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ABSTRACT

Analytical study of contaminant transport in riverbank filtration (RBF) systems
is significant in providing a guide for managing and operating drinking water supplies
from pumping wells. The pumping process and the distance of the pumping well
from the river are two important factors for producing permissible drinking water
from the system. Simulation of the impact of pumping rate and pumping time on
contaminant transport based on analytical studies are not yet extensive. Thus, there
is a lack of mathematical models for RBF systems to determine the shortest distance
of the pumping well to the river, that produces quality water. This research aimed
to provide a mathematical model based on advection dispersion equation and Green’s
function approach to determine the potential effects of pumping rate and pumping
time, on one and two-dimensional contaminant transport models in RBF systems.
The model would be able to show how the pumping time and pumping rate affect
the contaminant concentration in RBF systems. By considering an inverse problem,
the Green’s function solution was applied to the problem in order to determine the
shortest distance from the pumping well to the river, to increase the percentage of
the quality of river water. This distance was computed when the contaminants were
released from a few scenario which include a single polluted river and two polluted
rivers. The distance evaluated was based on three simulated scenarios containing the
varying pumping times, pumping rates and different initial concentrations from the
river. The model was assessed using parameters related to nitrate (NO3) compound
obtained from RBF pilot project which had been conducted in Malaysia. The results
confirmed the suitability of the proposed model in simulating the effect of pumping
process on the quality of the produced water and in locating the pumping well. The
proposed model is helpful in providing guide to manage the existing RBF systems as

well as in establishing new sites.
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ABSTRAK

Kajian analitik pengaliran bahan tercemar di dalam sistem penapisan tebing
sungai (RBF) penting dalam menyediakan panduan pengurusan dan pengendalian
bekalan air minuman dari telaga berpam. Proses pengepaman dan jarak dari telaga
berpam ke tebing sungai adalah dua faktor penting untuk menghasilkan air minuman
yang dibenarkan. Simulasi impak kadar dan masa pengepaman terhadap pengaliran
bahan cemar berdasarkan kajian analitik belum begitu menyeluruh. Dengan itu
terdapat kekurangan model matematik untuk sistem RBF bagi menentukan jarak
terdekat telaga berpam dari tebing sungai yang menghasilkan air yang berkualiti.
Justeru, kajian ini bertujuan untuk menyediakan satu model matematik berdasarkan
persamaan penyebaran aliran lintang dan pendekatan fungsi Green dalam menentukan
kesan terhadap potensi kadar dan masa pengepaman dengan model satu dan dua
dimensi dalam sistem RBF. Model ini akan menunjukkan bagaimana masa dan
kadar pengepaman memberi kesan kepada kepekatan bahan cemar dalam sistem
RBF. Dengan mempertimbangkan masalah songsang, penyelesaian fungsi Green
digunakan dalam masalah ini bagi menentukan jarak terdekat telaga berpam dari
tebing sungai yang dapat menghasilkan kualiti air sungai berperatusan tinggi. Jarak
ini dikira apabila bahan cemar dilepaskan dari beberapa senario, kepada satu sungai
dan dua sungai yang tercemar. Jarak yang dinilai adalah berdasarkan tiga kes
simulasi termasuk masa pengepaman yang berbeza-beza, kadar pengepaman dan
tahap awal kepekatan air yang berbeza dari sungai. Model ini dinilai menggunakan
parameter yang berkaitan dengan sebatian nitrat (NO;) daripada projek RBF yang
telah dijalankan di Malaysia. Keputusan ini mengesahkan kesesuaian model yang
dicadangkan dalam mensimulasikan kesan proses pengepaman terhadap kualiti air
yang dihasilkan dan penempatan lokasi telaga berpam. Model yang dicadangkan amat
berguna untuk menyediakan panduan untuk mengurus sistem RBF sedia ada dan juga

dalam membangunkan lokasi baru.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Aquifers occupy around 2.5% of freshwater on earth and only, less than 1%
of Earth’s water can be found in lakes, rivers, or atmosphere layers (Figure 1.1)
(Environment and climate change Canada, 2013). Despite this small percentage, many
countries depend heavily, or often exclusively, on the river water as a source of clean
water for agriculture and drinking water supplies. (Pimentel et al., 2004; Kallioras
et al., 2006; Schwarzenbach et al., 2010; Arie et al., 2012).

