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ABSTRACT 

 

 

 

 

 Solid pineapple waste (SPW) is one of the most abundant agricultural wastes 

found in tropic region. It was reported about 40-50% of the wastes generated from 

pineapple canning industry are from solid wastes. Their disposal poses a serious 

environmental pollution problem. This study looks into the potential of utilizing a 

mixture of solid pineapple waste including residual pulp, peels, cores, stems and 

leaves for the production of lactic acid by Rhizopus oryzae NRRL 395 in solid state 

fermentation (SSF). Characterization of SPW using Fourier transform infrared (FT-

IR) and Scanning electron microscope (SEM) indicate that the structural and 

chemical composition of autoclaved SPW was suitable for use as SSF substrate. 

Screening studies through 2-level factorial (2LF) design revealed that R. oryzae 

NRRL 395 was best suited for lactic acid metabolism under the conditions of SSF 

system. The optimum SSF condition in shake flasks conducted based on central 

composite design was obtained at 67.53%, 3 days of incubation, at temperature of 

32.2°C, pH of 5.6, and inoculum size of 1×10
7 

spores/g, with 1.21 fold increment of 

lactic acid yield compared to that produced in one-factor-at-a-time experiment. This 

study has successfully designed a novel modified Memmert-tray bioreactor to 

analysed the effects of lactic acid production in larger scale (1kg) SSF of SPW. The 

highest concentration of lactic acid in the bioreactor was obtained at condition 

variables of 70 ± 2% of humidity chamber with 2 Liters per minute (LPM) aeration 

rate, incubation temperature of 30°C, pH 6 and 70% of initial moisture content of 

SPW bed, where the SSF was run for 3 days.The lactic acid yield (Yp/s), maximum 

and overall lactic acid productivity of R. oryzae NRRL 395 in modified Memmert-

tray bioreactor were 1.03, 1.05, 1.14 fold higher than those under optimum condition 

performed in shake flask system. As a conclusion, a significant lactic acid production 

from SPW by Rhizopus oryzae NRRL 395 has proved that it could be contributed 

towards the sustainability of agricultural industry by creating wealth from waste and 

promoting economic biotechnology for future development. 
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ABSTRAK 

 

 

 

 

Sisa pepejal nanas merupakan salah satu daripada bahan buangan pertanian 

yang paling banyak boleh didapati di kawasan tropika. Kira-kira 40-50% sisa 

buangan yang dihasilkan daripada industri pengetinan nanas adalah dari sisa pepejal 

nanas. Pembuangan sisa nanas juga menyebabkan masalah pencemaran alam sekitar 

yang serius. Tujuan kajian ini dijalankan ialah untuk melihat keboleh-upayaan 

penggunaan sisa pepejal nanas termasuk pulpa, kulit, teras tengah, batang dan daun, 

bagi menghasilkan asid laktik oleh Rhizopus oryzae NRRL 395 melalui penapaian 

keadaan pepejal. Pencirian kandungan sisa pepejal nenas menggunakan alat 

Penjelmaan Fourier Inframerah dan Mikroskop Elektron Imbasan telah membuktikan 

bahawa struktur dan komposisi pepejal nenas yang telah diautoklaf sesuai untuk 

digunakan sebagai substrat penapaian keadaan pepejal. Saringan menggunakan 

Rekabentuk 2-Aras-Faktoran menunjukkan bahawa R. oryzae NRRL 395 

berkebolehan melakukan metabolisme asid laktik di dalam keadaan SSF. Keadaan 

optimum SSF bagi penapaian di dalam kelalang yang diperolehi melalui Rekabentuk 

Pusat Komposit adalah pada 67.53% kandungan lembapan, pengeraman selama 3 

hari, 32.2°C, pH 5.6, dan 1 × 10
7
 spora/g, dimana hasil asid laktik telah meningkat 

