, X., L. Wang, and E. Levanen, Superhydrophobic surfaces for the reduction of bacterial adhesion. *RSC Advances*, 2013. 3(30): p. 12003-12020.
- Mahalakshmi, P., et al., Enhancing corrosion and biofouling resistance through superhydrophobic surface modification. *Current Science(Bangalore)*, 2011. 101(10): p. 1328-1336.
- 106. Mansouri, J., S. Harrisson, and V. Chen, Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. *Journal of Materials Chemistry*, 2010. 20(22): p. 4567-4586.
- 107. Banerjee, I., R.C. Pangule, and R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. *Advanced Materials*, 2011. 23(6): p. 690-718.
- Yang, W.J., et al., Polymer brush coatings for combating marine biofouling. *Progress in Polymer Science*, 2014. 39(5): p. 1017-1042.
- Lejars, M.n., A. Margaillan, and C. Bressy, Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. *Chemical reviews*, 2012. 112(8): p. 4347-4390.
- 110. Wouters, M., C. Rentrop, and P. Willemsen, Surface structuring and coating performance: Novel biocidefree nanocomposite coatings with anti-fouling and fouling-release properties. *Progress in Organic Coatings*, 2010. 68(1–2): p. 4-11.
- 111. Chen, M., et al., Structures and antifouling properties of low surface energy non-toxic antifouling coatings modified by nano-SiO2 powder. *Science in China Series B: Chemistry*, 2008. 51(9): p. 848-852.
- 112. Wang, L.L. and M.Y. Liu, Pool boiling fouling and corrosion properties on liquid-phase-deposition TiO2 coatings with copper substrate. *AIChE Journal*, 2011. 57(7): p. 1710-1718.

- Ning, C., L. Mingyan, and Z. Weidong, Fouling and Corrosion Properties of SiO2 Coatings on Copper in Geothermal Water. *Industrial & Engineering Chemistry Research*, 2012. 51(17): p. 6001-6017.
- Cai, Y. and M. Liu, Corrosion behavior of titania films coated by liquid-phase deposition on AISI304 stainless steel substrates. *AIChE Journal*, 2012. 58(6): p. 1907-1920.
- Yan, W., W. Lin-lin, and L. Ming-yan, Antifouling and enhancing pool boiling by TiO2 coating surface in nanometer scale thickness. *AIChE journal*, 2007. 53(12): p. 3062-3076.
- 116. Nurioglu, A.G., A.C.C. Esteves, and G. de With, Non-toxic, non-biociderelease antifouling coatings based on molecular structure design for marine applications. *Journal of Materials Chemistry B*, 2015. 3(32): p. 6547-6570.
- 117. Park, K.D., et al., Bacterial adhesion on PEG modified polyurethane surfaces. *Biomaterials*, 1998. 19(7–9): p. 851-859.
- 118. Cecchet, F., et al., One step growth of protein antifouling surfaces: monolayers of poly (ethylene oxide)(PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces. *Langmuir*, 2006. 22(3): p. 1173-1181.
- 119. Cheng, G., et al., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. *Biomaterials*, 2007. 28(29): p. 4192-4199.
- 120. Rendueles, O., J.B. Kaplan, and J.M. Ghigo, Antibiofilm polysaccharides. *Environmental microbiology*, 2013. 15(2): p. 334-346.
- Ekblad, T., et al., Poly (ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. *Biomacromolecules*, 2008. 9(10): p. 2775-2783.
- 122. Lundberg, P., et al., Poly (ethylene glycol)-Based Thiol-ene Hydrogel Coatings- Curing Chemistry, Aqueous Stability, and Potential Marine Antifouling Applications. ACS applied materials & interfaces, 2010. 2(3): p. 903-912.
- 123. Buskens, P., et al., A brief review of environmentally benign antifouling and foul-release coatings for marine applications. *Journal of Coatings Technology* and Research, 2013. 10(1): p. 29-36.
- 124. Antizar-Ladislao, B., Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. *Environment International*, 2008. 34(2): p. 292-308.

