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ABSTRACT 

In a cup draw forming operation, the desired shape results from the material 

hardening process under controlled plastic deformation and the springback 

phenomena. In this study, a mechanics-of-deformation approach is developed based 

on damage variables and large plastic deformation. The approach is then employed to 

estimate the onset of the material damage event and the location of fracture based on 

the mechanics response of the metal blank. Draw forming behavior of low carbon steel 

is examined as a case study. The loading rate is conducted at a slow loading response 

of the steels in the large deformation of the draw forming processes. Axisymmetric 

and 3D solid models are developed for finite element (FE) simulations to gain insight 

into the evolution of internal states and damage in the steel blanks during the draw 

forming process. In the FE simulation, Johnson-Cook constitutive model with 

isotropic hardening rule is employed. The Rice-Tracey ductile damage criterion is 

employed to indicate damage initiation event along with a linear energy-displacement 

relation for damage evolution rule. Results show that while the applied loading (tool 

displacement) is quasi-static corresponding to the strain rate of 0.001 sec-1, the 

maximum plastic strain rate at fracture could reach 100 times greater at the critical 

material flow region. Failure of the deforming steel blank is localized with excessive 

plastic deformation. While the onset of damage can be efficiently predicted using the 

axisymmetric FE model with damage-based model, the subsequent damage evolution 

of the localized ductile failure requires a 3D continuum FE model. The predicted tool 

load-displacement response is employed in validating the FE model. Effects of 

drawing parameters including drawing speed, blank holder force and die clearance on 

the resulting deformation of the drawn cup-shape part are established. Based on the 

response of the mechanics-of-deformation, the established 

failure prediction approach is proven more accurate and reliable.
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ABSTRAK 

Di dalam operasi pembentukan cawan, bentuk yang diinginkan terhasil 

daripada proses pengerasan bahan di bawah fenomena tindakan ubah bentuk plastik 

dan anjalan. Di dalam kajian ini, kaedah mekanik ubah bentuk dibangunkan 

berdasarkan pemboleh ubah kerosakan dan ubah bentuk besar plastik. Kaedah ini 

kemudiannya diguna pakai bagi menganggarkan permulaan kejadian kerosakan bahan 

serta lokasi retakan berdasarkan tindak balas mekanik kepingan logam kosong. Sifat 

pembentukan keluli berkarbon rendah adalah dikaji sebagai satu kajian kes. Muatan 

ke besi dikenakan pada kadar tindak balas perlahan mengakibatkan perubahan besar 

dalam proses penghasilan pembentukan. Model asimetrik dan model pepejal 3D 

dibangunkan untuk simulasi unsur terhingga bagi mendapatkan pemahaman evolusi 

keadaan dalaman dan kerosakan logam kosong semasa proses pembentukan tarikan. 

Di dalam simulasi unsur terhingga, model menjuzuk Johnson-Cook bersama dengan 

peraturan pengerasan isotrop adalah diguna pakai. Kriteria kerosakan mulur Rice-

Tracey digunakan bagi menunjukkan kejadian permulaan kerosakan berserta 

hubungan linear tenaga dan sesaran untuk peraturan evolusi kerosakan. Hasil 

menunjukkan walaupun laju alat yang dikenakan adalah pada kuasi-statik menurut 

kadar terikan 0.001saat-1, kadar terikan retakan plastik tertinggi boleh mencecah 100 

kali ganda di kawasan genting pengaliran bahan. Kerosakan oleh perubahan logam 

kosong disetempatkan dengan lebihan ubah bentuk plastik. Sementara itu permulaan 

kerosakan boleh di jangka dengan berkesan menggunakan model simulasi unsur 

terhingga asimetrik menggunakan model berasaskan model kerosakan, evolusi 

kerosakan seterusnya adalah kerosakan mulur setempat memerlukan model unsur 

terhingga 3D. Jangkaan respon beban kepada sesaran digunakan bagi mengesahkan 

model simulasi unsur terhingga. Kesan parameter penarikan termasuk kelajuan 

penarikan, daya pemegang logam kosong dan kelegaan acuan tekan pada hasil ubah 

bentuk oleh tertarik berbentuk cawan adalah tertubuh. Berdasarkan respon mekanik 

ubah bentuk, pendekatan jangkaan kerosakan tertubuh dibuktikan 

lebih tepat dan yakin. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Automotive body parts such as front quarter panel, suspension housing and 