Fresh
(2.5%) i
Adapted from
Figuro 2
Freshwaler Series
Na A-2,
Waler = Hare,
There and
Evarywhere
Lakes, rivers, etc.
- (0.4%)
e
Saline _G
~ Groundwater I
{9?5%) ! (30955)
g S
now and ice
- (68.7%)
World's .nupply World water
(fresh and saline) (fresh only)

Figure 1.1: Groundwater and the world’s freshwater supply (Environment and
climate change Canada, 2013)



As a result of development and increasing of economic activities, the demand
and the degree of contamination in raw water sources have significantly increased
(Schwarzenbach et al., 2010; Hogan, 2014; Juma et al., 2014). The high demand
of river water cannot be overcome by existing dams. In fact, building new dams is
too expensive and causes negative impacts on the natural ecology. (Azhar, 2000).
Additionally, the high levels of pollutants in river’s water make it unsuitable for
direct use, and affects the quantity of potable water supply, hence increases the river
treatment cost. In the past decades, several water treatment plants in Malaysia have
been closed as a result of high percentages of different kinds of pollutants in the rivers
(Shamsuddin et al., 2013). Moreover, the presence of contaminants in river water
may cause detrimental effects on the environment, human health and crop productivity
(Kan, 2009; Schwarzenbach et al., 2010). Consequently, different diseases that
can be fatal for individuals may occur. For example, the usage of agriculture
fertilizers can cause contamination of river water by nitrates chemicals (Kowal and
Polik, 1987). These compounds have harmful effects on human health, especially
for infants, young children, elderly individuals, pregnant and nursing women (U.S.
Environmental Protection Agency, 2009). For infants, the nitrate compounds can cause
blue baby syndrome where the blood cannot properly carry oxygen (Comly, 1987;
U.S. Environmental Protection Agency, 2009). This situation leads to infant death if
there is no immediate medical attention. (Schwarzenbach et al., 2010). Therefore,
governments are making more efforts to solve surface water pollution problem and

supplying healthy drinking water.

Most of river water treatment methods are generally based on pre-chlorination
of river water before it is subjected to the treatment processes sequence (Singh
et al., 2010b). Chlorination is considered the most common, economical and
simple chemical approach for river water treatment (Singh et al., 2010b). However,
chlorination of river water that is polluted by organics forms disinfection by-products
(DBPs), thus its use is being controlled. Reducing or eliminating pre-chlorination and
minimizing formation of DBPs by removing organics are regulatory requirements in
developed countries. Riverbank filtration (RBF) is considered as one of the alternatives
of the pre chlorination process that can be used to attenuate organic, microbial and
other pollutants (Singh et al., 2010b). Moreover, RBF is a sustainable approach for

providing clean river’s water and groundwater.



1.1.1 Riverbank filtration systems

A riverbank filtration system (RBF) is a natural technology for surface water
treatment. Instead of using chemicals to treat water directly after obtaining it from
the river, the infiltrated water can be extracted from one or a system of pumping wells
adjacent to the stream (Hiscock and Grischek, 2002; Ray, 2002; Maliva and Missimer,
2012). RBF systems have the advantage of natural degradation of contaminants from
river water during its passage through the aquifer. The contaminants are removed due
to chemical, physical and biological processes that occur in riverbed sediments. The
movement of water from the river to the surrounding aquifer can occur naturally or
induced by using pumping wells. The pumping process lowers the pressure (head) in
the aquifer and river bed sediments, which creates a difference in hydraulic gradients
between surface water and the aquifer. This difference in the hydraulic head will
induce the water to move from the river towards the pumping well. (Figure 1.2). The
downward flow of water into the underlying aquifer caused by pumping process is

called an induced infiltration or induced recharge (Maliva and Missimer, 2012).

