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ABSTRACT 

Casson fluid is a shear thinning fluid which is one of the non-Newtonian 

fluids that exhibit yield stress. In this fluid, if a shear stress less than the yield stress 

is applied, it behaves like a solid, whereas if vice-versa the fluid starts to move. The 

advantage of Casson fluid is that it can be reduced to Newtonian fluid at very high 

wall shear stress. Due to these reasons, the steady and unsteady two-dimensional, 

electrically conducting mixed convection flow of Casson fluid was studied in this 

thesis. Flow that was generated due to nonlinear stretching sheet and moving wedge 

filled with and without nanoparticles were given attention. Specific problems were 

studied with various effects include, porous medium, thermal radiation, chemical 

reaction, slip and convective boundary conditions. Similarity transformations were 

used to convert nonlinear governing equations into nonlinear ordinary differential 

equations. The obtained equations were then solved numerically via the implicit 

finite difference scheme, known as Keller-box method. Moreover, an algorithm was 

developed in MATLAB software in order to obtain the numerical solutions. The 

accuracy of the numerical results was validated through comparison with the results 

available in the published journal. The effects of pertinent parameters on velocity, 

temperature and concentration profiles as well as wall shear stress, heat and mass 

transfer rates were displayed graphically and also presented in tabular form. Findings 

reveals that, when Casson fluid parameter increases the momentum boundary layer 

thickness reduces in both cases, nonlinear stretching sheet and moving wedge. It is 

noticed that in the case of moving wedge, the strength of magnetic parameter reduces 

the wall shear stress. Whereas, opposite trend is observed in the case of nonlinear 

stretching sheet. In both geometries, the influence of Brownian motion and 

thermophoresis parameters on the nanoparticles concentration is notably more 

pronounced.
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ABSTRAK 

Bendalir Casson adalah bendalir penipisan ricih yang merupakan satu 

daripada bendalir bukan Newtonan yang mempamerkan tegasan alah. Dalam bendair 

ini, jika tegasan ricih digunakan kurang daripada tegasan alah, bendalir bersifat 

seperti pepejal, manakala jika sebaliknya berdalir akan mula bergerak. Kelebihan 

bendalir Casson adalah ia boleh berubah menjadi bendalir Newtonan ketika tegasan 

ricih dinding yang sangat tinggi. Disebabkan oleh alasan ini, aliran olakan campuran 

pengaliran elektrik, berkeadaan mantap dan tidak mantap dua dimensi bagi bendalir 

Casson dikaji dalam tesis ini. Aliran yang terjana oleh lembaran regangan tak linear 

dan baji bergerak yang diisi dengan dan tanpa partikel nano telah diberi perhatian. 

Masalah khusus telah dikaji dengan pelbagai kesan, termasuk bahantara berliang, 

sinaran terma, tindak balas kimia, keadaan sempadan gelincir dan berolakan. 

Penjelmaan serupa telah digunakan untuk mengubah persamaan menakluk tak linear 

kepada persamaan pembezaan biasa tak linear. Persamaan yang diperoleh 

kemudiannya diselesaikan secara berangka melalui skim beza terhingga tersirat, yang 

dikenali sebagai kaedah kotak-Keller. Selain itu, algoritma telah dibangunkan dalam 

perisian MATLAB bagi mendapatkan penyelesaian berangka. Kejituan keputusan 

berangka telah disahkan melalui perbandingan dengan keputusan yang boleh didapati 

dalam jurnal yang telah diterbitkan. Kesan parameter penting terhadap profil halaju, 

suhu dan kepekatan serta tekanan ricih dinding, kadar pemindahan haba dan jisim 

telah dipaparkan secara grafik dan juga dalam bentuk jadual. Dapatan mendedahkan 

bahawa, apabila parameter bendalir Casson meningkat ketebalan lapisan sempadan 

momentum mengurang bagi kedua-dua kes, lembaran regangan tak linear dan baji 

bergerak. Diperhatikan bahawa dalam kes baji bergerak, kekuatan parameter 

magnetik mengurangkan tegasan ricih dinding. Manakala, trend berlawanan 

diperhatikan dalam kes lembaran regangan tak linear. Bagi kedua-dua geometri, 

pengaruh parameter gerakan Brownian dan parameter termoforesis ke atas kepekatan 

partikel nano  didapati lebih ketara. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

This chapter deliberates the important area of research which emphasis on 

non-Newtonian fluids, especially Casson and Casson nanofluid together with some 

basic and significant physical effects in the study of boundary layer flows. It 

comprises of an introduction of the research background, problem statement, research 

objectives, scope of research and the significance of study. 

