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ABSTRACT 

 

 

A novel crumb rubber production technique incorporating laser technology is 

introduced as an alternative to mechanical grinding and cryogenic processing 

techniques. This technique offers solution to major drawbacks of the existing 

techniques in terms of the size of the crumb rubber particles. The effectiveness of 

utilizing the produced crumb rubber as oil absorbent applied in oil spilled recovery 

application has been explored. A nanosecond Nd:YAG pulse laser with 1064 nm 

wavelength was used as a light source in the pulse laser ablation in liquid (PLAL) 

technique. The rubber target used in this work is a piece of scrap tyre immersed in the 

liquid medium comprising acidic, neutral and base solutions. Two chosen acidic 

solutions were the D-limonene and acetic acid, while sodium hydroxide (NaOH) and 

sodium chloride (NaCl) were selected for base solutions. A high-speed photography 

system with femtosecond laser and CCD camera was used to capture the mechanism 

involving the crumb rubber production. This technique was successfully conducted in 

producing finer crumb rubber particles. The shock wave and water jet from the 

cavitation bubble were identified as the main mechanisms responsible for the 

fragmentation of rubber surface after interacting with laser.  The highest concentration 

of crumb rubber (1.97 g ml-1) was achieved in acetic acid solution generated with 300 

mJ laser pulse at repetition rate of 3 Hz. Ablation of rubber sample in NaOH solutions 

produced crumb rubber particles with average diameter about 12000 mesh (1.44 µm) 

which is smaller than the average size of crumb rubber produced from conventional 

techniques. The energy-dispersive X-ray spectroscopy analysis indicated that crumb 

rubber consists of carbon, oxygen, zinc, sulphur and silicon which is similar to the 

element composition of the target sample. Results from field-emission scanning 

electron microscope showed that the generated crumb rubber particles have irregular 

shape. The crumb rubber was then immersed into cooking oil and illuminated by a 

diode pumped solid state laser to measure the oil absorption efficiency. The absorption 

was found to be dependent on two main parameters namely the crumb rubber size and 

the time interaction. Crumb rubber particles with average diameter 10, 60 and 3650 

mesh were tested, and the measured absorption coefficients were 485 m-1, 769 m-1 and 

2906 m-1 respectively. This result shows that smaller crumb rubber particles have 

higher absorption coefficients. In conclusion, controllable, safe and environmental 

friendly technique of crumb rubber production based on PLAL is a promising 

technique to be used in oil spill recovery.  
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ABSTRAK 

 

 

 

 

Teknik penghasilan getah serbuk novel yang merangkumi teknologi laser 

diperkenalkan sebagai alternatif kepada teknik pemprosesan mekanikal pengisaran 

dan kriogenik. Teknik ini menawarkan penyelesaian kepada kelemahan utama teknik 

sedia ada daripada segi saiz zarah getah serbuk. Keberkesanan penggunaan getah 

serbuk yang dihasilkan sebagai penyerap minyak digunakan dalam aplikasi pemulihan 

tumpahan minyak telah diterokai. Laser denyut Nd:YAG nano-saat dengan panjang 

gelombang 1064 nm digunakan sebagai sumber cahaya dalam ablasi laser denyut 

dalam teknik cecair (PLAL). Sasaran getah yang digunakan dalam kajian ini ialah 

sekeping tayar skrap yang direndam dalam medium cecair yang terdiri daripada larutan 

berasid, neutral dan alkali. Dua larutan asid yang dipilih ialah asid D-limonena dan 

asid asetik, manakala natrium hidroksida (NaOH) dan natrium klorida (NaCl) dipilih 

untuk larutan alkali. Sistem fotografi berkelajuan tinggi dengan laser femto-saat dan 

kamera CCD digunakan untuk merakam mekanisme yang terlibat dalam penghasilan 

getah serbuk. Teknik ini telah berjaya dijalankan bagi menghasilkan zarah getah 

serbuk halus. Gelombang kejutan dan jet air daripada gelembung kavitasi dikenalpasti 

sebagai mekanisme utama yang bertanggungjawab dalam pemecahan permukaan 

getah selepas berinteraksi dengan laser. Kepekatan tertinggi getah serbuk (1.97 g ml-

1) dicapai dalam larutan asid asetik yang dijanakan dengan laser denyut 300 mJ pada 

kadar pengulangan 3 Hz. Ablasi sampel getah dalam larutan NaOH menghasilkan 

zarah getah serbuk dengan diameter purata sekitar 12000 mesh (1.44 μm) iaitu lebih 

kecil daripada saiz purata getah serbuk yang dihasilkan dengan teknik konvensional. 

