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ABSTRACT 

 

 

 

 

 Organic semiconductor materials (OSMs) involving thiophene, vinazene, di-

indenoperylene (DIP) and copper phthalocyanine (CuPc) are computationally 

explored at both the isolated molecule and the molecular crystal levels, to expose 

their potential in optoelectronics. The calculations are performed within the first-

principles pseudo-potential quantum mechanical approaches designed within density 

functional theory at the level of different flavors of exchange-correlation 

energy/potential functional. All the studied molecules exhibit π-orbital and free 

electron pairs. The study revealed that the total energy values of isolated molecules 

of thiophene, vinazene, di-indenoperylene (DIP) and CuPc are 552.7140Ha, 

487.7079Ha, 1227.9865Ha and 1887.9308Ha respectively, and those for the 

corresponding molecular crystals are 5337.5117Ha, 3901.8748Ha, 2455.2992Ha and 

3775.2523Ha respectively. In the electronic structure investigations, it is found that 

the delocalization of electrons from the π-conjugation characteristics of the OSMs, 

has resulted in the electronic hybridization in their electronic structures, and 

consequently, increased the charge population in the highest occupied molecular 

orbitals. The obtained energy-gap values for CuPc, DIP, vinazene and thiophene 

molecules are 0.847eV, 1.490eV, 3.300eV and 4.723eV respectively. In 

investigations of the optical properties, substantially high values of absorption 

observed particularly in molecular crystals, accompanied with low values of 

resistivity, have resulted in the significant lowering of the loss function. The 

moderate charge carrier mobility in OSMs is also reflected from the obtained 

dielectric function and conductivity spectra. Besides, on the application part, the 

graphene zero energy-gap is resolved via the study of thiophene molecule as the 

adsorbate and graphene surface as the substrate by employing the interfacial 

approach. To validate the OSM findings for organic photovoltaic (OPV) 

applications, performance calculations of a simulated vinazene-based device have 

been executed. From the obtained results that show peak shifting in transmission 

spectra, gradual increasing of current in current-voltage (I-V) characteristic curve 

and conductance spectra that exhibit a sinusoidal pattern, it is believed that vinazene 

molecule can be recognized as good OPV active material. 
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ABSTRAK 

 

 

 

 

Bahan semikonduktor organik (OSMs) yang melibatkan tiofena, vinazena, 

di-indenoperilena (DIP) dan kuprum ftalosianina (CuPc) telah diteroka secara 

pengkomputeran pada kedua-dua tahap molekul terpencil dan hablur molekul, untuk 

mendedahkan potensi mereka di dalam optoelektronik. Pengiraan telah dilakukan 

menggunakan pendekatan kuantum mekanik berpseudo-keupayaan berasas prinsip-

pertama direka dalam teori fungsian ketumpatan pada pelbagai peringkat fungsian 

tenaga/keupayaan pertukaran-kolerasi. Semua molekul yang dikaji mempamerkan 

orbital-π dan pasangan elektron bebas. Kajian ini mendedahkan nilai tenaga 

keseluruhan molekul terpencil bagi tiofena, vinazena, di-indenoperilena (DIP) dan 

CuPc masing-masing ialah 552.7140Ha, 487.7079Ha, 1227.9865Ha dan 

1887.9308Ha, dan bagi hablur molekul yang sepadan masing-masing ialah 

5337.5117Ha, 3901.8748Ha, 2455.2992Ha dan 3775.2523Ha. Dalam kajian struktur 

elektron, didapati bahawa pentaksetempatan elektron daripada OSMs bercirikan 

konjugat-π, telah menghasilkan penghibridan elektron didalam struktur elektron, dan 

seterusnya, meningkatkan populasi cas di dalam orbital molekul terisi tertinggi. 

Jurang-tenaga yang diperolehi bagi molekul CuPc, DIP, vinazena dan tiofena 

masing-masing ialah 0.847eV, 1.490eV, 3.300eV dan 4.723eV. Dalam kajian sifat 

optik, nilai penyerapan yang cukup tinggi terlihat terutamanya dalam hablur 

molekul, disertai dengan nilai kerintangan yang rendah, telah menghasilkan 

penurunan ketara dalam nilai fungsi kehilangan. Kelincahan pembawa cas yang 

sederhana dalam OSMs juga tertunjuk daripada spektrum fungsi dieletrik dan 

kekonduksian yang diperolehi. Disamping itu, pada bahagian aplikasi, jurang-tenaga 

sifar grafin telah dirungkai melalui kajian dengan molekul tiofena sebagai bahan 

terjerap dan permukaan grafin sebagai substrat melalui pendekatan antara muka. 

Untuk mengesahkan hasil kajian OSM bagi aplikasi fotovolta organik (OPV), 

pengiraan prestasi peranti berasas-vinazena yang bersimulasi telah dilakukan. 