1.2 Research Background 

Non-Newtonian fluid is a fluid whose flow properties are different from those 

of Newtonian fluids. In other words, the flow behavior of non-Newtonian fluids 

changes under stress. If someone hits, shakes or jumps on such fluids, they get thicker 

and act like solid after the stress is applied, and return back to its original position 

when the stress is removed. Many polymer solutions and molten polymer are non-

Newtonian fluids, most commonly found substances such as ketchup, jelly, toothpaste, 

paint, blood and shampoo.  

The study of boundary layers flows of non-Newtonian fluids have gained 

considerable attention of researchers due to its widespread applications in engineering 

and industry, such as, design of solid matrix heat, nuclear waste water disposal, 

chemical catalytic reactors, geothermal energy production and ground water 
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hydrology. It is common belief that for such fluids, no single constitutive equation 

exists in literature which exhibits all characteristics of these fluids. Due to the 

complex nature of these fluids, several models have been proposed by researchers to 

understand the flow behavior of these fluids. Most common non-Newtonian models 

include power law model (Bég et al., 2012), viscoelastic fluids including Maxwell 

upper convected models (Bég and Makinde, 2011), Walters-B short memory models 

(Mohiddin et al., 2010; Prasad et al., 2011), Oldryod-B model (Tripathi et al., 2012), 

differential Reiner-Rivilin models (Beg et al., 2008; Rashidi et al., 2012), Bingham 

plastic model (Vatankhah, 2011) and second grade or third grade models (Sajid et al.,

2009; Sahoo and Poncet, 2011).

In all of these models, most commonly used models in modelling of non-

Newtonian fluids are power law and second grade or third grade, but those fluids are 

unable to predict the effect of elasticity and stress relaxation, respectively. Among the 

non-Newtonian fluids, there is another fluid known as Casson fluid. The Casson fluid 

is defined as shear thinning fluid which exhibits yield stress and high shear viscosity. 

The Casson model behaves like Newtonian fluid as wall shear stress becomes large 

(Subba Rao et al., 2015). This model was originally developed by Casson (Casson, 

1959) for the suspensions of pigments which used in preparation of printing inks and 

silicon suspension. The Casson model is also preferred rheological model for blood 

and chocolate (Singh, 2011). The significant applications of Casson fluid can also be 

found in polymer processing industries and biomechanics (Das and Batra, 1993). 

Several researchers (Porwal and Badshah, 2012; Prasad, 2013; Pramanik, 2014) have 

included Casson fluid model in their investigations for different geometries.   

Another important type of fluid is nanofluid. Nanofluids are heat transfer 

liquid with suspended particles (size 1-100nm). Nanofluids are engineered colloids 

made of base fluid and nanoparticles. There are several general applications of 

nanofluids such as industrial cooling, vehicle cooling, generating new types of fuel, 

reducing fuel in electric power generation plant, cancer therapy, imaging and sensing. 

The thermal conductivity of convectional heat transfer fluids such as oil, water and 

ethylene glycol mixture, plays a vital role on the heat transfer coefficient between the 

heat transfer of medium and surface (Chamkha et al., 2011). This new class of fluid 

was first described by (Choi and Eastman, 1995). In their investigations, they pointed 
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out that these types of fluids by suspending nano-sized particles can be used to 

enhance the thermal conductivity of base fluid. The nano-sized particles can be made 

of metals; Copper (Cu), Aluminum (Al), Titanium (Ti), Iron (Fe), Silver (Ag), Gold 

(Au), metal oxides; Copper oxide (CuO), Aluminum oxide (Al2O3), Titanium Oxide 

(TiO2), carbides; Silicon carbide (SiC) and nitrides; Aluminum nitride (AlN), Silicon 

nitride (SiN). Wong and De Leon (2010) pointed out that in cancer patients, iron 

based nanoparticles can be used as delivery vehicles of drugs and radiation.

