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ABSTRACT 

Tunnelling in densely populated areas is generally associated with undesirable 

ground movement and subsequent damage to adjacent buildings. Hence, the main 

concern of designers are to accurately predict ground movements and propose 

mitigation measures in severe cases. Nowadays, different techniques are used as a 

mitigation measure to reduce the impact of tunnel construction on ground settlement. 

Nevertheless, implementation of some of these methods is a source of unpredictable 

damage or undesirable effects such as the effect of installing micropiles between 

existing pile building foundation and tunnel which have yet to be understood. Hence, 

this research aims to establish a micropiles method as a mean to minimise ground 

surface settlement, and the settlement and lateral movement of the existing pile due to 

tunnelling through cohesionless soils. The study was carried out by means of 

laboratory physical model tests and numerical simulation using ABAQUS software. 

Three different relative densities of sand; 30%, 50%, and 75% were investigated while 

the overburden (cover to diameter) ratios used were 1, 2, and 3. A row of 3.7 mm 

diameter micropiles, dmp with two different lengths (11 cm and 14.5 cm) was 

embedded in between the tunnel (5 cm diameter, D) and the existing pile at four 

different locations. In model tests, settlement, bending moment and axial force of the 

existing pile were monitored accordingly. Generally, the results showed that increasing 

the value of relative density of sand reduces the ground movements. However, shallow 

tunnelling in loose sand produces remarkable movement on the ground surface. With 

the usage of micropiles, the ground surface settlement was reduced to nearly 40%. The 

micropiles also reduced over 85% and 75% of the piles lateral and axial movements 

respectively. A good compatibility was found between the experimental and numerical 

approaches which illustrates that the presented numerical simulation is a reliable 

model to predict tunnel-pile-soil and tunnel-pile-soil-micropiles interactions. Within 

the limitation of the study, it is recommended that the most suitable length and location 

of micropiles to use is 14.5 cm or about 40dmp (closest to the tunnel crown) and 

located at 0.5D (in the middle between tunnel and pile), based on the reduction 

observed on the vertical and lateral movements of pile as well as the bending moment 

and axial force.   
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ABSTRAK 

Penerowongan di kawasan penduduk yang padat secara umumnya dikaitkan 

dengan pergerakan tanah yang tidak diinginkan dan kerosakan bangunan berdekatan. 

Oleh itu, kebimbangan utama perekabentuk adalah untuk meramal pergerakan tanah 

yang tepat dan mengusulkan langkah-langkah mitigasi pada kes yang teruk. Pada masa 

ini teknik yang berbeza digunakan sebagai langkah mitigasi untuk mengurangkan 

kesan pembinaan terowong pada enapan tanah. Walau bagaimanapun, pelaksanaan 

beberapa kaedah ini adalah punca kerosakan yang tidak dapat diramalkan atau kesan 

yang tidak diingini seperti kesan memasang cerucuk mikro antara asas cerucuk 

bangunan sedia ada dan terowong yang masih belum difahami. Oleh itu, kajian ini 

bertujuan untuk mewujudkan kaedah cerucuk mikro sebagai kaedah meminimumkan 

enapan permukaan tanah dan enapan serta pergerakan sisi cerucuk sedia ada akibat 

pembinaan terowong melalui tanah tak jeleket. Kajian ini dilakukan melalui ujian 

model fizikal makmal dan simulasi numerikal menggunakan perisian ABAQUS. Tiga 

kepadatan relatif pasir; 30%, 50%, dan 75% telah dikaji sementara nisbah tanah atas 

