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ABSTRACT 

The major causes of global warming are mainly attributed to greenhouse 

gases such as carbon dioxide (CO2) and methane (CH4). The conversion of the gases 

to renewable fuels has stirred interest for greenhouse gas mitigation and energy 

crises alleviations. The main objective of this study was to develop the nanosized 

titania (TiO2) catalyst for selective CO2 and CH4 reduction to fuels by using 

photoreactor. The photoreduction of CO2 in the presence of CH4 was studied over 

immobilized titania nanoparticles on stainless steel mesh. Response surface 

methodology was used to assess individual and interactive effects of important 

parameters on conversion. Calcination of coated titania nanoparticles increased the 

absorption of ultraviolet-visible light while uniform photocatalyst structure 

commensurate with decreasing agglomeration. The observed maximum conversions 

were 37.9% and 48.7% for CO2 and CH4, respectively. It is apparent that the 

optimization exercise is more efficient with response surface methodology. The 

corresponding products selectivity were 4.7%, 4.3%, 3.9%, 41.4% and 45.7% for 

ethane, acetic acid, formic acid, methyl acetate and methyl formate, respectively. The 

performance of highly ordered nitrogen-doped titania nanotube arrays were then 

fabricated by anodization method, used for photoreduction of CO2 and CH4. Field 

emission scanning electron microscopy images of titania nanotube arrays indicated 

highly ordered and vertically oriented morphology with inside diameter ranging from 

3 to 50 nm. Optimum experimental conditions indicated that maximum CO2 and CH4 

conversion could reach up to 41.5% and 62.2%, respectively. Correspondingly, 

hydrogen at selectivity of 80.5% and several by-products including carbon monoxide 

and hydrocarbons such as ethane, propane and ethylene were produced from 

photoreduction. The quantum efficiency of the photoreactor with immobilized titania 

nanoparticles coated on stainless steel meshes for methyl formate and methyl acetate 

were 0.163% and 0.147%, respectively. Furthermore, the quantum efficiency of the 

photoreactor with nitrogen-doped titania nanotube arrays synthesized by 

electrochemical anodization method, for hydrogen was 0.294%. Finally, kinetic 

model using Langmuir-Hinshelwood developed to investigate photocatalytic 

reduction process, was found to fit well with theexperimental data. In conclusion, 

photoreactor with nitrogen doped titania nanotube arrays increased CO2 and CH4 

reduction to fuels as much as 1.7 times. 
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ABSTRAK 

Penyebab utama pemanasan global berpunca daripada gas rumah hijau seperti 

karbon dioksida (CO2) dan metana (CH4). Penukaran gas tersebut kepada bahan api 

yang boleh diperbaharui telah menarik perhatian bagi pengurangan gas rumah hijau 

dan krisis tenaga. Objektif utama kajian ini adalah untuk membangunkan mangkin 

titania bersaiz nano (TiO2) bagi penurunan CO2 dan CH4 terpilih kepada bahan api 

dengan menggunakan fotoreaktor. Fotopenurunan CO2 dengan kehadiran CH4 dikaji 

terhadap partikel nano titania yang tidak bergerak di atas jejaring keluli tahan karat. 

Kaedah permukaan gerak balas digunakan untuk menilai kesan individu dan 

interaktif bagi parameter yang penting dalam penukaran. Pengkalsinan untuk partikel 

nano titania bersalut meningkatkan penyerapan cahaya nampak-ultraungu manakala 

struktur seragam fotopemangkin setara dengan mengurangkan penggumpalan. 

Penukaran maksimum yang diperoleh bagi CO2 dan CH4 masing-masing adalah 

37.9% dan 48.7%. Ini menunjukkan pengoptimuman menggunakan kaedah 

permukaan gerak balas adalah lebih cekap. Kememilihan produk yang sepadan 

masing-masing adalah 4.7%, 4.3%, 3.9%, 41.4% dan 45.7% bagi etana, asid asetik, 

asid formik, metil asetat dan metil format. Prestasi tertib tatasusunan tiub nano titania 