1.21 kali lebih tinggi berbanding kawalan yang menggunakan kaedah satu-faktor-

pada-satu-masa. Kajian ini berjaya merangka sebuah bioreaktor Memmert-dulang 

yang telah diubahsuai bagi menganalisis kesan penghasilan asid laktik dalam kapasiti 

yang lebih besar (1kg). Jumlah tertinggi asid laktik yang diperoleh dalam bioreaktor 

ialah pada pembolehubah kelembapan kebuk pada 70±2%, kadar pengudaraan 

sebanyak 2 liter seminit (LPM), suhu 30°C, pH 6 dan kelembapan awal sampel nenas 

pada 70%, masa pengeraman selama 3 hari. Hasil asid laktik (Yp/s), produktiviti 

maksimum dan produktiviti keseluruhan penghasilan asid laktik oleh R. oryzae 

NRRL 395 dalam bioreaktor Memmert-dulang yang diubahsuai adalah 1.03, 1.05, 

1.14 kali lebih tinggi daripada keadaan optimum di dalam kelalang. Kesimpulannya, 

penghasilan asid laktik daripada SPW oleh Rhizopus oryzae NRRL 395 

membuktikan bahawa ianya dapat menyumbang ke arah kemapanan industri 

pertanian dengan mewujudkan kekayaan dari sisa terbuang dan mempromosikan 

ekonomi bioteknologi bagi pembangunan masa hadapan. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

Pineapple (Ananas comosus) is a tropical plant that is commonly cultivated 

on peat soil and is believed to have originated from the Eastern region South 

America (Ahmed et al., 2004; Botella and Smith, 2008). Malaysia is one of the 

world‘s major producers of pineapple industry which includes Thailand, Philippines, 

Indonesia, Hawaii, Kenya, Brazil, Taiwan, Australia, India and South Africa 

(Rohrbach et al., 2002). Pineapple was introduced to Tanah Melayu in the early 16
th

 

century by the Portuguese and was commercially planted in Johor and Selangor in 

1921 as cash crop (Siti Roha et al., 2013).  

 

According to the official portal of the Malaysian Pineapple Industry Board 

(MPIB), Johor is the biggest contributor to the Malaysian pineapple industry because 

of its peat soil nature that makes it suitable for pineapple plantation (Siti Roha et al., 

2013). Furthermore, in 2015, almost 329,954 metric tonnes of pineapples were 

produced in Johor, which covers almost 73% of the total pineapple producers 

(452,020 metric tonnes) in Malaysia (MPIB, 2016). The export of pineapples-based-

products in Malaysia has recorded a positive growth. In 2015, the total value of 

pineapples exports (including fresh, canned, juices and ornamental) are 

approximately RM161,169,968, at which was increased by 41% compared to 

theprevious year (RM14,115,983). The product that appeared with the highest export 

value is canned pineapples, which is about 50.15% of the total pineapple exports 

(RM 80,834,669). Demands on the export of fresh pineapples in Malaysia is
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expected to increase at 5% per annum due to the higher demand on MD2 type of 

pineapple (hybrid pineapple also known as super sweet pineapple) in the 

international market (Mensah and Brummer, 2015; Wan Rizzal et al., 2014). 

 

 Pineapple canning industry is one of the contributors of solid waste 

accumulation in Malaysia (Jusoh et al., 2014). It was reported about 40-50% of the 

wastes generated from pineapple canning industry are from solid wastes, where it 

was comprises of residual pulp, peels, core, stems and leaves (Buckle, 1989; 

Abdullah and Mat, 2008). Sometimes, the pineapple wastes are used by dairy farmers 

to feed cattle (Sruamsiri, 2007). In some places, the pineapple‘s peat is reutilized by 

burning process (Ahmed et al., 2004). However, it needs extra work in controlling 

the burning peat and in the worst condition, it generates lots of ash that may cause 

haze to occur. According to Ahmed and his co-workers (1999), 1.31 mg per hectare 

(ha
-1

) of ashes has been released after burning 4.34 Mg per hectare (ha
-1

) of 

pineapple leaves per cropping season (Ahmed et al., 2004). At present, dumping 

pineapple waste into the environment involves a considerable cost due to the 

handling process and transportation (Dacera and Babel, 2008). The solid pineapple 

wastes are usually left accumulated or disposed on the soil as waste, causing 

environmental pollution. Therefore, research on the utilization of solid pineapple 

waste into a value added product is one of the best solutions in managing pineapple 

waste, especially in Johor. 