Analisis spektroskopi sinar-X tenaga terserak menunjukkan bahawa getah serbuk 

terdiri daripada karbon, oksigen, zink, sulfur dan silikon yang sama dengan komposisi 

elemen sampel sasaran. Hasil daripada mikroskop elektron imbasan medan 

menunjukkan bahawa zarah getah serbuk yang dijana adalah dalam bentuk tak sekata. 

Getah serbuk itu kemudiannya direndam ke dalam minyak masak dan disinari dengan 

laser keadaan pepejal berpam diod untuk mengukur kecekapan penyerapan minyak. 

Penyerapan itu didapati bergantung kepada dua parameter utama iaitu saiz getah 

serbuk dan masa interaksi. Zarah getah serbuk dengan diameter purata 10, 60 dan 3650 

mesh diuji, dan pekali penyerapan yang diukur masing-masing adalah 485 m-1, 769 m-

1 dan 2906 m-1. Keputusan ini menunjukkan bahawa zarah getah serbuk yang lebih 

kecil mempunyai pekali penyerapan yang lebih tinggi. Sebagai kesimpulan, teknik 

pengeluaran getah serbuk yang terkawal, selamat dan mesra alam berdasarkan PLAL 

adalah satu teknik yang berpotensi untuk digunakan dalam pemulihan tumpahan 

minyak.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Overview 

 

 

The volume of scrap tire wastes is increasing at a fast rate. An estimated 1000 

million tires reach the end of their useful lives every year and 5000 million more are 

expected to be discarded in a regular basis by the year 2030. In America, more than a 

quarter of a billion tires is thrown out annually [1,2]. By the year 2030 the number of 

tires from motor vehicles is expected to reach 1200 million representing almost 5000 

million tires to be discarded in a regular basis.  

 

 

One of the biggest obstacle in waste management is the safety of scrap tires 

disposal system. End of life tires is a global issue which raise severe environmental 

problems and must be disposed of or recycled. Due to lack of effective disposal way, 

scrap tires prolong to be a main source of waste. Due to their cross-linked structure, 

they do not melt or dissolve. It is impossible to expulse the rubber tires in the 

environment because they require long time to start decaying and increase the 

amount of pollution. So, it is required to have an appropriate use of these waste scrap 

tires.  

 

 

Conventionally, some of the tires are recycled and the others are just 

stockpiled (whole tire), landfilled (shredded tyre) or buried. Mainly, waste tires 

disposal areas lead to the decrease of biodiversity and increasing the amount of 
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toxicity towards the environment [2]. Buildups of waste tires are dangerous because 

they can lead to a potential environmental pollution, fire hazards and potential 

breeding grounds for deadly mosquitoes that transmit disease. Conventional way 

disposing scrap tires are usually done by burning them in a large fires, however this 

method release pollutant which may endanger humans, wildlife and the environment 

[3]. Tire pile fires have been bigger environmental problem, that can be burn for long 

time up to months, distribute up a black plume that can be seen for away. That plume 

contains toxic chemicals and air pollutants, thus producing an oil that will 

contaminate soil and water. Still millions of tyres are just being buried all over the 

world.  

 

 

A large percentage of these tires are sent to landfills where they can 

contribute to the spread of diseases by becoming breeding grounds for rodents and 

mosquitos. Tire landfilling is in control for a serious environmental risk. This 

phenomenon will contribute directly to pollutant, while wasting tremendous amount 

of rubber that could have been recycled. More importantly, waste rubber from tire 

will take longer time to naturally degrade because of the sulphur cross-link that 

presence in the compounds [4]. 

 

 

Recycling tire is an innovative idea to avoid the environmental problem from 

rising. It is a process of reusing automobiles tires that are no longer appropriate for 

use on vehicles due to wear or permanent damage such as punctures. To reduce the 

amount of scrap tires waste, waste rubber is incorporated into products that have 

extensive demand and applications. 