yang didopkan dengan nitrogen telah dihasilkan melalui kaedah penganodan, 

digunakan untuk fotopenurunan bagi CO2 dan CH4. Imej-imej mikroskop elektron 

imbasan pancaran medan bagi tatasusunan tiub nano titania menunjukkan morfologi 

yang berorientasikan menegak dan tersusun dengan diameter dalaman di antara 3 

hingga 50 nm. Kaedah optimum uji kaji menunjukkan penukaran maksimum CO2 

dan CH4 masing-masing dapat mencecah sehingga 41.5% dan 62.2%. Sejajar dengan 

itu, hidrogen pada kememilihan sebanyak 80.5% dan beberapa produk sampingan 

termasuk karbon monoksida dan hidrokarbon seperti etana, propana dan etilena 

dihasilkan daripada fotopenurunan. Kecekapan kuantum fotoreaktor dengan partikel 

nano titania yang tidak bergerak di atas jejaring keluli tahan karat bagi metil format 

dan metil asetat masing-masing adalah 0.163% dan 0.147%. Malahan, kecekapan 

kuantum fotoreaktor dengan tatasusunan tiub nano titania yang didopkan nitrogen 

telah disintesis melalui kaedah penganodan elektrokimia untuk hidrogen adalah 

0.294%. Akhir sekali, model kinetik yang dibangunkan menggunakan Langmuir-

Hinshelwood untuk mengkaji proses penurunan fotopemangkin, didapati sesuai 

dengan data uji kaji. Kesimpulannya, fotoreaktor dengan tatasusunan mangkin tiub 

nano titania yang didopkan nitrogen meningkatkan penurunan CO2 dan CH4 kepada 

bahan api sebanyak 1.7 kali. 
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CHAPTER 1 

INTRODUCTION 

1.1 Research Background 

Owing to the recent effects of fossil fuel use on the global environment and 

the limited amount of energy sources, the search for renewable energy sources, such 

as sunlight, energy crops and wind are inevitable. As shown in Figure 1.1, the 

Intergovernmental Panel on Climate Change (IPCC) presented that the major 

worldwide energy sources in 2008 were 34.6% of oil, 28.4% of coal, 22.1% of gas 

and 2.0% of nuclear energy [1]. On a global basis, it is valued that renewable energy 

accounted for 12.9% of the total          Joules of primary energy supply. 

Renewable energy contributed roughly 19% of global electricity supply (16% 

hydropower and 3% other renewable energy) and biofuels contributed 2% of global 

road transport fuel supply. About 17% of traditional biomass, 8% of modern 

biomass, 2% of solar thermal and geothermal energy together fuelled 27% of the 

total global demand for heat. The contribution of renewable energy to primary 

energy supply varies substantially by country and region [1].  

Recent data [2] confirm that consumption of fossil fuels accounts for the 

majority of global anthropogenic greenhouse gas emissions. Emissions continue to 

grow and CO2 concentrations increased to over 390 ppm, or 39% above preindustrial 

levels, by the end of 2010 [1]. There are various options for lowering greenhouse gas 
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emissions from the energy system while still satisfying the global demand for energy 

services.    

 

Figure 1.1 The major worldwide energy sources in 2008 [1]  

The rapid rise in fossil fuel combustion (including gas flaring) has produced a 

corresponding rapid growth in CO2 emissions (Figure 1.2). The amount of carbon in 

fossil fuel reserves and resources (unconventional oil and gas resources as well as 

abundant coal) not yet burned has the potential to add quantities of CO2 to the 

atmosphere. Global CO2 emissions for 1940 to 2000 and emissions range for 

categories of stabilization scenarios from 2000 to 2100 considered in Figure 1.3. In 

scenarios of CO2 emission predicted for the year 2050, bioenergy (    

                ), direct solar energy (                  ) and wind energy 

(                     ) are the major three renewable technologies that must be 

applied in order to reach the motivated goal that calls to decrease the CO2 

concentration to less than 390 ppm in the atmosphere [1]. Several methods to reduce 

the CO2 concentration and prevent CO2 emissions have been examined: the 

investigation of the absorption of CO2 into new or functionalized materials, 

increment of the dissolved carbonate level and capturing CO2 [2-6].  
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Figure 1.2 Carbon dioxide emissions of burning of fossil fuel (1850 to 2007) [1]  

 

Figure 1.3 Emissions of carbon dioxide between 1940 and 2000 and ranges of 

emissions for categories between 2000 and 2100 [1] 
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It is supposedly valuable to capture CO2 from the atmosphere or plants 

exhaustion and convert it to hydrocarbon fuels by using sustainable energy sources. 

