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ABSTRACT 

Starting from conventional models, researchers have begun to develop 

advanced techniques.  One recent technique is the hybrid model, which improves 

upon the time series forecast.  In this study, a hybrid model combining the multiple 

linear regression (MLR) model and neural network (NN) model has been 

developed to enhance the forecast of Malaysian short term load.  Considering the 

data consisted of linear and nonlinear parts, it is first forecasted using the MLR 

model.  The residuals obtained from the in-sample forecast are then forecasted 

using the NN model.  This model has improved the forecast, although at certain 

hours, neural network model gives better performance.  To determine the 

performance of the models, three performance indicators are used: root mean 

square error (RMSE), mean absolute error (MAE), and mean absolute percentage 

error (MAPE).  To assist in error measurements, we also developed a fractional 

residual plot to observe goodness-of-fit.  A graphical plot could help an analyst see 

the goodness of the analysis for each of the individual data.  Compared to the 

regular residual plot, this plot provides more information and can be used as a 

benchmark tool.  This study also includes the missing values problem as one of the 

objectives.  In load data, the missing problem always occurs in a set of data.  Since 

it has a seasonal pattern according to days, most of the time, the load usage for the 

next day is predictable.  For this reason, a new model has been developed based on 

these characteristics.  Three imputations are tested with this method: mean 

(DCM1), mean + standard deviation (DCM2) and third quartile value (DCM3).  

The data is divided into three parts which are at the front, middle and at the end of 

the data with 5%, 15%, and 25% of missing values.  The results of RMSE show 

that the proposed techniques, particularly DCM1 and DCM3, are superior to other 

complex methods when dealing with missing values. 
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ABSTRAK 

Bermula daripada model konvensional, penyelidik mula membangunkan 

teknik yang lebih canggih.  Salah satu teknik yang terbaru adalah model hibrid, yang 

menambah baik ramalan siri masa.  Dalam kajian ini, model hibrid menggabungkan 

model regresi linear (MLR) dan model rangkaian neural (NN) telah dibangunkan 

untuk meningkatkan ramalan beban jangka pendek Malaysia.  Memandangkan data 

terdiri daripada bahagian-bahagian linear dan tak linear, ia dimulakan dengan 

meramal menggunakan model MLR.  Ralat yang diperolehi daripada ramalan 

dalaman sampel kemudiannya diramalkan menggunakan model NN.  Model ini telah 

menambah baikkan ramalan, walaupun pada masa tertentu, model rangkaian neural 

memberikan prestasi yang lebih baik.  Untuk menentukan prestasi model, tiga 

petunjuk prestasi digunakan: ralat punca min persegi (RMSE), ralat min mutlak 

(MAE), dan ralat min peratusan mutlak (MAPE).  Untuk membantu dalam ukuran 

ralat, kami juga membangunkan plot ralat pecahan untuk melihat kebaikan prestasi.  

Sebuah plot grafik dapat membantu seorang penganalisis melihat kebaikan analisis 

bagi setiap data individu.  Berbanding dengan plot ralat biasa, plot ini menyediakan 

maklumat lanjut dan boleh digunakan sebagai alat penanda aras.  Kajian ini juga 

menkaji masalah nilai yang hilang sebagai salah satu objektif.  Dalam beban data, 

masalah kehilangan nilai sentiasa berlaku dalam bentuk satu set data.  Oleh kerana 

data mempunyai corak bermusim mengikut hari, pada kebanyakan masa, penggunaan 

beban untuk hari berikutnya boleh diramal.  Atas sebab ini, model baru telah 

dibangunkan berdasarkan ciri-ciri ini.  Tiga imputasi diuji dengan kaedah ini: min 

(DCM1), min + sisihan piawai (DCM2) dan nilai kuartil ketiga (DCM3).  Data ini 

dibahagikan kepada tiga bahagian iaitu jika kehilangan berada di awal, tengah dan di 

akhir data dengan 5%, 15%, dan 25% nilai-nilai kehilangan.  Keputusan RMSE 

menunjukkan bahawa teknik yang dicadangkan, terutamanya DCM1 dan DCM3, 

adalah lebih baik daripada kaedah kompleks yang lain apabila berurusan dengan 

nilai-nilai yang hilang.  
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Analysis of time series data is an important field in research.  Generally, 

everything which is measured through time will be called time series data and the 

purpose as so why a data is recorded is to understand the trend and pattern of the 

data so that one could predict their future outcomes for consequence and make a 

conclusion of the product.  For example, modeling a load forecasting is a very 

important task for electricity function in a more efficient and safe way (Soares and 

Medeiros, 2008).  It is also important in order to give the most optimum cost for cost 

saving applications relying on operating reconstruction and accurate forecasts (Hahn 

et al., 2009).  It is also important as a process of predicting the future load demands.  

