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Struvite (MgNH4PO4.6H2O, MAP) precipitation is an effective method to 

recover ammonium nitrogen (NH4-N) from wastewater into a valuable and 

environmental friendly material. It is crystallized by a chemical reaction between NH4-

N, Mg and P, which is affected by several factors, mainly pH, molar ratios, foreign 

ions and mixing intensity (G). Landfill leachate (LL) contains high concentration of 

NH4-N that should be treated properly to avoid the environmental pollution problems. 

Therefore, the aim of this study is to develop a sustainable approach for NH4-N 

recovery from municipal LL via MAP precipitation technology. The study investigated 

a low-cost P source, optimized NH4-N recovery in terms of pH, Mg:N, K:N and G, 

studied the effect of organic matter and determined the effect and sorption mechanism 

of cadmium (Cd) and nickel (Ni) during MAP precipitation. Three types of waste 

bones were tested for low-cost P source; fish, chicken and cow waste bone ash. Fish 

bone ash contained the highest P content (17% wt.). The P extraction by acidic 

leaching was optimized by Response Surface Methodology (RSM) and the results 

showed that applying 2M H2SO4 and 1.25 kg H2SO4/kg ash resulted with extracting 

95% of P. The extracted P solution (150 g-P/L) was applied successfully in MAP 

precipitation. Recovery of NH4-N in synthetic LL was optimized by RSM. Maximum 

NH4-N recovery (90%) was achieved at pH 8.5, Mg:N = 1.25, K:N = 0.1 and G = 95 

s-1. The effect of organic matter on MAP recovery was determined using synthetic and 

actual LL (filtered and unfiltered). Propionic, butyric and acetic acids formulated the 

organic content in synthetic LL, in which an insignificant effect was noticed with 

minor removal of total organic carbon (TOC) (6.30-13.96%). For actual LL, NH4-N 

recovery efficiencies were 93%, 71% and 28% using MgCl2+Na2HPO4, MgO+P 

solution and MgO+Na2HPO4, respectively. It was also found that Cd and Ni were co-

precipitated with MAP, forming struvite analogues, which could affect the purity of 

MAP. Sustainability of NH4-N recovery has to be further improved to be efficient for 

large-scale applications of LL treatment. 

ABSTRACT 
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Pemendakan struvit (MgNH4PO4.6H2O, MAP) merupakan satu kaedah yang 

berkesan untuk perolehan semula nitrogen ammonia (NH4-N) daripada air sisa kepada 

bahan yang berharga dan mesra alam. Ia membentuk kristal melalui tindak balas kimia 

di antara NH4-N, Mg dan P, yang dipengaruhi oleh beberapa faktor, terutamanya pH, 

nisbah molar, ion-ion luaran dan keamatan pembauran (G). Air larut lesap daripada 

tapak pelupusan sisa pepejal (LL) mengandungi NH4-N pada kepekatan tinggi yang 

perlu dirawat dengan baik untuk mengelakkan masalah pencemaran alam sekitar. Oleh 

itu, tujuan kajian ini adalah untuk membentuk satu kaedah mampan bagi memperolehi 

NH4-N daripada LL menggunakan teknologi pemendakan MAP. Kajian ini mengkaji 

satu sumber P berkos rendah, mengoptimumkan perolehan NH4-N dari aspek pH, 

Mg:N, K:N dan G, mengkaji kesan bahan organik dan menentukan kesan dan 

mekanisma jerapan kadmium (Cd) dan nikel (Ni) semasa pemendakan MAP. Tiga 

jenis sisa tulang telah diuji bagi sumber P berkos rendah, iaitu abu sisa tulang ikan, 

ayam dan lembu. Abu tulang ikan mempunyai kandungan P tertinggi (17% berat). 