The thermal conductivity of nanofluids is greater than that of normal fluid 

because the suspended ultrafine particles significantly improve its capability of energy 

exchange (Xuan and Roetzel, 2000). Several researchers (Masuda et al., 1993; Lee et

al., 1999; Xuan and Li, 2000) agreed upon that small amount of nanoparticles volume 

fraction (5% or less) can enhance thermal conductivity of base fluid by more than 

20%. Such enhancement depends upon shape of particles, dimensions of particles, 

thermal properties of particles, and volume fractions of suspended particles. 

Nanofluids coolants are also considered as new technology due to its better thermal 

performance to secure nuclear safety and economics (Kandasamy et al., 2011).

Later on, Buongiorno (2006) carried out analysis of nanofluids and concluded 

that out of seven slip mechanisms, only Brownian motion and thermophoresis are 

significant mechanisms in nanofluids. Based on his predictions, he proposed a model 

which is known as Buongiorno’s model. In this model, Buongiorno wrote the 

conservation equations inlight of these two facts. It is noteworthy to mention that 

several reserchers (Kuznetsov and Nield, 2010; Khan and Pop, 2013; Mahdy and 

Chamkha, 2015) adopted Buongiorno’s model in their study. 

Besides the characteristics of non-Newtonian fluids, another important 

mechanism that influences the behavior of fluid is the application of magnetic field to 

the fluid. Magnetohydrodynamic (MHD) is the study of the magnetic properties of 

electrically conducting fluids. Examples of such fluids include plasma, liquid metals, 

and salt water or electrolytes. The term MHD was first introduced by Hannes Alfven 

in 1942. However, interest in the MHD flow began in 1918, when Hartmann invented 

electromagnetic pump. MHD flows have several important applications in engineering 

and industry such as petroleum industries, the boundary layer control in 
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aerodynamics, MHD power generators, accelerators, MHD pumps, and cooling of 

nuclear reactors. MHD was originally applied to astrophysical and geophysical 

problems, but very recently to fusion power problems, since the material walls would 

be destroyed, therefore electromagnetic forces are used to isolate hot plasmas from the 

wall. MHD flows are also important in metallurgical and metal work process, where 

magnetic field is used to control the rate of cooling of strips (Nandy and Mahapatra, 

2013).

 On the other hand, magnetic nanofluids are unique material that possesses 

characteristics of both liquid and magnet. Magnetic nanofluids are used for numerous 

studies because they are easily manipulated with an external magnetic field 

(Mohamad et al., 2013). Magnetic nanoparticles are also important in several potential 

biomedical applications such as magnetic cell separation, hyperthermia and contrast 

enhancement in magnetic resonance imaging (MRI). Further applications of magnetic 

nanofluids can also be found in cancer therapy, blood analysis and construction of 

loud speakers. 

 In addition to this, the application of MHD flow together with porous media 

has been the growing interest in the study of non-Newtonian fluids. It is due to the fact 

that magnetic field influence the heat generation/absorption process in electrically 

conducting flows. It is well known that the complicated structure of pores is the 

unique property of porous medium that distinguishes it from solid bodies. The use of 

MHD on boundary layer flow through porous medium can be found in geothermal 

energy recovery, plasma studies, oil extraction, nuclear reactors and thermal energy 

storage.

 Another important mechanism in the analysis of fluid flow is the transport of 

heat transfer. Heat can be transferred from one place to another by three methods 

conduction, convection and radiation. If the system comprise of temperature 

differences then heat will always transferred from higher temperature to lower 

temperature. Some common examples of energy transfer in our daily life include 

boiling of water, heating and cooling of room and heat from sun or light bulb.  
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In the above mentioned three modes of heat transfer, radiation and convection 

have gained considerable attention because of its practical applications in science and 

engineering. Radiation is the form of energy transport consisting of electromagnetic 

waves. Since all matters emit and absorb electromagnetic radiation therefore radiation 

heat transfer is everywhere. The interaction of heat transfer with small parts is called 

radiation. The radiation heat transfer cannot be ignored when high temperature is 

required for the preparation of final product. Radiative heat transfer also plays a vital 

role in several engineering areas such as nuclear power plant, gas turbine and various 

propulsion devices from aircraft, missiles, satellites and space vehicles (Kumara et al.,

2015).