Daripada keputusan yang diperolehi yang menunjukkan peralihan puncak pada 

spektrum penghantaran, peningkatan beransur-ansur arus pada lengkung ciri arus-

voltan (I-V) dan spektrum konduksian yang mempamerkan pola sinusoid, adalah 

dipercayai bahawa molekul vinazena boleh diakui sebagai bahan aktif OPV yang 

baik. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of study 

 

Industrialization, a drastic rise in the population and globalization, has 

increased the demand for sustainable and clean energy sources manifold ever than 

before. Moreover, conventional energy resources are rapidly depleting and 

concurrently creating problems such as global warming/environment pollution etc. In 

order to cope with these issues, clean and economical energy sources are in great 

demand as an alternative to oil and fossil fuels. Hence, researchers have shown 

considerable interests in exploring alternative energy resources. As a matter of fact, 

the sun is the source that provides an abundance of renewable solar energy and is a 

viable source to realize the dream of cheaper and green energy. Apparently, the 

sunlight supplies approximately 10
4
 times larger energy than our present needs. 

However, the biggest challenge is the conversion of solar energy into electrical 

energy in addressing the issue of world energy demands over a longer period of time 

through cheaper and environment-friendly technologies.  

 

In resolving the issue, photovoltaic (PV) technology is the most practical and 

attractive approach to exploit the sustainable energy source at all level as well as to 

overcome future energy crisis. The demands on PV technology are rapidly increasing 

with time [1]. The key to exploiting PV technology is majorly relying on the 
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semiconductor materials (SMs) since solar energy is converted into electricity 

directly [2-3] by manipulating the potential of SM materials. Day by day, this 

technology is attracting more and more attention of the researchers towards 

exploring, tailoring and investigating the new and better SMs, which can realize the 

dream of green/sustainable energy. Although some SMs are already exploited in the 

technology, most of the modules are based on inorganic semiconductor materials 

(ISMs). Recently, researchers have diverted their interests in the organic SMs 

(OSMs) as well. It is due to the fact that the PV modules that are based on the 

conventional ISMs are very expensive if compared to the OSMs. Moreover, the 

optoelectronic device manufacturing based on the OSMs is easier than the ISMs. 

Regardless of the advantages, OSMs -based device efficiency is rather low [4-5]. 

Hence, the study of OSMs generally seeks opportunities to dominate in PV 

technology with enhanced performance over the current market of conventional 

crystalline silicon and other ISMs. 

 

The OSM-based device of organic photovoltaics (OPV) is thin, light and 

flexible. The versatility of OPV as the future energy efficient technology is paving 

towards replacing the utilization of conventional silicon in the mass production. 

Some examples of OPV technology that have been introduced these days are OPV 

polymers, OPV DSSC (dye-sensitized solar cells) and OPV oligomers. OPV devices 

consist of one or several photoactive OSMs overlaid between two electrodes of 

cathode and anode [5] Photoactive OSMs play a key role in the performance of 

optoelectronic/photovoltaic devices. Therefore, in order to determine suitable and 

efficient photoactive OSMs and attain their respective properties, comprehensive 

investigations on their electronic structure and optoelectronic properties are 

necessary. In this regard, the use of ab initio quantum mechanical computational 

techniques in performing virtual experiment may lead to a cheaper experiment and 

shorter developmental cycle. 

 

Computational ab initio methodologies based on Density Functional Theory 

(DFT) are intensely used by the theoretical researchers to solve the complex 

problems. It was found to be more reliable and provides better results concerning the 

electronic structure calculations in designing and modeling new materials and tuning 



47 

3 

 

 

their properties without prior experimental knowledge. This feature of DFT has 

brought a new insight into the investigation and education field. 

 

 

1.2 Problem statement 

 

Organic materials are relatively at an early stage of development if compared 

to the inorganic materials. Thus, further research on novel OSMs for their 

applications in advance technologies is essential. Despite progress in the exploration 

of better performance OPV technology, application dilemma is certainly resolved 

with a better understanding of the OSMs electronic structure and corresponding 

optoelectronic properties which can unveil the novel features and functionalities of a 

material [6-7]. Furthermore, with the knowledge of electronic structure and 

properties, one can successfully tune material properties for the application in a 

device for stable and good performance [8-9]. Though numbers of study are found 

pertaining to OSMs comprehending their potential for OPV technology, rarely are 

focused on atomic level physical properties of the OSMs which show a correlation 

between the structures of the molecule and molecular crystal. Moreover, the 

available research reports on the materials under investigation, are giving piecemeal 

information about the pertinent properties which predict for their implementation 

within a particular device [5, 10]. Hence, a comprehensive study on the reported 

OSMs optoelectronic properties and the implementation of the studied OSMs to be 

adopted in OPV technology seems vague. 