Cross Sectional view

Further
treatment Pumping well
Water table River
_____ ;;:,_____3’__________ T ol
" “——___ riverbed
Mixing <

T . ‘—
M"‘"”E *—Ground Wafer Flow

Figure 1.2: A simple river bank filtration system (modified from (Kim et al., 2003))

The major advantage of RBF technology is that it can produce better quality
of water with lower cost treatment than other river water treatment methods (Dalai
and Jha, 2014). Using conventional river water treatment methods incur higher costs
where it requires higher volumes of chemicals particularly with higher contaminant
concentrations. Additionally, the volume of DBPs that is added to river water to
eliminate microbial contamination is also high. On the other hand, reducing the pre-
treatment requirements by using RBF technology lowers the operational costs (Maliva
and Missimer, 2012; Dalai and Jha, 2014). Basically, RBF system can serve as the
final treatment just before disinfection. However, sometimes additional treatment may

be needed before water distributed. This can be determined according to the quality of



the produced water. As a minimum, RBF systems can act as a pre-treatment step for

drinking water production (Maliva and Missimer, 2012; Ray, 2002).

In general, RBF systems have no harmful effects on surrounding environments.
This technique can reduce the concentrations of particulates (suspended solids,
turbidity), pathogens, Gardai, dissolved organic carbon, and many (but not all) organic

and inorganic compounds (Maliva and Missimer, 2012).

Many previous modelling studies had described 1D, 2D and 3D contaminant
transport in aquifer (Pantelis, 1988; Doussan et al., 1997; Neupauer and Wilson, 1999,
2001; Kim et al., 2003; Kim, 2005; Massab et al., 2006; Connell, 2007; Chen, 2010;
Praveena and Aris, 2010; Singh et al., 2010a; Chen et al., 2012; Singh et al., 2012;
Malaguerra et al., 2013; Singh, 2013; Chen et al., 2015). Some of these studies
were concerned about the effect of microbial activity on solute transport, but without
considering the role of groundwater pumping (Doussan et al., 1997; Kim et al., 2003;
Kim, 2005). Also, most of the models that described the impact of pumping process
on solute transport were based on numerical modelling (Wail and Hatamleh, 2007;
Belcher and Sweetkind, 2004; Ghoraba et al., 2013; Yang et al., 2011; Zhou and Li,
2011). Precisely, modelling groundwater flow and pollution software (MODFLOW)
that was developed by McDonald and Harbaugh (1988) is the most used software by
researchers for this purpose (Zhou and Li, 2011). Analytical models are considered
as valuable tools for investigating solute transport in porous media and for verifying
the numerical solutions due to its accuracy and simplicity (Leij and van Genuchten,
2000). Besides, Green’s function approach can facilitate the analytical solution for 1D
or 2D contaminant transport equation in uniform porous media with unsteady flow.
This is due to its simplicity in solving multi-dimensional problems and flexibility in
dealing with arbitrary initial and boundary conditions (Leij and van Genuchten, 2000).
This method had been implemented previously by many researchers to investigate
contaminant transport (Chen and Woodside, 1988; Adams and Viramontes, 1993; Leij
et al., 1993; Leij and van Genuchten, 2000; Park and Zhan, 2001). Some of these
studies were concerned solely on contaminant transport without any adsorption or
degradation (Chen and Woodside, 1988), while some other studies focused on natural
contaminant movement without any effect of pumping well (Leij and van Genuchten,
2000; Park and Zhan, 2001). Furthermore, some researchers simulated the radial
transport of pollutants towards a single, fully penetrating pumping well using Green’s

function method (Adams and Viramontes, 1993).