By predicting the future load demands, power system planners and demand 

controllers could ensure that they would be enough supply of electricity to cope with 

increasing demands (Mastorocostas et al., 2000).  For these reasons, load forecasting 

has attracted not only researchers but also organizations with the same interest to 

forecast energy usage by using various methods from classical methods to the 

advanced methods. 

In this study, we consider only the short term load forecasting (STLF).  STLF 

covers a period of one hour to one week ahead.  Some of the attractions of STLF are 

that it is a key role in the formulation of economic, reliable and secure operating 

strategies for the power system and it is also an essential element of Energy 

Management System (EMS) (Chatfield, 2005).  STLF also delivers the input data for 
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load flow studies and likelihood analysis to calculate the requirement of generators, 

to determine line flows and to ensure that the system continues to operate reliably 

(Taylor and McSharry, 2007).  In addition, it is also useful for off-line works where a 

list of corrective actions can be prepared for expected faults.  STLF is also beneficial 

to market operators, transmission owners, and other market participants because it 

can schedule adequate energy transactions and prepare operational plans and bidding 

strategies (Gross and Galiana, 1987).  Because of the above advantages of STLF 

there has been great demand in finding a precise model.  In short, many researchers 

are now focusing on finding a method that could model their data and provide an 

accurate forecast. 

Other than finding a hybrid model to forecast the load data, we also propose a 

graphical technique to assess goodness-of-fit of a model(s). If error measurement 

could give information about the analysis from the value, graphs are important to 

show the precision for each of the value. This graph is important to identify unusual 

or influential observations, to measure model hypothesis and to understand the 

novelty of the study (Baddeley et al., 2005).  Graphs should tally in a tentative 

manner based on specific tests of a hypothesis (Cox, 2004). Error measurements are 

used to give information on whether a model is good in forecasting the data. 

However, as mentioned by Hyndman and Koehler (2006) and Hyndman (2006), the 

error measurements are not generally applicable which could mislead the results of 

the forecasting.  In assessing the goodness of fit of a model, graphical plot helps to 

better understand the results and make further improvements of the model used. 

Addressing missing values is important in the process of getting a precise and 

accurate result.  Missing values usually occur in load data when data is not recorded 

from few hours to a few months due to certain problems that may occur 

unexpectedly as a result of faulty equipment, lost records, or a mistake, which cannot 

be rectified until later.  This kind of missing values could be classified as having 

systematic patterns.  Many studies in the literature suggest how researchers can deal 

with the missing data as it affects model estimates and standard errors. If missing 

data is not treated appropriately, then the results could lead to biased estimates (Penn, 

2007).  In some instances, the data cannot be analyzed either at record level or for the 
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overall database when it contains missing values.  Thus, it is important to properly 

handle missing values in all types of analysis (Winkler and McCarthy, 2005). 

1.2 Research Background 

Malaysian short term load data can be classified as multiple seasonal data.  

Multiple seasonal data is when a time series contains more than one cycle that is 

repetitive in a period of a year or less.  Malaysian data contains both daily and 

weekly cycles.  Malaysia has many public holidays as the country has different 

ethnic groups.  The cycles from Monday to Friday are similar while Saturday and 

Sunday are quite discrete.  It is worthwhile to note that the patterns for public 

holidays are quite similar to weekends compared to weekdays.  As stated by Gould et 

al. (2008), the levels of the daily cycles may change from one week to the next and 

yet it is still highly correlated with the prior levels of the next day. 

Forecasting seasonal load demand has become increasingly challenging in the 

recent period.  Classical methods such as regression, Holt Winter’s and exponential 

smoothing are suitable for a large number of series especially for an analyst with 

limited skills and also is a norm of comparison (Chatfield, 2000).  It follows a certain 

pattern which was determined by the parameter of the model.  But as the time passed 

by, conventional models may no longer be a proper way to deal with seasonal data 

because real data never really follows a pattern of a model.  As such, advanced 

models such as an artificial neural network (ANN) and fuzzy time series have been 

applied as an alternative and better forecast for a seasonal load data.  Recently, 

hybrid models have become attractive as they improve the forecasting. 

Pairwise comparison is used to determine how good a model fits a data.  

Despite on how many quantitative systems are used in modeling geographic data, the 

most important objective is to seek possible means of improving the models.  