floor panel are produced through numerous metal forming processes. It is a process of 

governing the formability of material into the desired shape throughout the forming 

operation without fail [1]. In the classical shop floor approach, the well-known forming 

limit diagram (FLD) is employed as a tool to predict the material failure in the metal 

forming operation. It is practiced as an approach to prevent the occurrence of fracture 

in sheet metal forming production. 

In general, metal forming operation is divided into two main distinct processes, 

which are cutting and shaping. The process of cutting such as blanking is a process of 

separating the blank. While shaping for instance draw forming is to form the blank 

into desired parts. As the main shaping metal forming process in the automotive 

industries, the study of material failure concentrates on the draw forming operation. 

The typical tool and die movement are described thru the mechanism of the draw 

forming process. The tool consists of a punch, blank holder and die cavity while steel 

blank is employed as deformable parts as depicted in Figure 1.1. This monotonic 

loading process of punch draws the steel blank into the die cavity at a specified drawing 

depth and loading speed to draw forming shaped parts. The interactions between 

deformable blank and forming tools induced large plastic deformation until it is 

properly form into desired shape. 
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Figure 0.1: Cross sectional view of typical cup draw forming process 

During the draw forming operation, steel blank undergoes material hardening 

process under controlled plastic deformation and springback phenomena. As a result, 

variation of thickness strain induced by the large plastic deformation is detected in the 

draw-forming cup. The blank holder force (BHF) induces the compressive stress at the 

flange region, while the punch tool induces the longitudinal and radial stresses 

throughout the loading process into the die cavity. These excessive stresses can cause 

the material failure known as wrinkling and localized necking. Wrinkling at flange is 

local buckling phenomena that attribute to the excessive compressive stresses [2]. 

Whereas, localized necking is due to the excessive tensile stresses  [3]. The localized 

necking is usually detected in the sidewall region that can lead to ductile fracture.  

As commonly practiced by the shop floor, the popular conventional FLD is 

defines as a linear strain path dependent criteria [4]. Thus, it is inaccurate for the 

analysis of complex draw forming processes [5]. The proposed approach is to use the 

internal states change of steel blank during draw forming processes. It is a mechanics 

of deformation approach. A process of degradation of material strength properties that 

initiate and evolve until fracture is dictated [6]. The failure prediction approach is 

developing based on the Rice-Tracey (R-T) ductile damage criterion to indicate the 

damage initiation event. While the linear energy-based relation, is used for damage 

evolution rule. The employ damage variables can estimate the localized deformation 

and tolerable stretching of material throughout the degradation process of material. 

Die

P

Blank

holderSteel

Blank
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This mechanics of deformation approach is employ as a remedy to the problem in 

material failure prediction. The mechanics of deformation is a branch of mechanics 

that examine the behavior of material to the loading. It is an effort of investigating the 

non-linear response in the material due to the changes in geometry and internal state 

behavior throughout the draw forming operation. 

1.2  Statement of the Research Problem 

How could the mechanics of deformation approach employing damage model 

and finite element (FE) simulation be used to predict material failure process in draw 

forming operation. 

1.3 Objectives 

The aim of this study is to develop a damage-based failure prediction approach 

on the mechanics of materials deformation. Specific objectives are: 

 

1. To establish a validated framework for FE simulation of draw forming 

processes. 

2. To quantify the limitation of axisymmetric FE model for fracture. 

3. To determine the effect of damage and its evolution on the material response. 
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1.4 Scope of Study 

The present study covers the following scope of work: 

 

1. Low carbon steel (LCS) is examined as a demonstrator material. 

2. Erichsen cup forming machine is used to draw forming LCS into circular cup 

shape parts. 