Pengekstrakan P oleh larut lesapan asid telah dioptimumkan dengan Kaedah 

Permukaan Tindak Balas (RSM) dan hasil kajian menunjukkan bahawa penggunaan 

2M H2SO4 dan 1.25 kg H2SO4/kg abu menghasilkan pengestrakan 95% P. Larutan P 

yang diekstrak (150 g-P/L) telah berjaya digunakan dalam pemendakan MAP. 

Perolehan NH4-N dalam sintetik LL telah dioptimumkan menggunakan RSM. 

Perolehan maksimum NH4-N (90%) dicapai pada pH 8.5, Mg:N = 1.25, K:N = 0.1 dan 

G = 95 s-1. Kesan bahan organik terhadap perolehan MAP ditentukan dengan 

menggunakan LL sintetik dan sebenar (dituras dan tidak dituras). Asid propionik, 

butirik dan asetik dirumuskan untuk kandungan organik dalam LL sintetik, yakni 

kesan yang tidak ketara didapati dengan penyingkiran kecil jumlah karbon organik 

(TOC) (6.30-13.96%). Bagi LL sebenar, masing-masing perolehan NH4-N sekitar 

93%, 71% dan 28% telah dicapai dengan menggunakan MgCl2+Na2HPO4, larutan 

MgO+P dan MgO+Na2HPO4. Juga didapati Cd dan Ni mendak bersama dengan MAP, 

membentuk analog struvit yang boleh menjejaskan keaslian MAP. Kemampanan 

perolehan NH4-N perlu dipertingkatkan lagi supaya lebih berkesan untuk penggunaan 

rawatan LL pada skala yang lebih besar. 

ABSTRAK 
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INTRODUCTION 

1.1 Overview 

Landfilling is a common method applied for solid waste disposal, especially in 

low- and middle-income countries. It is recognized as an important option both now 

and in the near future. In Malaysia, 95% of the collected solid wastes are landfilled, 

with roughly 5% being recycled (Johari et al., 2014). Such situation has several 

consequences on the environment around the landfills, as the huge amounts of wastes 

produce different by-products, such as biogas and leachate. 

Landfill leachate (LL) is the liquid produced as a result of different chemical 

and biochemical reactions that took place when water percolates through the disposed 

landfill waste components. Landfill leachate is a high strength waste stream that 

contains high concentrations of organics, suspended solids (SS) and nitrogen (N), 

namely ammonium nitrogen (NH4-N) (Ismail and Manaf, 2013). High-ammonium 

from LL has been known to cause eutrophication to surface water bodies and result in 

pollution to groundwater and aquaculture (Taha et al., 2011; Marañón et al., 2006). 

Biological treatment methods (aerobic or anaerobic) have the capability to 

reduce organic loads from wastewater. However, they are less efficient when applied 
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to LL (Zhang et al., 2009a), especially when it is in the methanogenic (mature) phase 

(Di Iaconi et al., 2010). The reason is that mature LL holds large amounts of 

recalcitrant organics and very high concentrations of NH4-N that has toxic inhibition 

to microorganisms responsible for the biological degradation. Moreover, the ratio of 

biological oxygen demand/chemical oxygen demand (BOD5/COD) in this phase of LL 

is frequently much lower than required for efficient biological processes (Siciliano et 

al., 2013), making the application of such conventional methods more expensive and 

difficult. 

Several techniques have been applied for LL treatment such as ammonia 

stripping (Leite et al., 2013), ion exchange (Boyer et al., 2011) and electrochemical 

oxidation (Bashir et al., 2009). The cost of ammonia stripping method is considered 

high, as huge stripping towers have to be built, as well as large amounts of sulfuric 

acid (H2SO4) is needed to recover ammonia (NH3) in the form of ammonium sulphate 

((NH4)2SO4) (See section 2.3). The main constraint that hinders the development of an 

effective NH4-N treatment by ion exchange method is the high cost of resins that are 

needed to be changed frequently, while the major problem in achieving large-scale 

application of electro-oxidation is the high electricity consumption together with the 

high cost of electrodes. 