Therefore, to make evaluation informative, predicted values must be compared with 

measured values in meaningful ways (Willmott, 1981).  The most common plots that 

are used to help visualize the accuracy of the model in the time series analysis are 
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time series plot and residual plot (Cox, 2004).  Different kind of graphs may be used 

for different kind of purposes.  This is mainly because each kind may have its own 

advantages and in the most study, a variety of models has been used with a variety of 

functional forms, choice of predictors and so on.  Therefore, by developing more 

graphs, it will help more researchers to visualize their findings and understand their 

data better (Cox, 2004). 

There have been many methods developed to handle missing values in the 

literature.  Cokluk et al.  classified it into three methods on how a missing value is 

being handled (Cokluk and Kayri, 2011).  The first method is known as defining one 

or more value(s) instead of the missing value and excluding these missing data from 

analysis.  This type of handling is usually a computer program to identify the missing 

value and the computer will just ignore the missing datum from the analysis.  The 

second method is known as deleting subjects and variables including missing value.  

This method just deletes the missing values with its pairing variables and assumes 

that it does not affect the analysis of the data.  The third method is predictions of 

missing values/imputation.  This method predicts the missing values and uses this 

value in basic analysis.  However, predictions and imputation processes can only be 

applied for quantitative variables. 

By considering these three methods above, predictions and imputations are 

the most appropriate approach to handle the missing values because the deletion 

leads to a prejudiced estimation and can decrease or exaggerate statistical power.  

According to Mertler and Vannatta (2002) and Tabachnick and Fidell (2001) three 

most common methods of predictions and imputations are by using prior knowledge, 

average (mean) and regression.  In prior knowledge, the missing values are being 

imputed with previous values.  Mean imputation is the most basic and common 

imputation being used especially if there is no other information available.  While in 

regression, one or more independent variables will be taken into the process which 

will be used later to impute the dependent variable value (Cokluk and Kayri, 2011).  

But as mentioned by Kihoro and Athiany (2013), it is important to identify 

appropriate model as it depends on the type and nature of the data in order to obtain 

the best possible estimates. 
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1.3 Problem Statement 

The 24 hours load usage is often treated as one series instead of a set of 

independent points.  As mentioned by Soares and Medeiros (2008), 24 hours load 

should be treated as an independent series since each hour has their own dynamics 

and structures.  Fay et al. (2003) also noted that when separating the 24 hours series, 

it has a dual nature that each hour has independent pattern and different from one 

another (Fay et al., 2003).  Thus, Malaysian 24 hours load data contains a multiple 

seasonal cycle and this technique should be considered during forecasting. 

Another major concern when forecasting a load data is whether to consider 

the linearity of the data.  A real data may not consist of pure linear or nonlinear but 

may contain both linear and nonlinear (Zhang, 2003).  In order to check the linearity 

of data, residual plot is often used.  Residuals are important in order to check whether 

a model is able to fit with a data.  Although there is no general statistical diagnostic 

on how to detect nonlinear autocorrelation relationship, residuals can be utilised in a 

diagnosis step to ensure that both linear and nonlinear part are considered (Zhang, 

2003).  In this study, 24 hours load usage will be treated as a set of independent 

points and a hybrid model consists of both the linear and nonlinear parts will be 

developed to forecast the load usage in Malaysia. 

Basically, time series plot is a graph that was used to evaluate the pattern of 

the data over time.  This plot is commonly used by many to show the difference 

between the actual and forecast data (Baharudin and Kamel, 2007, Gould et al., 

2008, Soares and Medeiros, 2008, Zhang, 2003).  The problem with time series plot 

is that there is not much information that can be gained from the plot.  Residual plot 

is a plot that is used to show the difference between the actual and forecasted values.  

The problem with residual plot is that it is dependent to the scale.  If the data has a 

large value such as in load usage or arrival of tourists per year where the figure is in 

hundred thousand units where the difference might reach to thousands, one could 

think that it is a bad forecast although it is actually a good forecast.  Moreover, it is 

also hard to set a benchmark on the residual plot to decide whether a model is good 

or bad. 
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The presence of missing values in the underlying time series is a persistent 

problem when dealing with databases.  Therefore, it is important to handle the 

missing values problem appropriately.  Often time series data contain certain patterns 

such as trend, seasonality and stationarity.  Because of complexity of data, missing 

data in time series can be quite challenging and can be handled by using imputation 

from regression model, Box-Jenkins model, Kalman-filtering model and so forth 

(Kihoro and Athiany, 2013, Gómez et al., 1992, Sorjamaa and Lendasse, 2007).  The 

most common model used to deal with this problem is the Box-Jenkins model. 

1.4 Research Question 

This research will focus on statistical modeling with the problems as follow: 

i. How to enhance the forecasting of short term load data? 

ii. What is an appropriate approach to forecast a multiple seasonal load data 

amongst conventional models, advanced models and a hybrid model? 

iii. How can the performance of a model be visualized and making it happen by 

using a graphical plot? 

iv. How to deal with missing values problem in a seasonal load data? 