- 125. Konstantinou, I.K. and T.A. Albanis, Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. *Environment International*, 2004. 30(2): p. 235-248.
- 126. Omae, I., Organotin antifouling paints and their alternatives. *Applied Organometallic Chemistry*, 2003. 17(2): p. 81-105.
- 127. Gittens, J.E., et al., Current and emerging environmentally-friendly systems for fouling control in the marine environment. *Biotechnology Advances*, 2013. 31(8): p. 1738-1753.
- Qian, P.-Y., Y. Xu, and N. Fusetani, Natural products as antifouling compounds: recent progress and future perspectives. *Biofouling*, 2009. 26(2): p. 223-234.
- Regina, V.R., et al., Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications. ACS applied materials & interfaces, 2012. 4(11): p. 5915-5921.
- Olsen, S.M., et al., Enzyme-based antifouling coatings: a review. *Biofouling*, 2007. 23(5): p. 369-383.
- 131. Kristensen, J.B., et al., Antifouling enzymes and the biochemistry of marine settlement. *Biotechnology advances*, 2008. 26(5): p. 471-481.
- 132. Zhao, Q., Y. Liu, and C. Wang, Development and evaluation of electroless Ag-PTFE composite coatings with anti-microbial and anti-corrosion properties. *Applied surface science*, 2005. 252(5): p. 1620-1627.
- 133. Stobie, N., et al., Dual-action hygienic coatings: Benefits of hydrophobicity and silver ion release for protection of environmental and clinical surfaces. *Journal of colloid and interface science*, 2010. 345(2): p. 286-292.
- 134. Ho, C.H., et al., Nanoseparated polymeric networks with multiple antimicrobial properties. *Advanced materials*, 2004. 16(12): p. 957-961.
- 135. Li, Z., et al., Two-level antibacterial coating with both release-killing and contact-killing capabilities. *Langmuir*, 2006. 22(24): p. 9820-9823.
- Sambhy, V., et al., Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. *Journal of the American Chemical Society*, 2006. 128(30): p. 9798-9808.
- 137. Majumdar, P., et al., Combinatorial materials research applied to the development of new surface coatings IX: an investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt

groups. Biofouling, 2008. 24(3): p. 185-200.

- Ding, X., et al., Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. *Biomaterials*, 2012. 33(28): p. 6593-6603.
- 139. Green, J.-B.D., T. Fulghum, and M.A. Nordhaus, Immobilized antimicrobial agents: A critical perspective. *Chem. Rev*, 2009. 109(11): p. 5437-5527.
- 140. Yang, W.J., et al., Functional polymer brushes via surface-initiated atom transfer radical graft polymerization for combating marine biofouling. *Biofouling*, 2012. 28(9): p. 895-912.
- 141. Fan, X., et al., Biomimetic anchor for surface-initiated polymerization from metal substrates. *Journal of the American Chemical Society*, 2005. 127(45):
 p. 15843-15847.
- 142. Yao, F., et al., Antibacterial effect of surface-functionalized polypropylene hollow fiber membrane from surface-initiated atom transfer radical polymerization. *Journal of Membrane Science*, 2008. 319(1–2): p. 149-157.
- 143. Lee, S.B., et al., Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. *Biomacromolecules*, 2004. 5(3): p. 877-882.
- Murata, H., et al., Permanent, non-leaching antibacterial surfaces—2: How high density cationic surfaces kill bacterial cells. *Biomaterials*, 2007. 28(32): p. 4870-4879.
- 145. Neoh, K. and E. Kang, Combating bacterial colonization on metals via polymer coatings: relevance to marine and medical applications. *ACS applied materials & interfaces*, 2011. 3(8): p. 2808-2819.
- Akid, R., et al., Biological functionalization of a sol-gel coating for the mitigation of microbial-induced corrosion. *Advanced functional materials*, 2008. 18(2): p. 203.
- 147. Ciriminna, R., F.V. Bright, and M. Pagliaro, Ecofriendly Antifouling Marine Coatings. *ACS Sustainable Chemistry & Engineering*, 2015. 3(4): p. 559-565.
- 148. Wan, D., et al., Poly (glycidyl methacrylate)–polyaniline bilayer-modified mild steel for combating biocorrosion in seawater. *Journal of The Electrochemical Society*, 2009. 156(8): p. C266-C274.
- 149. Wan, D., et al., Surface functionalization of copper via oxidative graft polymerization of 2, 2'-bithiophene and immobilization of silver

nanoparticles for combating biocorrosion. *ACS applied materials & interfaces*, 2010. 2(6): p. 1653-1662.