 

 

A practical solution to this problem is to recycle the crumb rubber (CR). 

Crumb rubber is a granulated material derived from the scrap tires and then is used to 

develop other valuable products. The three mains component contains in scrap tires 

are fibers, steel belts and tread rubber. During scrap tires recycling process, rubbers 

are being separated from fibers and steel belts by mechanical separation method. The 

rubber later is being shredded into smaller pieces by motor blades. Cryogenic 

processing will further reduce the size of the rubber into fine-size particles. The 

cracker mill process tears apart or reduces the size of tire rubber by passing the 
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material between rotating corrugated steel drums. By this process an irregularly 

shaped torn particle having large surface area are produced that known as crumb 

rubber. 

 

 

Improvements of mechanical and dynamical properties can be achieved with 

addition of rubber in the concrete. Additional energy absorption, better crack 

resistance and better ductility are some of the concrete properties that being 

improved. By using the crumb rubber, one can decrease the destructive effect 

towards environment as well as providing a sustainable concrete. Due to alarming 

environmental issues, utilization of waste from industrial product in construction 

sector has gained much attention globally. 

 

 

 Based on literature, it is found that tire rubber wastes are being utilized for 

paving purposes [5]. Another usage of tire rubber wastes is in the area of artificial 

reef, however some research and investigations have questioned the validity and 

impact of it in many aspects [6].  Other than that, it has been reported that tire rubber 

can also be utilized to produce carbon black through pyrolysis technique [7]. In the 

absence of oxygen, thermal decomposition of the tire will produce numbers 

insignificance by-product. Some researchers have already been carried out on the 

utilization of tire rubber waste as alternative aggregate in many types of concretes. 

This type of aggregate will enhance the concrete toughness and improvise the sound 

insulation properties of the materials. Technically, rubber aggregates are produced 

from waste tire by using two different technology namely mechanical and cryogenic 

grinding. In the first method, waste tire will undergone controlled grinding at 

ambient temperature to produce chipped rubber that is used to replace coarse 

aggregates. As for the second method, the grinding of waste tire took place below the 

glass transition temperature, which further yields smaller crumb rubber to be used as 

aggregates.  
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Fattuhi et al., [8] in his investigation on rubber concrete report that the 

concrete made by low quality rubber will suffer poor comprehensive strength in 

comparison with the higher grade of rubber concrete. Another similar observation is 

also reported by Topcu [9] which conclude that this phenomenon is actually 

originated from the weak interfacial bonds between the tire rubber and the cement 

paste. Tarun et al., [10] in his work has reported that compressive strength of any 

rubberized concrete could be further improved by replacing aggregates with finer 

crumb rubber particles. Crumb rubber that undergone pre-treatment will significantly 

improvised the bonding between the particles and the surrounding matrix, which 

results in better compressive strength. In another work, Piti et al., [11] report that the 

utilization of crumb rubber in concrete will further improve the toughness and 

flexibility of the concrete samples, as well as having higher fracture energy and 

longer post-peak load response.  

 

 

In general, waste tire disposal poses great challenge throughout the world. It 

is hardly surprising that the responsible bodies prefer stockpiling and open burning 

as disposal option, which pose alarming threat to environmental and health. Thus, it 

is urged to make more use of the scrap tire waste. Numbers of researches have been 

carried out in this area, with majority of the works focussing on the emerging 

technology to process the recycled rubber for many purposes. 

 

 

In this work, another successful technique for producing crumb rubber is 

carried out by pulsed laser ablation (PLA) as an alternative method. PLA also can be 

produced in liquid surrounding (PLAL). Briefly, this method focuses a pulsed laser 

beam onto the target material surface inside liquid. This will create an ablation plume 

from the interaction of the laser pulse with both the target and the liquid 

environment. The experimental setup used for obtaining crumb rubber and the 

monitoring process is presented in this thesis.  

 

 

The ablation plume consists of small amounts of evaporated liquid forming 

micro-bubbles and some melted target material. The micro-bubbles will expand until 

certain critical combination of temperature and pressure is reached, resulting in the 

collapse of the bubble structure. During the destruction of the bubble, the material 
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particles inside it experience an extreme temperature and pressure, leading to the 

creation of a new material. This method provide certain advantages, such as the 

possibility large quantity of target to evaporate and the final product usually having a 

form of finer particles remaining suspended within the host liquid. In comparison 

with mechanical crumb rubber production, the PLAL method is controllable, safer 

and environmental friendly.  