 

 Pineapple waste is classified as a lignocellulosic compound at which it 

consists of cellulose, hemicelluloses and lignin (Zhang et al., 2007). Usually, 

pineapple waste contains high amount of sugars and  nutrients that make it 

economically feasible for the conversion of value added products such as organic 

acids, bromelain, ethanol, phenolic antioxidant, etc. (Kareem et al., 2010; Larrauri et 

al., 1997; Nigam, 1999, Dacera et al., 2009). Besides that, pineapple waste also 

contains organic substances that could be used for biogas production, for example 

methane gas (Rani and Nand, 2004). Furthermore, pineapple waste has been reported 

to contain fibers where in some Southeast Asian countries, the pineapple leaves has 

been used to make coarse textiles and threads (Tran, 2006). In Malaysia, pineapple 

waste has been used as Bio-Organic fertilizer by using effective microorganism (EM) 

technology (Zakaria, 2006). Recently, research on renewable materials conversion 
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into value added product in maintaining a sustainable environment is an attractive 

idea especially in applying the lignocellulosic-based material since it contains a 

possible component that can be used as a substrate in the fermentation process 

(Prados et al., 2010). Based on the compositional analysis of the SPW component by 

previous researchers, it is logical that it can be used as sole carbon source of organic 

acid production, specifically L(+) type of lactic acid (Rani et al., 2004; Bardiya et al., 

1996; Ban-Koffi et al., 1990). 

 

Recent worldwide demand for L(+) lactic acid has been recently estimated 

around 130 000 to 150 000 (metric) tonnes per year (John et al., 2007). The prices of 

lactic acid depends on the grade of the lactic acid itself, where food-grade of lactic 

acid is around 1.38 US$/kg (50% purity) and 1.54 US$/kg (88% purity), whereas 

technical-grade of lactic acid is around 1.59 US$/kg (88% purity) (Wee et al., 2006). 

Lactic acid is a type of organic acid that serves as feed in certain industries, such as 

food, cosmetic, medical, etc. (Wee et al., 2006). Lactic acid can exist in several 

forms, either D (−) or L (+) lactic acid, or as a racemic mixture of both, depending on 

the type of microorganism used in the fermentation process. L(+) lactic acid is a 

well-known monomer being used in the production of biodegradable plastic, called 

poly lactic acid (PLA) (Garlotta, 2002).  

 

At present time, natural lactic acid production by using biological synthesis 

has received much attention compared to chemical synthesis because it could reduce 

the production cost and prevent serious environmental problems (Wee et al., 2006). 

Lactic acid production from lignocellulosic material through the fermentation 

process is the best alternative to chemically synthetic method since production 

through chemical technique might generate toxic by-products and is quite expensive 

due to the chemical components, and solvents needed in the manufacturing process 

(Gavrilescu and Chisti, 2005). Fermentative production of lactic acid from 

lignocellulosic biomass can be conducted either through solid state fermentation 

(SSF) or submerged fermentation (SmF) (Barrios-Gonzalez, 2012). SSF involves the 

fermentation of solid or non-soluble material in absence or near absence of free 

water, where the condition promotes the growth of fermentative organisms (Pandey, 

2003). In contrast to that, SmF requires excess amount of water, where the 

fermentative substrate is suspended in a high volume of water (Moo-Young et al., 
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1983). SSF has been applied since ancient times (2600 B.C.); but it has been ignored 

in 18
th

 century due to the emergence of submerged fermentation (SmF) for penicillin 

commercialization (Pandey, 1992). At present times, it can be seen that there is a 

growing interest in modern SSF systems since more industries employs the SSF 

system due to the higher production of desired product in large scale volume within 

low production time compared to the SmF method (Barrios-Gonzalez, 2012; Acuna-

Arguelles et al., 1995; Diaz-Godinez et al., 2001; Elinbaum et al., 2002). In addition, 

SSF promotes low cost spending on energy investment since it requires less amount 

of water during fermentation and most of SSF process does not involve mechanical 

mixing technique (Chen, 2013). Plus, SSF easily handles separation of products from 

the solid substrate and at the same time has fewer requirements in the downstream 

process (Chen, 2013).  