- Nesterova, T., et al., Microcapsule-based self-healing anticorrosive coatings: Capsule size, coating formulation, and exposure testing. *Progress in Organic Coatings*, 2012. 75(4): p. 309-318.
- Jones, A., et al., Life extension of self-healing polymers with rapidly growing fatigue cracks. *Journal of the Royal Society Interface*, 2007. 4(13): p. 395-403.
- 152. Keller, M., S. White, and N. Sottos, Torsion fatigue response of self-healing poly (dimethylsiloxane) elastomers. *Polymer*, 2008. 49(13): p. 3136-3145.
- 153. Rule, J.D., et al., Wax-protected catalyst microspheres for efficient selfhealing materials. *Advanced Materials*, 2005. 17(2): p. 205-208.
- 154. Kersey, F.R., D.M. Loveless, and S.L. Craig, A hybrid polymer gel with controlled rates of cross-link rupture and self-repair. *Journal of the royal society interface*, 2007. 4(13): p. 373-380.
- 155. Cordier, P., et al., Self-healing and thermoreversible rubber from supramolecular assembly. *Nature*, 2008. 451(7181): p. 977-980.
- 156. Toohey, K.S., et al., Self-healing materials with microvascular networks. *Nature materials*, 2007. 6(8): p. 581-585.
- Gupta, S., et al., Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. *Nature Materials*, 2006. 5(3): p. 229-233.
- 158. Verberg, R., et al., Healing substrates with mobile, particle-filled microcapsules: designing a 'repair and go'system. *Journal of the Royal Society Interface*, 2007. 4(13): p. 349-357.
- 159. Kalista, S.J. and T.C. Ward, Thermal characteristics of the self-healing response in poly (ethylene-co-methacrylic acid) copolymers. *Journal of the Royal Society Interface*, 2007. 4(13): p. 405-411.
- Andreeva, D.V., et al., Self-Healing Anticorrosion Coatings Based on pH-Sensitive Polyelectrolyte/Inhibitor Sandwichlike Nanostructures. *Advanced Materials*, 2008. 20(14): p. 2789-2794.
- 161. Pang, J. and I. Bond, 'Bleeding composites' damage detection and self-repair using a biomimetic approach. *Composites Part A: Applied Science and Manufacturing*, 2005. 36(2): p. 183-188.

- Cho, S.H., et al., Polydimethylsiloxane-Based Self-Healing Materials. Advanced Materials, 2006. 18(8): p. 997-1000.
- Cho, S.H., S.R. White, and P.V. Braun, Self-Healing Polymer Coatings. Advanced Materials, 2008. 21(6): p. 645-649.
- Shchukin, D.G. and H. Möhwald, Self-Repairing Coatings Containing Active Nanoreservoirs. small, 2007. 3(6): p. 926-943.
- Cho, S.H., S.R. White, and P.V. Braun, Self-healing polymer coatings. *Adv. Mater*, 2009. 21(6): p. 645-49.
- 166. Naka, Y., et al., Preparation of microspheres by radiation-induced polymerization. I. Mechanism for the formation of monodisperse poly (diethylene glycol dimethacrylate) microspheres. *Journal of Polymer Science Part A: Polymer Chemistry*, 1991. 29(8): p. 1197-1202.
- 167. Samadzadeh, M., et al., A review on self-healing coatings based on micro/nanocapsules. *Progress in Organic Coatings*, 2010. 68(3): p. 159-164.
- 168. Shulkin, A. and H.D. Stöver, Polymer microcapsules by interfacial polyaddition between styrene–maleic anhydride copolymers and amines. *Journal of Membrane Science*, 2002. 209(2): p. 421-432.
- Lii, C.-y., et al., Xanthan gum–gelatin complexes. *European Polymer Journal*, 2002. 38(7): p. 1377-1381.
- 170. Brown, E.N., et al., In situ poly (urea-formaldehyde) microencapsulation of dicyclopentadiene. *Journal of microencapsulation*, 2003. 20(6): p. 719-730.
- Blaiszik, B., N. Sottos, and S. White, Nanocapsules for self-healing materials. *Composites Science and Technology*, 2008. 68(3): p. 978-986.
- 172. Pizzuti, L., et al., Efficient sonochemical synthesis of novel 3, 5-diaryl-4, 5-dihydro-1H-pyrazole-1-carboximidamides. *Ultrasonics Sonochemistry*, 2010. 17(1): p. 34-37.
- 173. Blaiszik, B., et al., Microcapsules filled with reactive solutions for selfhealing materials. *Polymer*, 2009. 50(4): p. 990-997.
- 174. Blaiszik, B.J., N.R. Sottos, and S.R. White, Nanocapsules for self-healing materials. *Composites Science and Technology*, 2008. 68(3–4): p. 978-986.
- 175. Coating, S.-H., http://www.ngo-met.blogfa.com/post/3 31/01/2016.
- 176. Dry, C., Procedures developed for self-repair of polymer matrix composite materials. *Composite Structures*, 1996. 35(3): p. 263-269.
- 177. Koch, K., et al., Self-healing of voids in the wax coating on plant surfaces.

Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2009. 367(1894): p. 1673-1688.

- Leo, C., et al., The potential of SAPO-44 zeolite filler in fouling mitigation of polysulfone ultrafiltration membrane. *Separation and Purification Technology*, 2013. 103: p. 84-91.
- 179. Fan, Z., et al., Preparation and characterization of polyaniline/polysulfone nanocomposite ultrafiltration membrane. *Journal of Membrane Science*, 2008. 310(1): p. 402-408.
- Cowan, M., et al., Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. *Journal of Industrial Microbiology and Biotechnology*, 2003. 30(2): p. 102-106.
- Hewayde, E.H., et al., Beneficial impact of coatings on biological generation of sulfide in concrete sewer pipes. *Structures & Infrastructure Engineering*, 2007. 3(3): p. 267-277.
- 182. Haile, T., G. Nakhla, and E. Allouche, Evaluation of the resistance of mortars coated with silver bearing zeolite to bacterial-induced corrosion. *Corrosion Science*, 2008. 50(3): p. 713-720.
- Haile, T. and G. Nakhla, A Novel Zeolite Coating for Protection of Concrete Sewers from Biological Sulfuric Acid Attack. *Geomicrobiology Journal*, 2008. 25(6): p. 322-331.
- 184. Perez-Ramirez, J., et al., Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. *Chemical Society Reviews*, 2008. 37(11): p. 2530-2542.
- 185. Tao, Y., et al., Mesopore-modified zeolites: preparation, characterization, and applications. *Chemical reviews*, 2006. 106(3): p. 896-910.
- Holland, B.T., L. Abrams, and A. Stein, Dual templating of macroporous silicates with zeolitic microporous frameworks. *Journal of the American Chemical Society*, 1999. 121(17): p. 4308-4309.
- 187. Jacobsen, C.J., et al., Mesoporous zeolite single crystals. *Journal of the American Chemical Society*, 2000. 122(29): p. 7116-7117.
- 188. Choi, M., et al., Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. *Nature materials*, 2006. 5(9): p. 718-723.
- López, H., et al., 60Co sorption in zeolite 4A and effect of radiation. *Journal of Radioanalytical and Nuclear Chemistry*, 1995. 200(1): p. 19-23.