In moving fluids, the effect of radiation is significant in applications including 

heat removal from nuclear fuel debris, underground disposal of radiative waste 

material, storage of food stuffs, dislocating of fluids in packed bed reactors (Akbar et

al., 2015). The phenomenon of thermal radiation usually occurs due to emission by 

hot walls and moving fluid (Lavanya and Chenna, 2014). In polymer industry, thermal 

radiation is used to control heat transfer process. Generally, absorption/emission, 

absorption coefficient and inclusion of radiation term are three main difficulties arise 

in the computation of highly non-linear partial differential equations of radiative flow 

(Pal and Mondal, 2009). 

Convection is defined as, the transfer of heat energy between surface and 

moving fluid at different temperature. In other words, convection is the combination 

of diffusion and bulk motion of molecules. The fluid velocity is low near the surface 

and diffusion dominates whereas the influence of bulk motion away from the surface 

enhanced and dominates. Convection heat transfer further divided into forced 

convection and natural or free convection. Forced convection occurs if fluid motion is 

induced by external resources such as pump, fan, and fluid machinery. While the fluid 

motion induced by buoyancy forces or natural forces due to density variation caused 

by temperature differences is referred as natural or free convection. In the boundary 

layer, the density of the fluid rises with heating and as a result raises the fluid, and is 

replaced by cooler fluid that will also heat and rise and the process continues. This 

continuous process is also called natural or free convection. The mechanism of mixed 

convection occurs when forced convection and natural or free convection act 
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simultaneously to transfer heat. The interaction of both pressure and buoyant forces is 

also called mixed convection. 

 In general, the presence of acceleration field and fluid density gradient are two 

conditions that are required for fluid to be set in motion in free convection. The most 

common acceleration field is gravity. Since temperature changes density of all fluids, 

it follows that a temperature gradient will set up a density gradient. Free convection in 

flow loops results in the circulation of the working fluid, referred to as natural 

circulation, which plays a major role in nuclear plants during shutdown. Free 

convection caused mixing in ocean and lakes and also is the source of all weather 

pattern (Lavanya and Chenna, 2014). Generally, velocities of free convection flow are 

much smaller than forced convection therefore corresponding rates of convection 

transfer are also smaller. In several systems, multimode heat transfer effects are 

involved, mixed convection plays a vital role in the design or performance of these 

systems as large resistance is provided to heat transfer. Moreover, free and mixed 

convection are preferred to forced convection when the minimum rate of heat transfer 

or minimum operating cost is required. 

 
 In the study of heat transfer, one of the significant variables is temperature, 

and it is important to write the net buoyancy force in terms of temperature difference, 

that represent the variation of fluid density with temperature at constant pressure. 

Mathematically, it can be written as (Jaluria 1980) 

TT
f

f
T

1  ,                                                            (1.1) 

TTTff ,                                                     (1.2) 

where T  is the volume expansion coefficient. In equation (1.2), f  is density 

difference and is known as Boussinesq approximation. Since, it gives rise to buoyancy 

force and sustains flow. 
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Another important phenomenon in the convective flows is the simultaneous 

effect of heat and mass transfer on fluids because sometimes, in convective flows, 

concentration difference also occurs together with temperature differences. In nature, 

the presence of pure water or air is not possible, where there is always a chance of 

chemical reaction between foreign mass and water or air (Kandasamy et al., 2009). 

The classification of chemical reaction as homogeneous or heterogeneous depends 

only on its occurrence either at an interface or as single phase volume reaction (Bakr, 

2011). Common real life applications of homogeneous reaction are the reaction 

between household gas and oxygen to get the flame and the reaction between acids 

and bases to produce salt and water. Another important application of a homogeneous 

chemical reaction is the formation of smog, which represents a first order chemical 

reaction where the reaction rate is directly proportional to species concentration.  