 

 

 

 

1.2  Problem Statement  

 

 

 The crumb rubber industry is considered to be in its adolescent evolutionary 

stage, struggling with significant challenge to reach its maturity. There are numbers 

of different manufacturing process; two of the most common techniques are ambient 

grinding and cryogenic processing which suffers notable drawback in terms of 

maintenance and size of particle production. No doubt that mechanical technique can 

product in a big scale however there are still limitation that cannot be solved by 

grinding machine.  Currently by using mechanical technique through grinding can be 

achieved up to 40 mesh only as reported by Revocomm Technologies Sdn Bhd. 

There is still indeed need another technique that can solve for producing a finer 

crumb runner.  To throw some light on this matter, pulse laser ablation in liquid is 

proposed. Therefore in this project two type of laser that are a Q-switched Nd:YAG 

and a femtosecond laser are used to produce  finer  crumb rubber. Although it might 

have limitation in producing in a large scale at least it can solve the problem in size 

of crumb rubber. 
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1.3 Objectives of the Study 

 

 

 The main objective of this study is to synthesize finer crumb rubber by using 

pulse laser ablation in liquid technique. In order to achieve this goal, the following 

tasks are established: 

 

i. To synthesize crumb rubber by pulse laser ablation technique 

incorporating Q-switched Nd:YAG laser and Femtosecond Laser. 

ii. To set-up high-speed photography technique to determine the 

mechanisms responsible to induce finer crumb rubber. 

iii. To characterize and optimize the crumb rubber generated in different 

liquid mediums by EDX, FESEM and FTIR. 

iv. To determine the optical absorbance of different sizes of crumb rubbers in 

oil suspension. 

 

 

 

 

1.4 Scope of Study 

 

 

 In this study, the scrap tyre was chosen as the main material to produce 

crumb rubber through pulse laser ablation which obtained from Revocomm 

Technologies Sdn Bhd. Others preferred material is the chemical solution like D-

limonene, Acetic acid, De-ionized water, Sodium Hydroxide and Sodium Chloride 

were used as medium for synthesize. Two sources of ablation were used that are a Q-

switched Nd:YAG laser with 1064 nm wavelength and 10 ns pulse duration and a 

femtosecond laser with 1064 nm wavelength and 340 fs pulse duaration. In order to 

understand the mechanism responsible for inducing crumb rubber, high speed 

photography system using shadowgraph technique was developed to capture the 

shockwave, cavitation bubble and liquid jet formation that occur during the 

phenomena. The crumb rubber obtained from the laser ablation technique was 

analysed using FESEM and EDX. Finally, the crumb rubber particles obtained were 

used to determine the oil absorbent efficiency. 
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1.5  Significances of this Study 

 

 

A finer crumb rubber is produced by using laser technology. The size can be 

achieved down to 3000 mesh. This is a huge contribution for industrial application. 

This type of finer crumb rubber will enhance the toughness and improvise the sound 

insulation properties of building materials like concrete. Beside finer crumb rubber 

also have big contribution as an absorbance material because of large surface area 

especially in spill oil industry.  

 

 

 

 

1.6  Thesis Outline 

 

 

This thesis documented the complete work of this research. It consists of five 

main chapters whereby, in every chapters are divided into several subchapters. 

Chapter 1 present the overview of the thesis, problem statement, research objectives, 

scope of study as well as significance of this work. As in Chapter 2, it provides 

extensive literature review of crumb rubber production by previous researchers 

including current problems on the technique. While Chapter 3 describes detail 

information regarding the instruments and description of sample properties which 

has been used in this work. Furthermore, it also discusses the calibration procedure 

and research methodology of system development. All the results are presented in 

Chapter 4. The initial work comprised of system calibration. Then followed by the 

mechanism involve in producing crumb rubber, maximizing the crumb rubber 

production based on laser key parameter, under effect of different pH solution and 

under effect of the high repetition rate laser. Finally, Chapter 5 concluded the finding 

of this study. It also contained the recommendation for future study. 
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