 

Selection of suitable microorganism is another important feature in the 

production of lactic acid (Pandey, 2003). Lactic acid bacteria (LAB) are classified as 

a group of microbes that are usually used in producing lactic acid. Previously, 

Lactobacillus was the best strain used in the lactic acid industry (Wahidin, 2008). 

However, over the past few years, filamentous fungi have played an important role in 

producing L(+) lactic acid (Miura et al., 2004a; Soccol et al., 1994). The fungi 

belonging to the Rhizopus genome has received much attention for its amylolytic 

activity, pure lactic acid production and low nutrient requirement (Tay and Yang, 

2002; Maas et al., 2006; Zhang et al., 2007). Rhizopus oryzae is one of the common 

fungi that have been used in the lactic acid industry (Zhang et al., 2007). The non-

fastidious nature of Rhizopus oryzae provides a low nutritional requirement 

advantage compared to using lactic acid bacteria. Moreover, Rhizopus oryzae is 

preferable because it does not require the purification process as it has the capability 

of directly produce pure L(+)-lactic acid (Skory, 2004). Ruengruglikit and Hang 

(2003) successfully produced 299.4±6.8 g of L(+) lactic acid per kg dry matter of 

corncobs with the addition of commercial apple juice using Rhizopus oryzae NRRL 

395 through the SmF process. Phrueksawan et al. (2012) has enhanced the 

production of lactic acid from 206.20 to 463.18 mg/g of cassava pulp by using 

Rhizopus oryzae NRRL 395 through direct SSF with the help of commercial 

cellulase and glucoamylase. Since Rhizopus oryzae is available in several types of 

strains, Saito et al. (2012) found that Rhizopus oryzae NBRC 5378 was the best 
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among 56 strains of R. oryzae for the production of lactic acid, where they 

effectively obtained 0.23 g/g of lactic acid from a wheat straw. Therefore, the 

selection of Rhizopus oryzae NRRL 395 as fermenting agent in employing direct 

SSF technique to produce the L(+) lactic acid is the best idea and should be 

investigated. 

 

 In ancient times, large scale handling SSF was a great concern due to its 

difficulties in controlling the operational conditions (Jou and Lo, 2011). In response 

to that, improvement on upscalling conditions can be achieved by understanding the 

overall process through optimizing the operating conditions including temperature, 

moisture content of the sample, humidity and aeration rate within the chamber 

(Vaseghi et al., 2013). Various types of bioreactors have been designed in a large 

scale of SSF including tray, packed bed, stirred bed, rotating drum and fluidized bed 

bioreactors (Couto and Sanroman, 2005; Ali and Zulkali, 2011; Mitchell et al., 

2006). Among these types of bioreactors, the simplest type is the tray bioreactor 

(Couto and Sanroman, 2005). Its non-complicated nature (easy to decontamination), 

low cost (affordable to be constructed) and probability of the whole chamber 

considered as a single bioreactor makes the tray bioreactor one of the promising 

bioreactors to be applied in the upscale stage (Ruiz et al., 2012; Vaseghi et al., 2013; 

Mitchell et al., 2006). Besides that, an improved novel type of tray bioreactor has 

been developed as a new approach in dealing the SSF problems. Mohseni et al. 

(2012) have designed a noble tray bioreactor in producing high concentration of 

lipase (142.732 U/gds) from rice bran using A. niger NCIM 584. They designed an 

effective tray bioreactor by incorporating side by side fans (individual tray was in the 

middle) in order to improve the air circulation within the chamber.  Hence, in this 

study, a novel modified-Memmert tray bioreactor was developed in order to improve 

the SSF performance since no report has been found on using this type of bioreactor. 

In addition, comparison on individual tray production was conducted in order to 

evaluate the possible errors in different trays. 
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1.2 Objectives 

 

 

The objectives of this study are: 

 

1. To analyze and characterize the composition of solid pineapple waste 

(SPW). 

2. To screen the factors that affect lactic acid production from SPW by 

Rhizopus oryzae NRRL 395 using two-level factorial design (2LFD) 

in flask. 

3. To optimize lactic acid production using central composite design 

(CCD) in flask. 

4. To investigate the effects of lactic acid production in modified-

Memmert tray bioreactor. 