This option leads to solving the sustainable energy shortage and global warming 

problems, simultaneously. In this regard, we need to develop techniques, processes 

and applications capable of CO2 conversion at high scale. CO2 conversion at high 

scale implies significant challenges [7-9]. C1 chemistry addresses important subjects 

including utilization and conversion of CH4 and CO2, but it offers no practical 

conversion technique [4-7]. CH4 conversion is an oxygenation reaction, while that of 

CO2 is a reduction process. The simultaneous process of CO2 and CH4 conversion is 

considered as a perfect redox reaction. The most favorable CO2 and CH4 reduction 

method is by applying photocatalysts since visible light irradiation or UV can reduce 

it to useful compounds at certain conditions [7-9].   

1.2 Introduction to Photocatalysts  

  Making use of the photocatalytic process to extinguish organic pollutants by 

oxidation and converting it to hydrocarbon fuels through reduction leads to solving 

the global warming problems. The use of sunlight for such conversion at accelerated 

rates with the help of a comparatively economical and nontoxic photocatalyst such as 

titania (TiO2), is an attractive alternative for renovation of the deteriorated 

environment. For this purpose, several photocatalysts, such as TiO2, CdS, ZnO, 

WO3, SnO2, and Fe3O4 have been used. Titania among several semiconductor metal 

oxides is one of the most favored photocatalysts for the photocatalytic degradation of 

chemicals and organic dyes [10-18]. 

1.3 Problem Statement 

The major causes of global warming are mainly attributed to greenhouse 

gases such as carbon dioxide and methane. The carbon-flow between the oceans and 
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atmosphere is considered natural and a yearly excess of CO2 is added to the cycle by 

human activities. In order to bring the CO2 level back to where it was, we need to 

develop techniques, processes and applications capable of handling CO2 at high 

scale. Handling CO2 at high scale implies significant challenges. C1 chemistry 

addresses important subjects including utilization and conversion of CH4 and CO2, 

but it offers no practical conversion technique. Usually, the direct CH4 and CO2 

conversion to oxygenated mixtures is not promising from the thermodynamical 

aspect and there is no catalyst available for selective and efficient conversion. CH4 

conversion is an oxygenation reaction, while that of CO2 is a reduction process. The 

simultaneous process of CO2 and CH4 conversion is considered as a perfect redox 

reaction. The main challenges ahead in this field are described as below: 

 

Conversion of CO2 with CH4 to hydrocarbon fuels is a two-step process 

which requires higher input energy. On a commercial scale, input energy is provided 

by the combustion of CH4, which exacerbates more greenhouse gas emission, leading 

to uneconomical as well as an unfriendly process to the environment.  

Although CO2 reduction to formate, acetate derivatives and hydrogen through 

photocatalytic reductions have numerous advantages, yet photocatalysts and reactors 

under investigations are inefficient to produce high value products with sufficient 

yield rates and selectivity. 

Among semiconductor materials, TiO2 is widely investigated due to it 

abundantly available; comparatively cheap and numerous other advantages. 

However, it has lower light absorption efficiency, trivial photoactivity and selectivity 

for photocatalytic CO2 reduction to hydrocarbon fuels. 

Existing photoreactors also have lower quantum efficiency due to inefficient 

harvesting and distribution of light irradiation over the catalyst surface. In addition, 

such types of reactors have lower exposed surface area, lower catalyst loading, and 

ineffective adsorption-desorption process and less mass transfer over the catalyst 

surface, resulting in lower yield rate and selectivity. 
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1.4 Research Hypothesis 

The main focus of this research is to develop a new photocatalytic system for 

efficiently converting stable CO2 molecule in the presence of CH4 to valuable 

products. In this perspective, nanosized catalysts and a designed reactor could 

contribute significantly in the photoreduction process. This research also planned to 

significant improvement of the efficiency of photocatalytic systems that can be 

achieved by developing appropriate reductants and selecting semiconductors. 