The process of chemical precipitation of NH4-N, forming magnesium 

ammonium phosphate hexahydrate (MgNH4PO4.6H2O, MAP), known as struvite, has 

been thoroughly investigated for different types of wastewater (Huang et al., 2016c; 

Chen et al., 2013; Ryu and Lee, 2010; Warmadewanthi and Liu, 2009; Liu et al., 2008), 

which showed high efficacy in nutrients' recovery. The process of NH4-N recovery by 

struvite precipitation has unique benefits; it has the ability to treat high concentrations 

of NH4-N, as well as recovering it into valuable material, which is not available in 

other nitrogen treatment methods. In addition, struvite has significant benefits for the 

agronomic field; it is an effective fertilizer as its nutrients are released slowly, causing 
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no adverse effects on plants roots (Rahman et al., 2014). Moreover, MAP precipitation 

technology had shown an effectiveness higher than many other methods such as the 

biological treatment methods (Akkaya et al., 2010), ammonia stripping (Hidalgo et al., 

2016) and fenton oxidation (Kochany and Lipczynska-Kochany, 2009).  

However, LL is usually poor in magnesium (Mg) and phosphorus (P), which 

makes struvite precipitation costly, due to the required addition of Mg and P.  

Therefore, using low-cost sources of Mg and P could significantly reduce the 

operational costs of the process (Liu et al., 2013a; Siciliano et al., 2013; Borojovich et 

al., 2010; Di Iaconi et al., 2010). Fundamentally, struvite precipitation is influenced 

by several factors, mainly pH, molar ratios of Mg:N and P:N, initial NH4-N 

concentration and mixing intensity (G). The presence of foreign ions, mainly calcium 

(Ca) and potassium (K), could lower the efficiency of NH4-N. Calcium ions has the 

ability to react with phosphate, while the presence of K could result with the formation 

of magnesium potassium phosphate hexahydrate (MgKPO4.6H2O), which competes 

with MAP. Besides, recovery of pure MAP could be impeded by the presence of 

organic matter in the stream (Gunay et al., 2008b). 

During the process of NH4-N recovery from LL, heavy metals may 

contaminate the produced struvite. Several studies illustrated that heavy metals could 

be incorporated into struvite's crystal network, or sorbed onto its surface (Ronteltap et 

al., 2007). Thereafter, if struvite would be used as a fertilizer, the incorporated heavy 

metals might cause hazardous impacts on humans and plants. Different heavy metals, 

like Ni & Cd, were found in quite high concentrations in leachates of different landfills 

in Malaysia (Yusof et al., 2009) and Palestine (Alslaibi et al., 2011). However, their 

sorption mechanisms during MAP precipitation are still undefined.                                  
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1.2 Problem statement 

Landfill leachate is a high-strength waste stream, containing high concentration 

of NH4-N that is difficult to be treated by traditional biological methods. Disposing LL 

without a proper treatment causes significant pollution for surface and groundwater, 

consequently affecting human health and aquatic life. 

Struvite precipitation is a promising solution that has been investigated for 

NH4-N and P recovery. However, the high cost of raw Mg and P reagents is still the 

main obstacle in sustainable application of struvite precipitation. Whilst most of 

researches tended to investigate alternative sources of Mg (Ye et al., 2011; Gunay et 

al., 2008b; Chimenos et al., 2003), little efforts have been carried out to investigate the 

alternative low-cost sources of P (Siciliano et al., 2013) despite the fact that P is more 

expensive and rare as compared to Mg (Di Iaconi et al., 2010). 

As LL has a complex nature, there are many elements that could have negative 

effects on MAP precipitation, thus inhibiting NH4-N removal. The presence of 

Potassium (K+) has been proven to affect the purity of MAP by forming a different 

struvite analogue. In the same context, high concentration of K+ has been found in 

different LLs in Malaysia. However, the interaction effect of K with pH, Mg:N and G 

has not been determined before. 