- 190. Davis, M.E., Zeolite-based catalysts for chemicals synthesis. *Microporous and Mesoporous Materials*, 1998. 21(4–6): p. 173-182.
- 191. Gebremedhin-Haile, T., M.T. Olguín, and M. Solache-Ríos, Removal of Mercury Ions from Mixed Aqueous Metal Solutions by Natural and Modified Zeolitic Minerals. *Water, Air, and Soil Pollution*, 2003. 148(1-4): p. 179-200.
- 192. Gu, B.X., L.M. Wang, and R.C. Ewing, The effect of amorphization on the Cs ion exchange and retention capacity of zeolite-NaY. *Journal of Nuclear Materials*, 2000. 278(1): p. 64-72.
- 193. Rivera-Garza, M., et al., Silver supported on natural Mexican zeolite as an antibacterial material. *Microporous and Mesoporous Materials*, 2000. 39(3):
 p. 431-444.
- 194. Top, A. and S. Ülkü, Silver, zinc, and copper exchange in a Na-clinoptilolite and resulting effect on antibacterial activity. *Applied Clay Science*, 2004. 27(1–2): p. 13-19.
- 195. Hu, C.-H. and M.-S. Xia, Adsorption and antibacterial effect of copperexchanged montmorillonite on Escherichia coli K88. *Applied Clay Science*, 2006. 31(3–4): p. 180-184.
- McDonnell, A.M., et al., Hydrophilic and antimicrobial zeolite coatings for gravity-independent water separation. *Advanced Functional Materials*, 2005. 15(2): p. 336-340.
- 197. Matsumura, Y., et al., Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. *Applied and environmental microbiology*, 2003. 69(7): p. 4278-4281.
- 198. Fox, S., et al., NO-loaded Zn²⁺-exchanged zeolite materials: a potential bifunctional anti-bacterial strategy. *Acta biomaterialia*, 2010. 6(4): p. 1515-1521.
- 199. Chen, G., et al., Initial Bacterial Deposition on Bare and Zeolite-Coated Aluminum Alloy and Stainless Steel. *Langmuir*, 2009. 25(3): p. 1620-1626.
- 200. Wang, J., et al., Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. *Microporous and Mesoporous Materials*, 2011. 146(1–3): p. 216-222.
- 201. Anu Prathap, M.U., et al., Synthesis of mesostructured polyaniline using mixed surfactants, anionic sodium dodecylsulfate and non-ionic polymers and their applications in H2O2 and glucose sensing. *Colloids and Surfaces B:*

Biointerfaces, 2012. 89: p. 108-116.

- 202. Anu Prathap, M.U. and R. Srivastava, Tailoring properties of polyaniline for simultaneous determination of a quaternary mixture of ascorbic acid, dopamine, uric acid, and tryptophan. *Sensors and Actuators B: Chemical*, 2013. 177: p. 239-250.
- 203. Anu Prathap, M.U., B. Satpati, and R. Srivastava, Facile preparation of polyaniline/MnO2 nanofibers and its electrochemical application in the simultaneous determination of catechol, hydroquinone, and resorcinol. *Sensors and Actuators B: Chemical*, 2013. 186: p. 67-77.
- 204. Varesano, A., et al., Multifunctional cotton fabrics. *Synthetic Metals*, 2009. 159(11): p. 1082-1089.
- 205. Shi, N., et al., Antibacterial effect of the conducting polyaniline. *Journal of Materials Science and Technology*, 2006. 22(3).
- 206. Abdullah, H., et al., PANI-Ag-Cu nanocomposite thin films based impedimetric microbial sensor for detection of E. coli bacteria. *Journal of Nanomaterials*, 2014. 2014: p. 197.
- 207. Gizdavic-Nikolaidis, M.R., et al., Broad spectrum antimicrobial activity of functionalized polyanilines. *Acta Biomaterialia*, 2011. 7(12): p. 4204-4209.
- 208. Wang, X.-H., et al., Polyaniline as marine antifouling and corrosionprevention agent. *Synthetic Metals*, 1999. 102(1): p. 1377-1380.
- 209. Mostafaei, A. and F. Nasirpouri, Preparation and characterization of a novel conducting nanocomposite blended with epoxy coating for antifouling and antibacterial applications. *Journal of Coatings Technology and Research*, 2013. 10(5): p. 679-694.
- 210. Kaur, B. and R. Srivastava, Simultaneous determination of epinephrine, paracetamol, and folic acid using transition metal ion-exchanged polyaniline– zeolite organic–inorganic hybrid materials. *Sensors and Actuators B: Chemical*, 2015. 211: p. 476-488.
- 211. Čirić-Marjanović, G., et al., Synthesis and Characterization of Conducting Self-Assembled Polyaniline Nanotubes/Zeolite Nanocomposite. *Langmuir*, 2009. 25(5): p. 3122-3131.
- 212. Shyaa, A.A., O.A. Hasan, and A.M. Abbas, Synthesis and characterization of polyaniline/zeolite nanocomposite for the removal of chromium(VI) from aqueous solution. *Journal of Saudi Chemical Society*, 2015. 19(1): p. 101-

107.