3. The draw forming test is set at 1 mm/sec slow loading rates with constant BHF 

to clamp uniformly on the flange part. 

4. The FE simulations are carried out at strain rate dependent condition to model 

the draw forming test.  

5. Coulomb friction is applied in every interaction between forming tools and 

deformable blank throughout the FE simulation. 

6. Axisymmetric model with piecewise hardening curve is applied to define the 

limitation of the geometrical representation of the model when predicting 

failure. 

7. Deformable blank in FE 3D circular cup is modeled using solid elements to 

determine the thru thickness necking effect. 

8. Johnson-Cook (J-C) isotropic hardening parameter incorporated with Rice-

Tracey (R-T) ductile damage initiation model and linear energy based model 

are used to assess hardening and material failure respectively. 

1.5  Significance of Study 

In predicting material failure, FLD shows some disadvantageous which 

requires new approach. Compared to the propose approach, its failure prediction 

quality is considered as inaccurate for the complex analysis of draw forming processes.  

This is due to its criteria that satisfy only for the linear strain path condition. 

Furthermore, it is highly depending on the recorded experimental test data with less 

mechanics based consideration. It is also very time consuming because it requires too 
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many data to be recorded with too many samples involved. As a result, these works 

suffered high in cost.  

On the other hand, the propose failure prediction approach not only able to 

predict the onset of failure location accurately. Moreover, it is able to quantify the 

internal states of material from the process of thru thickness necking throughout the 

damage evolution until fracture. Therefore, the failure prediction results are more 

realistic compared to classical shop floor approach. 

With the advance in numerical simulation to compute virtually the draw 

forming processes, the propose approach facilitates the assessment of deformation and 

failure. It computes the mechanics of deformation throughout the formability of 

material until the point of separation. Thru the understandings on mechanics of 

deformation and failure processes, the behavior of tolerable stretching of the material 

are define explicitly. It gives accurate and realistic physical representation of ductile 

failure at a localized point in the material. 

1.6  Thesis Layout 

This thesis consists of seven chapters. In Chapter 1, the background and the 

necessity of the background of the research are bringing out. The issues of material 

failure in drawing automotive steel parts are based upon. The objectives, scope and 

significance of the research are present. 

In Chapter 2, reviews are presented on the trends in sheet metal forming 

processes, automotive steel sheet, formability of draw forming processes, mechanics 

of large plastic deformation, finite element, strain rate dependent models, continuum 

damage mechanics, mechanism of failure, FE simulation of sheet metal forming 

processes and summary of literature review. 
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In Chapter 3, the research methodology is present. The details of the applied 

research materials, experimental setup and finite element (FE) simulation models are 

explained.  

In Chapter 4, the assessment of deformation and failure processes in draw 

forming test are presented and discussed. Mechanics deformation of material 

formability through the punch-force displacement curve is examined and interpreted. 

Effects of BHF and DC setting in the process are measured. The interrupted draw 

forming tests at different displacement depth are conducted. The evolution of plastic 

instability in the interrupted draw-forming test is characterized. Fracture location and 

failure mechanism is identified. 

In Chapter 5, the application of FE simulation to assess the mechanics 

deformation is addressed. An axisymmetric FE cup draw-forming model is used to 

simulate the draw forming processes on LCS at uniform BHF. In modeling the 

hardening behavior, piecewise plastic strain rate hardening parameter are employed. 

The evolution of plastic instability in the interrupted draw forming simulation is 

characterized. The calculated fracture location is compared. 

In Chapter 6, the application of FE simulation to assess the damage mechanics 

is address. Using 3D FE cup model, the damage mechanics are examined by 

incorporating the J-C strain rate dependent criteria and damage variables until the 

event of fracture. The calculated localized thinning is characterized and compared. The 

fracture location in 3D FE cup model is demonstrated. 

In Chapter 7, the major conclusions of the research are present. Future works 

for refining the research are recommend. 
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