The study of mixed convection flow with simultaneous heat and mass transfer 

under the influence of chemical reaction has attracted a considerable attention of 

researchers due to its widespread applications in engineering and industry. Specific 

applications of chemical reaction are found in design of chemical processing 

equipment, damage of crops, nuclear reactor safety, and solar collectors as well as in 

food processing and cooling towers. In addition, heat generation occurs when 

chemical reaction takes place between two species.  

Further, the study of convective flow in heat absorbing fluids depends on 

thermal conditions. Generally, two types of temperature distributions are applied to 

thermal boundary conditions, namely, prescribed wall temperature and prescribed 

surface heat flux. There is another temperature distribution also applied to thermal 

boundary, known as convective/conjugate boundary condition. The need of heat 

transfer through convective boundary condition arises when heat transfer from the 

surface is proportional to local surface temperature. The existence of convective heat 

between the surface and surrounding fluid cannot be ignored while heating or cooling 

of the surface (Swapna et al., 2015).

For the first time, Merkin (1994) pointed out four common types of heating 

processes, namely, (i) prescribed wall temperature distributions; (ii) prescribed surface 

heat flux; (iii) Newtonian heating; and (iv) convective/conjugate condition at 
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temperature wall. The study on convective boundary condition in porous medium has 

been carried out experimentally and numerically for several years because of its wide 

range applications in geothermal energy extraction, catalytic and chemical particle 

beds, petroleum processing, transpiration cooling, solid matrix, or micro porous heat 

exchangers, packed bed regenerators, heat transfer enhancement and micro-thrusters 

(Mahanta and Shaw, 2015). In the present study, convective conditions at temperature 

and concentration walls are also taken into account.  

Moreover, the addition of velocity slip at wall is also an important factor to 

increase heat transfer in the fluid. The non-adherence of the fluid to a solid boundary 

is known as velocity slip. Slip flow normally occurs; either the size of flow system or 

the flow pressure is very small. A bulk of literature is dedicated to the flow with no 

slip condition. However, in several situations this condition fails to work. The need of 

partial slip often arise at stretching wall of several fluids like emulsions, suspensions, 

foams and polymer solutions are amongst the others. The term “partial slip” was first 

used by Beaver and Joseph (Beavers and Joseph, 1967). The behavior of slip flow is 

quite different from traditional flow because of its micro scale dimension 

(Turkyilmazoglu, 2012). The addition of slip condition is also efficient in the 

prediction of wall shear stress and heat transfer. 

On the other hand, the study of non-Newtonian fluid over a stretching sheet 

has gained considerable attention due to its practical applications in several industries 

and numbers of technological processes, namely, glass manufacturing, geophysics, 

extrusion of plastic and rubber sheet, paper production, polymer processing and 

purification of crude oil. Crane (1970) was the first who investigated the flow caused 

by stretching sheet, whose velocity is varying linearly from the fixed point. 

In the analysis of stretching sheet problems, stretching rate and rate of cooling 

are two main factors that influenced the mechanical properties of end product (Vyas 

and Ranjan, 2010). The desired thickness of polymer sheet from a dye in the 

manufacturing can be achieved by stretching the melt as it flows out from silt 

(Mahapatra et al., 2011). The appropriate choice of heating/cooling fluid is important 

in stretching sheet because of its direct impact on rate of heat transfer (Pal and 

Mandal, 2015). A large body of literature is available on boundary layer flow of linear 
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stretching sheet; however, the stretching sheet velocity needs not to be linear (Gupta 

and Gupta, 1977). In view of this, researchers diverted their study to the boundary 

layer flow caused by exponentially, quadratically, and nonlinearly stretching sheet. 

The problem of boundary layer flow over nonlinearly stretching sheet also arises in 

several technical and industrial applications such as polymer sheet extrusion from dye, 

aerodynamic extrusion of plastic sheet and glass fiber production, among others (Jat et

al., 2014). 