(penutup dan diameter) yang digunakan adalah 1, 2, dan 3. Sederet cerucuk mikro 

berdiameter, dmp, 3.7 mm dengan dua kepanjangan yang berbeza (11 cm dan 14.5 cm) 

telah dipasang antara terowong (diameter, D = 5 cm)  dan cerucuk sedia ada di empat 

lokasi berbeza. Dalam ujian model, enapan, momen lentur dan daya paksi cerucuk 

sedia ada telah dipantau dengan sewajarnya. Secara umumnya hasil kajian 

menunjukkan bahwa peningkatan nilai kepadatan relatif pasir mengurangkan 

pergerakan tanah. Namun, penerowongan cetek dalam pasir longgar menghasilkan 

pergerakan yang luar biasa di permukaan tanah. Dengan penggunaan cerucuk mikro, 

enapan permukaan tanah dikurangkan kepada hampir 40%. Cerucuk mikro juga 

berkurangan masing-masing lebih dari 85% dan 75% dari pergerakan sisi dan enapan 

cerucuk. Keserasian yang baik telah ditunjukkan antara pendekatan eksperimental dan 

numerikal yang menggambarkan bahawa simulasi numerikal yang dibuat oleh model 

tersebut dapat digunakan bagi meramal interaksi terowong-cerucuk-tanah dan 

terowong-cerucuk-tanah-cerucuk mikro. Dalam keterbatasan kajian, disyorkan 

bahawa panjang dan lokasi paling sesuai bagi cerucuk mikro adalah 14.5 cm atau lebih 

kurang 40dmp (paling dekat dengan atas terowong) dan terletak 0.5D (tengah-tengah di 

antara terowong dan cerucuk) iaitu berdasarkan pengurangan pada pergerakan tegak 

dan sisi cerucuk selain dari momen lentur dan daya paksi. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

Over the past few decades, the world has been gradually experienced elevation 

of the urban population. In some countries, speed of the population growth is the most 

difficult challenge. It is reported that this growth of population in urban areas resulted 

with the high demand of infrastructures. Demand for the construction of underground 

infrastructures has increased considerably as a consequence of the growth of urban 

cities. Tunnels are an inseparable component of underground infrastructures, which 

have been considered during the last decades. Tunnels as subsurface structures have 

become ultimate alternative for overcoming the ground surface congestion. Although, 

tunnels have effectively addressed the ground surface congestion, still a number of 

challenges and problems occurred when especially tunnelling under urban 

environment.  

The environmental impacts of the tunnel construction have been known as an 

essential consideration in tunnel design at the urban cities. Tunnelling  through  

densely  populated  areas  is  usually  associated  with  undesirable  ground movement  

and  damage  to  adjacent  buildings. Consequently, it is essential to investigate the 

mechanism of the soil movements around the tunnel as well as ground surface and 

surface structures. An important critical issue in urban tunnelling is the control of 

ground movement induced by tunnelling in order to protect the surface and subsurface 

structures and utilities. In this regard, assessment of the potential effects on structures 

is a necessary aspect of the design and construction of a tunnel in an urban area. Hence 
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the prediction of the tunnelling-induced ground movements is necessary. Predictions 

of tunnelling-induced ground movements were first described by Peck (1969) as radial 

displacements towards the transverse and longitudinal displacements along the cross 

section of the tunnel. These two sets of movements have been difficult to define and 

separate, therefore displacements are usually simplified to a plane strain scenario 

(Franzius et al., 2005). 

In urban environments, tunnels are often constructed close to or just below the 

existing pile foundations of buildings at the ground surface (Lee et al., 1994, Coutts 

and Wang, 2000, Tham and Deutscher, 2000). The response of a building is governed 

by the effects of the tunnel excavation on the soil, interaction between soil and piles, 

and interaction between the piles and the building (Selemetas et al., 2005). The 

unloading effect of the tunnel excavation leads to displacements of the soil, demolition 

of the nature of the interface between soil and pile, and therefore soil movements 

around the piles, causing changes in the vertical and horizontal ground stresses on the 

piles.  

With the increasing the quantity of tunnels in the populated areas, several 

methods have been developed to provide a comprehensive understanding of the 

various problems deal with tunnel construction. Empirical, analytical, numerical and 

artificial intelligence approaches besides the physical modelling techniques have been 

widely used in analysing the effects of tunnelling on the ground movements and 

existing surface and subsurface structures. Some general aspects of the surface 

structural behaviour, in particular pile, are affected by the construction of a tunnel have 

been studied by previous researchers using different methods such as case studies and 

full-scale field trials (e.g. Jacobsz et al., 2005; Selemetas et al., 2005; Kaalberg et al., 