 

 

 

 

1.3 Scope of Research 

 

 

This study focuses on investigating the capability of Rhizopus oryzae NRRL 

395 in producing L(+) lactic acid from solid pineapple waste (SPW) through SSF. 

The SPW component was chemically and physically figured prior to the fermentation 

process. The image of raw SPW was examined through scanning electron 

microscope (SEM) and fourier transform infrared spectroscopy (FT-IR). The 

capability of direct utilization of untreated SPW was tested where the lignocellulosic 

content of SPW was compared before and after sterilization using autoclave. 

Preliminary analysis on working parameters that possibly affect the lactic acid 

optimization study by R. oryzae NRRL 395 were conducted including incubation 

time, particle size, initial pH and calcium carbonate concentrations.  

 

The ability of R. oryzae NRRL 395 in solid-fermenting the SPW to lactic acid 

in flask scale was statistically studied using Design Expert® Software (Version 
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6.0.4). At first, the variables that possibly affect lactic acid production were screened 

through 2-Level Factorial Design (2LFD). Next, a standard Response Surface 

Methodology (RSM) known as Central Composite Design was used to optimize the 

lactic acid production condition. Factors that were involved in the optimization study 

were moisture content (45 - 85%), incubation time (0 - 7 days), temperature (25 - 

45°C), pH (4 - 8) and inoculum size (1×10
5
 - 1×10

9
 spores/g). Besides that, the effect 

of variables towards by-products formation (fumaric acid and ethanol) and sugar 

utilization (polyoses and reducing sugar) after optimization was also investigated. 

Moreover, the efficiency of lignocellulosic degradation of SPW by R. oryzae NRRL 

395 before and after optimization was also compared. 

 

 After completing the optimization study on process parameters of lactic acid 

production in flask scale, the potential of large scale analysis by a novel modified-

Memmert tray bioreactor (1kg) was also investigated. The working parameters 

involved in the bioreactor analysis were incubation time (0 - 6 days), humidity of the 

chamber (50±2 - 90±2%), aeration rate (control 1 and control 2, 1 - 5 LPM), initial 

moisture content (60 - 85%), incubation temperature (25 - 50°C) and initial pH of 

solid substrate (4.5 - 7.5). Besides that, an attempt to detect the SPW structural 

transformation after SSF of lactic acid in the bioreactor was also investigated using 

SEM and FT-IR. At the final stage, the lactic acid performance in flask and 

bioreactor scale in terms of lignocellulosic degradation and sugar utilization were 

also evaluated.  
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1.4 Significance of Research 

 

 

As Johor is the biggest contributor of pineapple plantation in Malaysia, there 

is a high possibility that it might give rise to environmentally sensitive disposal 

issues in the future. Thus, this encouraged us to utilize the raw material of solid 

pineapple waste and convert the possible residual components into a value added 

product for example L(+) lactic acid. Below are several addressed issues that make 

this research is significant: 

i. Increased production of pineapple by 10% (from 412,665 to 452,020 metric 

tonnes) from 2014 to 2015 (MPIB, 2016) directly caused the accumulation of 

pineapple waste which may trigger environmental concerns among certain 

communities including local societies, agricultural-based industries and 

government authorities. Disposal of SPW through burning may not only lead to 

air pollution (haze), but also causes long-term effects that lead to serious diseases 

especially heart and  lung diseases (Ahmed et al., 2004). Instead of serving it as 

animal feeding to farmers and disposed to the environment, it is beneficial to 

utilize the SPW as a substrate to produce valuable product and it also 

advantageous towards sustainable technology. 

ii. As mentioned before, the pineapple canning industry is one of the contributors of 

lignocellulosic waste accretion. SPW was reported to possess useful remaining 

components especially celluloses, sugars and nutrients (Abdullah and Mat, 2008; 

Siti Roha et al., 2013). SPW could serve as a promising substrate in the 

production of a valuable fermented product, named lactic acid. Nowadays, lactic 

acid has been used as a precursor to generate a biodegradable plastic called poly-

lactic acid (PLA). 