Organic matter can cause mutual effects with NH4-N, which may affect NH4-

N removal and struvite purity as well. In particular, propionic, butyric and acetic acids 

are the main carboxylic acids that formulate the organic matter of LL. However, their 

potential influence on NH4-N recovery has not been reported in the literature. In 

addition, the efficiency of applying the alternative P (P extraction) has to be 

determined. 
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High concentrations of Cd and Ni have been found in LL in some countries 

like Malaysia and Palestine. These heavy metals could drastically influence the purity 

of struvite as a fertilizer. A comprehensive explanation of Cd and Ni effect and 

behaviour during MAP precipitation is still lacking, which should be discussed in 

detail. 

1.3 Objectives 

The main goal of this study is to develop a sustainable approach for NH4-N 

recovery from municipal LL by means of struvite precipitation method. The following 

objectives are proposed to be achieved: 

1. To choose the best type of waste bone ash to be used as a low-cost source of 

phosphorus required for struvite precipitation. 

2. To optimize NH4-N recovery and struvite purity in terms of K+, pH, Mg:N 

molar ratio and G. 

3. To investigate the potential effect of organic matter in synthetic LL on NH4-N 

recovery, as well as the efficiency of P extraction for NH4-N recovery from 

actual LL. 

4. To study the effect and sorption mechanisms of Cd and Ni during struvite 

precipitation. 
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1.4 Scope of study 

This study investigates the recovery of NH4-N from LL via struvite 

crystallization technology. Three types of waste bones, produced from fish, chicken 

and cow were characterized to choose the best alternative P source among them to 

apply it in MAP formation. Consequently, P extraction from the best wasted bone ash 

(fish wasted bone ash) was optimized by Response Surface Methodology (RSM). The 

interaction effects of pH, Mg:N and K:N molar ratios and G on NH4-N removal from 

synthetic LL were also optimized using RSM. The influences of three organic acids 

(propionic, butyric and acetic acids) on struvite recovery was also studied. The 

efficiency of P extraction in MAP recovery from actual LL was determined. 

Furthermore, the effect and sorption mechanisms of Cd and Ni during struvite 

precipitation process was defined. 

1.5 Limitation of study 

This study discussed some aspects related to NH4-N recovery from LL by MAP 

precipitation. However, some other aspects could not be covered such as: 

1. The alternative source of Mg, as the main purpose was to discover a new 

alternative P source, and study its efficiency in MAP precipitation. 

2. Not all influencing factors that affect MAP recovery were investigated. Instead, 

based on the literature, the most influential factors were considered. 

3. A combination of only three organic acids was applied to represent the organic 

content in the synthetic leachate. This was because the sole parameter that 

measured the organic content was TOC, as the other indicators, according to 

literature, are either does not represent the organic carbon alone such as COD, 

or not affected by the chemical precipitation process such as BOD. 
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1.6 Significance of study 

MAP precipitation is a promissing approach to remove and recover NH4-N 

from LL. On the whole, this study will contribute to the environment protection, 

through the attainment of sustainable removal of NH4-N from LL, and production of 

valuable materials. 

In particular, extracting P from wasted bones ash and using it in MAP recovery 

has several benefits: 

1. Decreasing the consumption of  natural sources of P (phosphate rocks), which 

are threatened to be depleted in the next coming 50 years. 

2. Contributing to minimize organic wastes disposal and recover the contained 

nutrients. 

Additionally, considering the influential factors and the different levels of LL 

pollution, determining the optimum condition of struvite precipitation will explain the 

potential interferences that may inhibit the effecient recovery of NH4-N. Furthermore, 

this can be considered as a milestone for large-scale applications of struvite recovery. 

Moreover, focusing on heavy metals and their impact on struvite purity will benefit in 

estimating the level of potential contamination with heavy metals, as well as assessing 

the feasibility of using struvite, recovered from LL, as a fertilizer. 
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