- 213. Mattox, D.M., Handbook of physical vapor deposition (PVD) processing.William Andrew. 2010.
- Rossnagel, S.M., Directional and ionized physical vapor deposition for microelectronics applications. *Journal of Vacuum Science & Technology B*, 1998. 16(5): p. 2585-2608.
- 215. Hull, R., Properties of crystalline silicon. IET. 1999.
- Wu, Y.N., Y. Kawahara, and K. Kurokawa, Structure and oxidation resistance of plasma sprayed Ni–Si coatings on carbon steel. *Vacuum*, 2006. 80(11–12): p. 1256-1260.
- Mittal, V.K., et al., Formation and characterization of bi-layer oxide coating on carbon-steel for improving corrosion resistance. *Thin Solid Films*, 2009. 517(5): p. 1672-1676.
- 218. Barquist, K.N., Synthesis and environmental adsorption applications of functionalized zeolites and iron oxide/zeolite composites. 2009.
- Li, D., J. Huang, and R.B. Kaner, Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. *Accounts of chemical research*, 2008. 42(1): p. 135-145.
- 220. Zhao, Y., et al., Self-healing coatings containing microcapsule. *Applied Surface Science*, 2012. 258(6): p. 1915-1918.
- 221. Sander, T., S. Tremmel, and S. Wartzack, A modified scratch test for the mechanical characterization of scratch resistance and adhesion of thin hard coatings on soft substrates. *Surface and Coatings Technology*, 2011. 206(7): p. 1873-1878.
- 222. Dilik, T., et al., Adhesion Strength of Wood Based Composites Coated with Cellulosic and Polyurethane Paints. *Advances in Materials Science and Engineering*, 2015. 2015.
- 223. Girginer, B., et al., A method for polyaniline coatings on solid polystyrene surfaces and electroless copper deposition. *Surface and Coatings Technology*, 2008. 202(17): p. 4176-4182.
- 224. AlAbbas, F.M., et al., Bacterial attachment to metal substrate and its effects on microbiologically-influenced corrosion in transporting hydrocarbon pipelines. *Journal of Pipeline Engineering*, 2012. 11(1): p. 63.
- 225. Konhauser, K., et al., Mineral precipitation by epilithic biofilms in the Speed

River, Ontario, Canada. *Applied and Environmental Microbiology*, 1994. 60(2): p. 549-553.

- 226. Simões, M., L.C. Simões, and M.J. Vieira, A review of current and emergent biofilm control strategies. *LWT-Food Science and Technology*, 2010. 43(4): p. 573-583.
- 227. Duan, J., et al., Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater. *Electrochimica Acta*, 2008. 54(1): p. 22-28.
- 228. Li, K., M. Whitfield, and K.J. Van Vliet, Beating the bugs: roles of microbial biofilms in corrosion. *Corrosion Reviews*, 2013. 31(3-6): p. 73-84.
- 229. Moller, H., E. Boshoff, and H. Froneman, The corrosion behaviour of a low carbon steel in natural and synthetic seawaters. Journal South African institute of mining and metallurgy, 2006. 106(8): p. 585.
- Rajasekharan, V., et al., Electrochemical Evaluation of Anticorrosive Performance of Organic Acid Doped Polyaniline Based Coatings. *Int. J. Electrochem. Sci*, 2013. 8: p. 11327-11336.
- 231. Chen, S., et al., Preparation and Properties Study of Polyaniline Conductive Anti-Fouling Coatings. *Int. J. Electrochem. Sci*, 2012. 7: p. 8170-8184.
- 232. Srinivasan, P.B., et al., Characterisation of microstructure, mechanical properties and corrosion behaviour of an AA2219 friction stir weldment. *Journal of alloys and compounds*, 2010. 492(1): p. 631-637.
- Yingcai, L., et al., State of aluminium in hydrothermally dealuminated MFI zeolite. J. Chem. Soc., Faraday Trans., 1996. 92(9): p. 1647-1651.
- 234. Ahdash, A., et al. Characterizations of Zeolite, Polyaniline and Zeolite/Polyaniline as Antifouling Materials for Marine Applications. in Advanced Materials Research. 2014. Trans Tech Publ.
- 235. Li, Y., et al., Synthesis of ZSM-5 zeolite membranes with large area on porous, tubular α-Al2O3 supports. *Separation and Purification Technology*, 2003. 32(1–3): p. 397-401.
- 236. Baran, R., et al., Influence of the nitric acid treatment on Al removal, framework composition and acidity of BEA zeolite investigated by XRD, FTIR and NMR. *Microporous and Mesoporous Materials*, 2012. 163(0): p. 122-130.
- 237. Luo, Z., S. Wang, and X. Guo, Selective pyrolysis of Organosolv lignin over zeolites with product analysis by TG-FTIR. *Journal of Analytical and*