iii. Production of lactic acid from lignocellulosic agrowaste is an effective 

alternative because of their cost effectiveness, renewable, and availability 

worldwide (Zhang, 2008). Moreover, production of lactic acid in the biological 

pathway provides a significant economic potential by reducing the usage of 

chemicals, and perhaps reduce the cost for the downstream process especially in 

using the purification method. In fact, direct utilization of lignocellulosic waste 

as sole carbon with no expensive pretreatment involved, was able to cut 40 - 60% 

of the total production cost (Howard et al., 2003). 
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iv. Fermentation of solid pineapple waste could be accomplished through solid state 

fermentation (SSF). SSF process is more complex than submerged fermentation 

(SmF) due to its heterogeneity condition (Rokem, 2010; Kapilan, 2015). 

However, SSF offer various advantages over SmF, mostly on a laboratory scale 

including higher fermentation product, generating a high degree of product 

stability, lower possibility on catabolic repression and less requirement on 

sterility due to low water activity needed in SSF (Holker et al., 2004; Singhania 

et al., 2009). Plus, lactic acid production using Rhizopus oryzae NRRL 395 is the 

best alternative to microbial fermentation as fungi were listed as the most suitable 

microorganism for SSF process due to the penetration capability of fungi to 

absorb nutrients from solid substrate and resembling its natural habitat (Pandey, 

2003; Ruengruglikit and Hang, 2003; Gowthaman et al., 2001; Phrueksawan et 

al., 2012). 

v. Instead of producing the specific L(+) lactic acid, Rhizopus oryzae is capable 

secreting heterogeneous products include ethanol and fumaric acid (Abe et al., 

2007). R. oryzae NRRL 395 tends to secrete by-products at poor fermentation 

conditions (Soccol et al., 1994). Hence, optimization of the physical conditions to 

produce the maximum concentration of lactic acid using statistical analysis 

through response surface methodology (RSM) is one of the best solutions in 

reducing the production of unwanted products. RSM promotes a simple, fast and 

cost-effective system compared to conventional methods due to simultaneous 

analysis of several working factors at a specific time (Tarley et al., 2009). 

Moreover, RSM would generate a mathematical model that can be used to study 

the relevance and statistical significance of the selected factors. 

vi. Difficulties in handling process parameters in large scale has been a crucial 

concern in order to achieve the optimum working condition over the last few 

decades. The moisture, aeration rate and temperature of the bioreactor play 

important roles towards the lactic acid fermentation performance. Optimization 

of the process parameters in the bioreactor would improve the lactic acid yield 

compared to the flask scale analysis. Therefore, a novel modified-Memmert tray 

bioreactor that contains all controlling unit has been designed, perhaps to 

improve the lactic acid production. Besides that, it would significantly impact the 

SSF research field, particularly in terms of upscale understanding, knowledge 

and its future potential. 
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1.5 Thesis Organization 

 

 

This thesis is organized into seven chapters. Chapter 2 covers relevant 

literatures and information regarding on the potential of lignocellulosic of SPW to be 

used as a raw material for production of lactic acid. This chapter provides an 

overview of lignocellulosic degradation via solid state fermentation (SSF) approach 

and the role played by the fungus named Rhizopus oryzae. The effect of bioprocess 

parameters in the SSF of lactic acid production was also reviewed. Literatures related 

to application of various types of bioreactors in SSF industries are briefly 

summarized. 

 

Chapter 3 describes the general experimental procedures performed in this 

research. All common methods and procedures are placed in this chapter and be 

referred to in specific chapters, respectively. 

 

The results and discussions are divided into three main chapters. Chapter 4 

describes the characterization of raw and autoclaved SPW composition chemically 

and physically prior to the SSF process. Chapter 5 presents the process of 

preliminary, screening and optimization of lactic acid production from the SPW 

using Rhizopus oryzae NRRL 395 via SSF. The effect of important bioprocess 

factors (moisture content, incubation time, temperature, pH and inoculum size) 

towards the lactic acid production was also studied. In Chapter 6, an upscale 

analysis was made in the novel modified-Memmert tray bioreactor and comparison 

was also has been done between the lactic acid productions in flask system with the 

bioreactor performance. 

 

The conclusions from this research are given in Chapter 7. This chapter also states 

specific achievement and some recommendations for future works.
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