 

OSMs based on small molecules have also attracted a lot of interest recently 

[11]. Particularly, OSMs small molecule of thiophene, vinazene, perylene, and Cu-

phthalocyanine (CuPc) containing π-conjugation has opened a new door for the 

optoelectronics by showing intense electrons population [12]. In-depth knowledge of 

these π-conjugated molecules involving the geometrical influences, optoelectronic 

properties and fundamental understanding of the concerned phenomena at atomic 

scale level is mandatory. However, those studies that are accompanied by optical 

characteristics are still scarce. Evidently, numbers of experimental and theoretical 

work involving structural and electronic properties on thiophene, perylene, and Cu-

phthalocyanine (CuPc) have been proposed [8, 13-15], while optical properties 



47 

4 

 

 

investigation based on theoretical works are scarcely done [16], compared to 

experimental work [17-18]. Differently in vinazene, where both electronic and 

optical properties study based on theoretical work remains elusive [19-21]. 

 

As the π-conjugated molecule study is on demand, the theoretical studies on 

the molecular crystal of thiophene, vinazene, perylene, and Cu-phthalocyanine 

(CuPc) for OPV purposes are also scarce [22-23] especially involving optical 

properties study [24]. Besides, investigation on electronic properties, optical 

properties and the ideal packing of the molecular crystals' structural arrangement 

resulted from the transition from molecule to molecular crystal is remained elusive 

as well. This has stirred up our interest to further expose the potential of molecular 

crystal while the molecule being the key building blocks for the OSMs of thiophene, 

vinazene, perylene, and Cu-phthalocyanine (CuPc) [25-26]. All of these dilemmas 

need to be clarified in order to further enhance OPV performance through OSMs 

potential in realizing the dream of providing a base of alternate cheaper sustainable 

energy sources for future’s green energy technologies. 

 

 

1.3 Objectives 

 

The aim of this research is to study the physical properties of a class of 

organic semiconductor materials in the form of isolated molecules and molecular 

crystals for organic photovoltaic applications using the theoretical approach of 

Density Functional Theory (DFT). 

 

In order to achieve the aim, the following objectives are performed: 

 

i) To optimize the geometrical structure of organic materials (thiophene, 

vinazene, perylene, and Cu-phthalocyanine (CuPc)) 

ii) To investigate the electronic properties of the organic materials in isolated 

molecule and molecular crystal 

iii) To investigate the optical properties of the organic materials in isolated 

molecule and molecular crystal 

iv) To simulate OPV device and investigate its efficiency 
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1.4 Scope of study 

 

This research is covered by performing theoretical investigations relating to 

OSMs isolated molecule and molecular crystal of thiophene, vinazene, perylene, and 

Cu-phthalocyanine. A thorough study is performed using a quantum mechanical ab 

initio approach called as Density Functional Theory (DFT). The calculations are 

carried out on the basic and established laws of nature without involving any 

additional assumption or models. To perform DFT calculations, computational codes 

(DMol3 [25, 27], CASTEP [28] and VASP [29]), framed within the DFT, are 

utilized to model, design and simulates the chosen OSMs in order to achieve the 

objectives. Each code is providing different approaches, basis, potential, exchange-

correlation energy parameterizations, advantages, and disadvantages. However, in 

general, all the codes are designed within DFT. 

 

Planar structure OSMs are chosen for OPV technology. Optimization of 

geometrical structures of the chosen OSMs is performed at the isolated molecule 

level at first in order to contribute as the backbone of molecular crystal simulation 

later. Packing arrangements of the molecules are being focused in designing the 

molecular crystal structure. In isolated molecules, influences of the heteroatom, 

functional groups, carbon-only based structure, and the presence of metal element 

are being highlighted through the variety of chosen OSMs. Whereas intermolecular 

forces attributed from the packing arrangements and the delocalization and 

localization of π-conjugated system are discussed for molecular crystal structure.  

 

To provide an extensive study as well as for future reference, electronic 

properties are executed (based on pseudopotential approach) with several exchange-

correlation functional such as Local Density Approximation (LDA) [30], 

Generalized Gradient Approximation (GGA)  [31] and hybrid functional of Becke-

Lee-Yang-Parr (B3LYP) [32-33] with different parameterizations. On the other 

hand, in optical properties, the spectra of absorption, reflectivity, loss function, real 

and imaginary of conductivity and dielectric function are investigated at PBE-GGA 

functional level. 
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In order to emphasize the potential of OSMs in OPV applications through the 

study of electro-optical properties, this research has been extended through the 

simulations of interfacial study and substitution of OSM in device applications as 

well. Some OSMs are selected to perform the respective study. The properties of 

OSMs are engineered solely with energy efficient technologies particularly OPV 

applications in order to provide an overview and predictions about the OSMs 

behaviors and properties before turning the respective OSMs into practical use. 