Managing and planning to establish new RBF projects has a wide variety of



previous important decisions that should be taken before starting to establish the new
site. One of these decisions is the RBF design selection that includes: the type of
the aquifer, the well type and location. Regarding aquifer type, most of the RBF
systems around the world (e.g. Canada, northern Europe and the northern United
States) were established in confined aquifers (Maliva and Missimer, 2012) which is
bounded both at the top and bottom by impervious or semi impervious layers, thus
hydraulically isolated from other geological formations. This kind of aquifers is often
preferred to bank filtrate so as to prevent contaminants seeping from the surface due
to its disconnection with the surface (Malaguerra et al., 2013). For the well type, a
variety of different well technologies can be used in RBF systems including: vertical
wells, horizontal or inclined wells and collector wells (Ranney collectors)(Maliva
and Missimer, 2012) based on the hydrological properties of site and river, cost and
the amount of infiltrated water needed to be supplied (Yeh and Chang, 2013). The
radial collector well is a central well with horizontal sections of screened collector
pipe called laterals and arranged radially to increase yield. The radial orientation of
laterals in radial collector wells (RC) leads to unsteady groundwater flow inside the
laterals. For calculating the location of pumping well, the three-dimensional finite-
difference ground-water model is one of the most popular available techniques that can
be used for this purpose. This technique is available in MODFLOW software which
is widely used in such groundwater models to simulate steady-state or transient flow
in confined or/and unconfined aquifers (McDonald and Harbaugh, 1988). However,
MODFLOW was developed to capture the groundwater flow, not to determine the
pumping well location. Therefore, it is required to develop an analytical model
to determine the distance between the river and production well in order to get
high percentage of infiltrating river water that satisfies the quality requirements of
chemical contaminant concentration. Despite the strong relation between distance
and contaminant concentration, most of the previous studies did not concerned about
calculating the shortest distance of the pumping well from river edge. (Abdel-Fattah
et al., 2008; Shankar et al., 2009; Orban et al., 2010).

An improved understanding of contaminants behavior, and the factors
controlling their transport in RBF systems, is important in planning and managing RBF
sites. The pumping process is one of the crucial factors that could change subsurface
water behavior. In particular, increasing the pumping rate leads to an increase in
groundwater flow velocity. Consequently, the travelling time required by pollutants to
reach the well may be decreased, which may raise the contamination in the area around
the well. To assess the influence of pumping well on pollutant transport successfully,
various means, such as mathematical modelling, are required. Despite the significance

of Green’s function method, most of the Green’s function models in groundwater



did not consider the effects of both pumping time and pumping rate on contaminant

transport.

About the well location, it should be drilled within a suitable distance from the
river. At this distance, the produced river water satisfies the quality requirements of
contaminant removal which is sufficiently fresh for potable supplies. Depending on
the two factors: the degree of contamination in the produced water and the expected
river infiltration rate, the wells should be drilled within a suitable distance from the
river. The values of these two factors will increase when the well is close to the river,
accordingly starts to decline by increasing distance from the river (Dillon et al., 2002).
So, it is necessary to calculate the shortest location of the pumping well from the river
to have potable water for public use. At this location, higher percentage of infiltrating
river water can be obtained, at which the water drawdown inside the well is expected

to be less.

The problem of determining the location of the well becomes more difficult if
there is another polluted river on the opposite side. Any location for the well may not
be adjacent to only one river, but sometimes it may be located between two polluted
rivers. In this case, the well location should be adjusted in a suitable place between
the river and the other pollution source. So, the previous analytical model is needed
to be enhanced to specify the best location to drill the well between the two rivers. At
this distance, the water produced from the well is expected to be with high quality and

have a high percentage of infiltrating river water.

1.2 Research objectives

In this study, we used the Green’s function approach and we extended the
contaminant transport model which was based on the advection dispersion equation.