Another important and interesting study exists in boundary layer theory is the 

wedge flow, that is generated by pressure gradient. The wedge can be static 

(stationary) or moving in the fluid. Wedge is a piece of wood, metal or some other 

material which is thick at one end and thin at the other end, and is being used for the 

separation of two objects in contact. Falkner and Skan (1931) were the first who 

derived the equations for boundary layer flow over static wedge. They transformed the 

nonlinear equations by using similarity transformations and obtained similar solutions 

by taking the free stream velocity as power law function. For this reason, sometimes 

these equations are also called Falkner-Skan equations. The flow of heat transfer past 

a wedge has applications in several fields including aerodynamics, design of space 

craft, different types of transformers and generators and nuclear reactors (Prasad et al.,

2013).

Based on the discussions, two different geometries, namely, nonlinear 

stretching sheet and moving wedge are considered in this thesis. Further, steady and 

unsteady mixed convection flow of Casson and Casson nanofluid is analyzed in the 

presence of magnetic field, velocity slip condition, thermal radiation, chemical 

reaction and convective boundary conditions. Similarity transformations are used for 

the conversion of nonlinear partial differential equations into a set of nonlinear 

ordinary differential equations and then solved numerically by Keller-box method 

(Cebeci and Bradshaw, 1988). Numerical and graphical results are achieved by 

developing an algorithm in MATLAB software. 
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1.3 Problem Statement 

   
Experts worldwide agree that heat and mass transfer is the most important 

factor in the analysis of boundary layer flow. A large body of research supports the 

key role of mixed convection flow of non-Newtonian fluids over stretching surfaces as 

well as wedge shaped bodies. On the other hand, the thermal conductivity of 

traditional fluids plays an important role on the heat transfer coefficient between the 

heat transfer medium and the heat transfer surface. Due to low thermal conductivity, 

the traditional fluids are unproductive and inadequate to fulfill today’s cooling rate 

requirements. The reason is that desired quality of final product highly depends on 

heat transfer rate. Recent research reveals that thermal conductivity of nanofluids is 

comparatively higher than the base fluid.  Present work will demonstrate the answers 

of following questions. How do the existing steady and unsteady Casson and Casson 

nanofluid models can be modified to analyze magnetohydrodynamic effects on flow 

over nonlinearly stretching sheet through porous medium? How does mixed 

convection flow will behave together with convective boundary conditions? How do 

the combined effects of thermal radiation and slip condition will affect the heat and 

mass transfer characteristics of Casson and Casson nanofluid? How does 

hydromagnetic flow of Casson fluid and Casson nanofluid over nonlinearly stretching 

sheet and moving wedge embedded in a porous medium be tackled by Keller-box 

method? How to develop an algorithm in MATLAB software that work for both 

steady and unsteady flow? Specifically, the problems considered in this study are as 

follow:

(i) Steady and unsteady MHD mixed convection flow of Casson fluid 

over a nonlinearly stretching sheet saturated in a porous medium. 

(ii) Steady and unsteady MHD mixed convection flow of Casson 

nanofluid over a nonlinearly stretching sheet saturated in porous 

medium. 

(iii) Steady and unsteady MHD mixed convection flow of Casson fluid 

over a moving wedge saturated in porous medium. 

(iv) Steady and unsteady MHD mixed convection flow of Casson 

nanofluid over a moving wedge saturated in porous medium. 
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1.4 Objectives and Scope of Research 

This study numerically investigates the steady and unsteady MHD mixed 

convection flow of Casson and Casson nanofluid over a nonlinearly stretching sheet 

and moving wedge in the presence of thermal radiation, chemical reaction, slip and 

convective boundary conditions. The highly nonlinear coupled partial differential 

equations are transformed into nonlinear ordinary differential equation with the help 

of suitable transformations and then solved using Keller-box method. The obtained 

results are displayed graphically and discussed in detail. In order to validate the 

present method, numerical results for skin friction and Nusselt number are compared 

with the previously published results. Following are the objectives of the present 

study:

(i) To formulate steady and unsteady Casson and Casson nanofluid due to 

nonlinearly stretching sheet and moving wedge. 