Therefore, major hypotheses of the research are deliberated as follows: 

Titania nanosized catalyst is planned to be designed in such a way which 

could enable to cross over barriers by providing higher light absorption capacity, 

controlling of surface reaction for enhancing selectivity and steps ahead toward 

higher CO2 and CH4 conversion. For this purpose titania nanoparticles coated on 

stainless steel mesh and titania nanotube arrays fabricated by anodizing method as 

catalysts with a self-designed photocatalytic reactor can provide thrust to wrestle 

problems of photocatalysis and would help to improve photoactivity and selectivity. 

Higher CO2 and CH4 reduction and improved photoactivity will be possible 

through introducing immobilized titania nanoparticles on stainless steel mesh, also 

titania nanotube arrays fabricated by anodizing method as catalysts. For enhancing 

the photoactivity of TiO2 in the visible spectral range would be used the desired band 

gap narrowing of TiO2 can be achieved using main-group dopants, such as nitrogen 

(i.e. TiO2-xNx). 
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1.5 Research Objectives 

The objectives of this study including; 

 

1) To synthesize and characterize the titania nanoparticles coated on stainless 

steel mesh and titania nanotube arrays catalysts. 

2) To evaluate the catalytic activity of both catalysts on photoreduction of CO2 

and CH4. 

3) To optimize the reaction conditions, including their interaction effect that 

suitable for the photorcduction. 

4) To evaluate the quantum efficiency of the photoreduction over both catalysts. 

5)  To study the kinetic parameters of the photoreduction over both catalysts. 

1.6 Research Scope 

The specific research scopes of this study are as follows: 

1) Preparation of titania nanoparticles coated on stainless steel mesh and 

synthesis of nitrogen-doped titania nanotube arrays for addressing the 

promising catalysts of photocatalytic conversion of CO2 and CH4. 

Furthermore, catalyst characterizations are conducted for samples before and 

after calcination at different temperatures of titania nanoparticles also, 

undoped and nitrogen-doped titania nanotube arrays using UV–vis spectra, 

BET, SEM and XRD in order to investigate the light absorption, 

agglomeration and surface structure of catalysts. 

 

2) CO2 and CH4 molecules were competitively activated by the charge transfer 

excited complexes and the values of feed ratios influenced the selectivity for 

the formation of the desired products.  
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3) Design Of Experiments (DOE) is the first requirement for Response Surface 

Methodology (RSM) to determine the number of runs that are required to 

give a reliable measurement of the desired response. The optimization is 

performed for methane and carbon dioxide conversion responses. 

 

4) The evaluation of photoreactors performances in the field of photocatalysis is 

vital to compare results under different operating conditions. For this purpose 

various standard tests such as quantum efficiency and photon flux reported. 

High quantum efficiencies may be attributed to higher photon absorption due 

to larger illuminated active surface area.  

 

5) In heterogeneous catalysis, the kinetic expression can be developed for the 

stable reactants and products in terms of surface concentrations of reactant 

and product. The reaction mechanism and kinetic model were developed to 

find out the key parameters in reduction applications.  

1.7 Outline of Thesis 

This thesis consists of 6 six chapters. Background of the research and 

problem at hand, research hypothesis, objectives and scope of this study is discussed 

in chapter 1. Chapter 2 presents a literature review pertaining to possible pathways 

for CO2 recycling, fundamentals and progress in CO2 reduction to hydrocarbon fuels, 

synthesis and characterization techniques, and description of photocatalytic reactors 

and development of kinetic models. In chapter 3, general description of research 

methodology and detailed experimental strategies are discussed. The photoreduction 

of CO2 in the presence of CH4 over immobilized titania nanoparticles on stainless 

steel mesh and optimization study are deliberated in chapter 4. The description about 

photoreduction of CO2 in the presence of CH4 over nitrogen-doped titania nanotube 

arrays to hydrogen and optimization using response surface methodology is 

presented in chapter 5. Finally,  6 contains the overall conclusions of this study and 

recommendations for the future work. 
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