The model was developed for different purposes:

1 To determine the effect of pumping well on one and two dimensional

contaminant transport in RBF systems

2 To calculate the shortest distance of the pumping well from the river
edge to produce water that satisfies the quality requirements of contaminant

concentration.



3 To calculate the nearest location of the pumping well from river edge, taking into

consideration the existence of other rivers in the opposite side.

Finally, the model was applied by using RBF pilot project parameters which had been

conducted in Malaysia.

1.3 Research scope

The current study was concerned about three major RBF problems: one and
two dimensional contaminant transport under the influence of pumping well, the
shortest distance of the pumping well from the river edge, and; the shortest location of
pumping well to the river edge by considering the existence of another polluted rivers.
These problems were solved in this research by using the mathematical modelling
techniques. The models were developed based on advection dispersion equation
for solute transport and solved by using Green’s function approach. The confined
homogeneous and isotropic aquifer was chosen in our research, since it is preferred
and common in RBF sites. Also, the study focused on the sandy and gravelly alluvial
aquifer. This type of aquifer was common in RBF sites due to its ability to contain
excessive amounts of water. The effects of initial contaminant concentration at the
river and hydraulic conductivity on contaminant transport was also investigated. The
models were applied and tested with data related to the nitrates NO3; compound. Data
were taken from the first RBF pilot project conducted in Malaysia (Shamsuddin ez al.,
2013, 2014), because of the abundance of data from this site.

1.4  Research significance

RBF technique is one of the best solutions for surface water pollution, which
provides better water quality with lower costs (Maliva and Missimer, 2012). By solving
the first problem, it is then can be used to determine the effect of pumping process on
contaminant transport. In particular, we can investigate to what extent the pumping rate
and the pumping period affect the pumped water quality. Consequently, the pumping
process can be managed carefully to produce water meet the quality requirements as
long as possible.



Solving the second and third problem is helpful mainly in managing and
building a new RBF site. It helps to decide locating the pumping well if there are one
or two polluted rivers. This will lower the cost without losing time and efforts. This
decision will be taken based on the quality degree of pumped water and the percentage
of infiltrating river water. Based on our knowledge, there is no model developed before

that can help to specify the well location.

Moreover, completing the objectives of this research can save a lot of effort and
time that will consume in collecting data and monitoring water quality (Wexler, 1992).
Also, this model can be verified by the industrial and engineering communities and be

used for their relevant applications in groundwater systems.

1.5 Thesis organization

The present study was organized into eight Chapters and two Appendices. The
first chapter gave a general background on: surface water pollution, types and sources
of pollution, attenuation processes implemented for its control and prevention and
RBF system. Also, it produced an overview of RBF system including its definition,
efficiency, design, its importance comparable with other conventional water treatment
approaches. This background was followed by the problem statements, objectives of

this research, the scope of the present study and the significance of the research.

The second chapter was a general literature review. This review covers most
of the previous mathematical models which were developed for RBF problems. This
included the basic RBF subjects described by these models, main governing equations,

different analytical and numerical solutions and comparison between these models.

The third chapter described the methodology used in this study, and the details
of the analytical approaches implemented to achieve the research objectives. The
fourth and fifth chapters presented the analytical models developed in this study to
simulate the influence of pumping well on one and two-dimensional contaminant
transport respectively. Also, the sensitivity analysis results for different pumping time,

and rates were presented.

The sixth and seventh Chapters produced the theoretical calculations and the

results of the developing models obtained to determine the shortest distance from



pumping well to the river edge. In chapter 6, the distance was calculated when the river
was the only source of contaminant while in chapter 7 we considered the existence of
other sources. The conclusion and the future work of this study were given in the

eighth chapter.

This thesis included two Appendices: Appendix A produced the derivation of
the basic physical laws and equation implemented in this study. Appendix B showed
the main papers that have been published /accepted/submitted in journals and presented

in international conferences.
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