(ii) To develop an algorithm in MATLAB software in order to get the 

solutions of all problems. 

(iii) To investigate the effects of pertinent parameters on velocity, 

temperature and concentration profiles as well as the variation of local 

skin friction, Nusselt and Sherwood numbers. 

1.5 Scope of the Study 

This study circles around steady and unsteady MHD mixed flow of Casson and 

Casson nanofluid. The flow is generated due to a nonlinear stretching sheet and a 

moving wedge. The first four problems explore steady and unsteady mixed convection 

flow of Casson and Casson nanofluid over a nonlinear stretching sheet. The next four 

problems, emphasis on steady and unsteady mixed convection flow of Casson and 

Casson nanofluid over a moving wedge. Further, the effects of MHD, porous medium, 

thermal radiation, chemical reaction, slip and convective boundary conditions are also 

taken into account, and are common in all eight problems. The proposed problems are 

solved numerically via Keller-box method. The Keller-box method is the implicit 
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finite difference scheme and is unconditionally stable. Since the governing equations 

are parabolic, therefore this method is chosen based on the fact that it is preferable 

method for the parabolic equations. The detail of this method can be found in (Cebeci 

and Bradshaw, 1988), (Sharidan, 2005) and (Sarif et al., 2013). The numerical results 

are achieved via MATLAB algorithm and displayed graphically. The accuracy of the 

present method is compared with the results of available literature, and revealed in 

close agreement.  

1.6 Significance of Study 

The significance of the study is stated as follows: 

(i) Provide better theoretical understanding of Casson fluid over a nonlinearly 

stretching sheet and moving wedge filled with and without nanoparticles. 

(ii) Establishment of relationship between steady and unsteady Casson fluid 

and Casson nanofluid. 

(iii) Derivation of heat and mass transfer flow of Casson fluid involving 

buoyancy, chemical reaction and thermal radiation simultaneously.  

(iv) Enhance understanding of MHD mixed convection flow inside a porous 

medium.  

(v) Development of MATLAB code that will be capable of solving steady and 

unsteady flow of Casson and Casson nanofluid. 

(vi) The analysis in this thesis will serve as future reference for researchers on 

Casson fluid flow over a nonlinear stretching sheet and moving wedge 

with and without nanoparticles. 

1.7 Thesis Outline 

This thesis comprises of eight chapters. The brief introduction of research 

background along with a problem statement, objectives and scope of research and 

significance of research are presented in Chapter 1. In Chapter 2, an extensive 
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literature review related to the problems of interest as mentioned in the objectives and 

scope of the research is presented. 

Chapter 3 shows the derivation of the governing equations of unsteady flow of 

Casson and nanofluid. The skin friction coefficient, Nusselt and Sherwood numbers 

are also derived in this chapter.  

Chapter 4 analyzes the steady and unsteady flow of Casson fluid due to 

nonlinear stretching sheet. The effects of pertinent parameters on velocity, 

temperature and concentration profiles as well as friction factor, heat and mass 

transfer rates are displayed graphically and discussed. In Chapter 5, the steady and 

unsteady flow of Casson nanofluid due to nonlinear stretching sheet is discussed. This 

study is the extension of Chapter 4. In this chapter, the Casson fluid is taken as a base 

fluid for suspended nanoparticles. Further, Buongiorno’s model is adopted for the 

analysis of flow fields. Besides the effects considered in the previous chapter, the 

influence of Brownian motion and thermophoresis parameters are also investigated. 

Chapter 6 deals with the steady and unsteady electrically conducting mixed 

convection flow of Casson fluid over a moving wedge.  Likewise, the pertinent 

parameters are kept similar to Chapter 4. The flow fields are analyzed and presented 

graphically. Chapter 7 reveals the steady and unsteady flow of Casson nanofluid due 

to moving wedge. This chapter is the extension of Chapter 6. The wedge flow is 

investigated for the Casson fluid in the presence of suspended nanoparticles. The 

effects of Brownian motion and thermophoresis parameters along with the parameters 

considered in Chapter 6 are interpreted in this chapter. Finally, Chapter 8 describes the 

brief summary of this research and suggestions for future research.     
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