Applied Pyrolysis, 2012. 95(0): p. 112-117.

- 238. Aboul-Gheit, A.K., Effect of decationation and dealumination of zeolite Y on its acidity as assessed by ammonia desorption measured by differential scanning calorimetry (DSC). *Thermochimica Acta*, 1991. 191(2): p. 233-240.
- 239. Calabrese, L., et al., Adhesion aspects of hydrophobic silane zeolite coatings for corrosion protection of aluminium substrate. *Progress in Organic Coatings*, 2014. 77(9): p. 1341-1350.
- 240. Schulze-Makuch, D., et al., Surfactant-modified zeolite can protect drinking water wells from viruses and bacteria. Eos, *Transactions American Geophysical Union*, 2002. 83(18): p. 193-201.
- 241. Yao, B., et al., Corrosion inhibition of carbon steel by polyaniline nanofibers. *Materials Letters*, 2008. 62(12): p. 1775-1778.
- 242 Yang, X., et al., Anticorrosion performance of polyaniline nanostructures on mild steel. *Progress in Organic Coatings*, 2010. 69(3): p. 267-271.
- 243. Rahy, A. and D.J. Yang, Synthesis of highly conductive polyaniline nanofibers. *Materials Letters*, 2008. 62(28): p. 4311-4314.
- 244. Abdolahi, A., et al., Synthesis of Uniform Polyaniline Nanofibers through Interfacial Polymerization. *Materials*, 2012. 5(8): p. 1487-1494.
- 245. Alves, W.F., et al., Thermo-analyses of polyaniline and its derivatives. *Thermochimica Acta*, 2010. 502(1–2): p. 43-46.
- 246. Kazim, S., et al., Electrical, thermal and spectroscopic studies of Te doped polyaniline. *Current Applied Physics*, 2007. 7(1): p. 68-75.
- 247. Lv, L., et al., Surface Modification of Mild Steel with Thermally Cured Antibacterial Poly (vinylbenzyl chloride)–Polyaniline Bilayers for Effective Protection against Sulfate Reducing Bacteria Induced Corrosion. *Industrial & Engineering Chemistry Research*, 2014. 53(31): p. 12363-12378.
- 248. Abdolahi, A., et al., Synthesis and characterization of high-quality polyaniline nanofibres. *High Performance Polymers*, 2013. 25(2): p. 236-242.
- Shyaa, A.A., O.A. Hasan, and A.M. Abbas, Synthesis and characterization of polyaniline/zeolite nanocomposite for the removal of chromium(VI) from aqueous solution. *Journal of Saudi Chemical Society*, 2015.
- 250. Olad, A. and B. Naseri, Preparation, characterization and anticorrosive properties of a novel polyaniline/clinoptilolite nanocomposite. *Progress in Organic Coatings*, 2010. 67(3): p. 233-238.

- 251. Doula, M.K., Synthesis of a clinoptilolite–Fe system with high Cu sorption capacity. *Chemosphere*, 2007. 67(4): p. 731-740.
- 252. Torresi, R.M., et al., Galvanic coupling between metal substrate and polyaniline acrylic blends: corrosion protection mechanism. *Electrochimica acta*, 2005. 50(11): p. 2213-2218.
- 253. Wang, Z., P. Gu, and Z. Zhang, Indentation and scratch behavior of nano-SiO 2/polycarbonate composite coating at the micro/nano-scale. *Wear*, 2010. 269(1): p. 21-25.
- 254. Bull, S. and E. Berasetegui, An overview of the potential of quantitative coating adhesion measurement by scratch testing. *Tribology International*, 2006. 39(2): p. 99-114.