These approximations and methods are complementary for this research on 

optoelectronic properties for OPV applications. 

 

 

1.5 Significance of study 

 

This research offers comprehensive study on optoelectronic properties of 

various OSMs that covered from molecule to crystal level and depicts the OSMs 

potential in OPV applications through computational approaches. The chosen OSMs 

are studied with regard to active OPV components either donor or acceptor materials 

(n-type or p-type materials) to be employed in OPV. In order to spawn a new 

generation of solar-powered products which give benefits in several aspects of 

cost/money, sustainability, lifetime and friendly to environments, the research was 

conducted through the state of the art ab initio methods based on DFT. Moreover, 

prediction of properties, that have not been explored experimentally yet, are 

determined within a short time and low cost. This research will assist to solve the 

problems which constantly arise as stated in sub-chapter 1.2 and difficult to decipher 

experimentally. The computed optical and electronic properties highlight the 

promising future of OSMs in OPV technology. In addition, this research may 

provide promising characteristics of OPV materials that could be a strong footing to 

the experimentalist, academicians, and industrial scientists to fabricate optoelectronic 

devices based on the chosen OSMs that are beneficial to the country, community and 

future generation of green energy technology. 
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1.6 Structure of thesis 

 

In this thesis, several OSMs covered in two phases of the isolated molecule 

and molecular crystal level based on the framework of DFT. The DFT based 

calculations have been rationalized mostly within the computational codes of 

DMol3, CASTEP, and VASP. In Chapter 1, general and background of the research 

have been provided. The objectives of this study are highlighted as well in this 

chapter corresponding to the defined problem statements. Plus, to allow one to 

understand the direction of this study, the scope and significance of study are also 

elaborated within this chapter.  

 

In Chapter 2, an overview of the previous works done on the selected OSMs 

of thiophene, vinazene, perylene, and CuPc are presented. Most of the existing 

theoretical or experimental studies related to the OSMs have been reported either 

using the same methodologies or otherwise. In addition to that, the development of 

the theoretical works from the scratch and the DFT-based framework is described 

too, to give an exclusive understanding of the present study. In Chapter 3, the 

methodologies used throughout this study are presented. The employed 

computational codes according to a different level of study are explained and the 

computational details including the necessary procedures to be done appropriately 

have been included as well. 

 

 Chapter 4 presents the investigation of structural properties of both isolated 

molecule and molecular crystal of thiophene, vinazene, perylene, and CuPc. 

Optimization of the structures that lead in obtaining structure stability, lattice 

parameters, arrangements of molecules, brief structural strengths and advantages in 

response to different influences of the heteroatom, functional groups, carbon-only 

based structure, and the presence of metal elements is being discussed in this 

chapter. 

 

Chapter 5 contains the investigation results on the electronic properties of the 

optimized structures. This chapter is compromised with the energetic difference on 

each molecule structures which is obtained via the energy gap between highest 

occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital 
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(LUMO), whereas for crystal structures via the formation of bandstructure. Various 

exchange-correlation potentials have been executed for the calculations of the energy 

gap in this chapter. In addition, the total and partial density of states in relations with 

the obtained PBE-GGA energy gap has been discussed within this chapter too.  

 

Chapter 6 contains the investigated results on the optical properties of the 

optimized structures. Reflectivity, refractive index, absorption, together with real and 

imaginary parts of the frequency-dependent dielectric and conductivity function are 

part of the properties that have been discussed by relying on the practical 

characteristics that may serve as good optoelectronic system and devices, especially 

in the organic photovoltaic field. Calculations in this chapter have been conducted 

through PBE-GGA parameterizations. 

 

In Chapter 7, discussions on the simulations of interfacial study and the 

substitution of OSM in device applications have been highlighted. In the interface 

study, thiophene and graphene have been chosen as the adsorbate and substrate 

materials. The separation distance between thiophene and graphene was varied from 

1.00Å to 3.00Å to tune the energy gap produced. The adsorption and binding energy 

curve are depicted in this chapter and based on the discussion, the appearance of 

physisorption characteristics has been distinguished. To further the investigation, 

simulation on device applications is performed and discussed in this chapter too. 

Instead of thiophene, vinazene is chosen since the same work on thiophene has been 

previously done by others. The density of states of the vinazene molecule, the device 

only and the system have been elaborated in brief. The transmission spectrum, I-V 

characteristics curve and conductance curve in respect to zero and applied bias have 

been discussed in details where broadening in the bias windows are clearly observed. 

 

Last but not least, Chapter 8 provides the conclusions drawn from this 

research and recommendations for future work as well. 
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