1.5 Objective of the study 

The main interest of this study is to propose a feasible model to forecast the short 

term load data.  The main objectives of this study are: 

i. To propose a hybrid method to enhance the forecasting of short term load 

data. 

ii. To evaluate the forecasting performance between the classical, advanced and 

the proposed model for short term load data. 
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iii. To propose an alternative graphical approach to evaluate performance of a 

model(s) and to manipulate the practice of the plot. 

iv. To propose a feasible method of dealing with missing values in a seasonal 

time series data. 

1.6 Significance of the Study 

In the literature, researchers developed new method in forecasting time series 

data to improve and get a better forecast.  A good forecast is important as they help 

to better understand and make predictions based on data available.  This also applies 

in load forecasting.  Not only will it help the energy provider company to manage the 

power supply, it also helps consumers pay at the optimum cost. 

It can be difficult to identify a data as a pure linear or nonlinear.  Often a few 

models are selected for comparison and the most precise result is selected to be the 

best model in modeling the data.  Thus, developing a hybrid model that combines 

different models can be a good option to address this.  Hybrid model also has the 

advantage of embracing other model weaknesses.  For example if one model is good 

in forecasting a linear data, another model would be good in forecasting the 

nonlinear data.  Hence, by combining these two models will create a hybrid model 

that could deal with both linear and nonlinear pattern in a data.  In particular, this 

study aims to develop a hybrid model that fits the Malaysian load data that could 

improve the forecasting. 

A statistical graph is a common purpose to observe the various aspects of 

residual and predicted values after fitting a model.  Unlike the regression algorithms 

and analysis of variance, statistical graph shows a set of individual residuals.  There 

are many studies on how to examine the fit by using this value graphically in order to 

seek possible means and improvise the method.  In this study, a residual plot is 

proposed to help understand the modeling better by standardizing the value of the 

residuals and to expand the usage of the plot. 
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In certain practice, missing values can affect the behaviour of the data or the 

result of the forecasting.  A lot of techniques were developed in order to tackle the 

missing value problem.  Load data are not exempted from this problem.  But time 

series data usually contains certain trend and seasonality.  Thus it requires a specific 

method to deal with it by considering the pattern of the data.  By gaining the 

information from the forecasting, the load contains daily cycle which is repetitive 

and predictable.  Therefore, this information will benefit in solving the missing 

values problem.  And since it is common for load to have a particular cycle, we will 

benefit from the information in this study.  A comparison with other few techniques 

will give beneficial information guideline on how one could deal with missing values 

when they have a seasonal data. 

1.7 Scope and Limitation of the Study 

After considering the data's pattern and appropriateness of the models with 

the data, the only time series models that will be considered in this study are the Holt 

Winter's, multiple linear regressions, SARIMA, fuzzy time series and neural 

networks models.  Meanwhile, performance indicators that will be used to compare 

the results are the mean absolute error (MAE), mean absolute percentage error 

(MAPE) and root mean square error (RMSE).  These three measurements are chosen 

because they are the most common and widely applied in measuring forecast 

accuracy as it is simple to be used and scale-free. 

Malaysian load are not really affected by other effects such as temperature or 

seasons because Malaysia does not has a dramatic climate changes such as at a four 

seasons countries therefore we only consider the weekdays and weekend effects.  

The load data used in this study is only from Johor Bahru.  The data consists of a 

daily record documented at every hour from 1st January 2008 until 31st January 

2011 respectively.  For the missing values problem, only hour 1200 is considered 

because it shows obvious pattern between the weekdays and the weekends.  The 

limitation of this study is that the proposed hybrid model is only suitable for a 

seasonal data. 
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This study only deals with the common missing values faced by load data, 

which is the univariate type.  Other types of missing values are not considered since 

they are not related to load data.  Plus, the percentage of missing values that were 

used is only up to 25% because it is uncommon to have a load data that contains 

more than 10% of missing values and by considering larger percentage of 

missingness, we hope this study could cover if there is a missing values problem 

larger than 10% involve in the future.  Therefore by choosing 25% as the maximum 

missing percentage is sufficient for this study. 

1.8 Outline of Thesis 

The organization of the thesis is given as follows.  Chapter 2 provides the 

literature review and background study of the methodology used.  This is followed 

by Chapter 3 where the theory of the models and techniques used in this study are 

discussed.  In chapter 4, the results from the proposed technique and comparison 

with other models and techniques are discussed thoroughly. Chapter 5 will present 

the conclusion of the study and further work that can be expanded from this study.  
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