2005), analytical solutions (e.g. Marshall, 2012, 2013; Marshall and Haji, 2015), 

numerical analyses (e.g. Lee and Ng., 2005; Bioltta et al., 2006; Yao et al., 2009; Zidan 

and Ramadan, 2015), physical modelling (e.g. Lee and Chiang, 2007; Meguid and 

Mattar, 2009; Ng et al., 2013; Sun and Liu, 2014).  However, among these methods 

the laboratory physical model is usually preferred as it is able to provide 

comprehensive results based on its repeatability. Most of previous studies identified 
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the zones of different pile behaviours, depending on the zone in which the pile toe is 

located relative to the tunnel position, both in shallow and deep tunnelling work.  

A number of laboratory physical model tests have been conducted under single 

or multiple gravities to investigate the different tunnelling aspects. The physical 

modelling such as trap door, pressurized air, soil augering, casing and other techniques 

of tunnels provide the ability to investigate the most significant factors influencing the 

tunnel behaviour (Meguid et al., 2008). These techniques have been used to investigate 

different aspects of tunnelling such as arching effect and tunnel stability (e.g. Lee et 

al., 2006; Berthoz, 2012), ground movements and collapse mechanism due to 

tunnelling (e.g. He et al., 2012; Sun and Liu, 2014), interaction of the ground with the 

existing structures (e.g. Ng et al., 2013; Meguid and Mattar, 2009; Lee and Chiang, 

2007), and tunnel face stability (e.g. Berthoz et al., 2012; Wong et al., 2012). 

Various studies had been carried out to improve the soil such as the usage of 

jet-grouting, forepoling, diaphragm wall and piles in order to minimize the surface 

settlement due to tunnelling. Bilotta et al. (2006) and Bilotta (2008) performed 

numerical plane strain analyses and centrifuge tests to investigate the effects of a 

diaphragm wall embedded between a shallow tunnel and an existing pile. A parametric 

study was performed to optimize the location and length of the diaphragm wall in 

controlling the ground displacement beneath the building. Bilotta et al. (2006) also 

conducted a series of centrifuge tests to investigate the effect of a line of piles and their 

spacing in controlling the ground displacement induced by tunnel excavation. They 

concluded that the use of more piles with shorter distances results in a more effective 

reduction of ground movements. In general, micropiles are used to increase the bearing 

capacity and reduce the settlement of weak or loose soils (Juran et al., 1999 and Bruc 

2002). However, the technique of using micropiles is still not well published and 

understood.  
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1.2 Problem Statement 

Numerous attempts have been conducted to investigate ground deformation 

mechanism induced by tunnelling, particularly the shallow tunnelling in urban 

settings. It includes the investigation of pile and tunnel interaction based on ground 

surface settlement, tilting and lateral movement of pile foundation, and load transfer 

mechanism. Some methods of soil improvements, such as jet grouting and forepoling 

to stabilise the soil were used besides using the NATM tunnelling method, to minimize 

the surface settlement. Although these methods could reduce the surface settlement 

but there are reports on the occurrence of structural damages, in particular the pile 

foundation. Moreover, these methods are time consuming, thus increase the project 

cost. Limitations of existing methods urge for the needs of more research on methods 

of controlling the ground deformation, particularly for tunnelling through cohesionless 

soils. The effectiveness of the method in minimising the ground and pile settlement, 

and the tilting and lateral movement of existing piles due to tunnel construction is also 

important to be studied, using both the physical modelling and numerical analysis. 

This research aimed at establishing the micropile method to control the ground 

movement and the movements of existing pile in cohesionless soils due to shallow 

tunnelling. For this purpose, a series of three dimensional (3D) physical modelling 

tests in dry sand were carried out under single gravity. The tests explore the optimum 

location and length of micropiles for controlling the pile's settlement and lateral 

movement. Results were simulated based on 3D finite element analysis using 

ABAQUS 6.11 software.  

1.3 Aim and Objectives 

The research aimed at establishing the micropiles method as a mean to 

minimise the ground surface settlement, and the settlement and lateral movement of 

existing pile due to tunnelling through cohesionless soils. Hence, the objectives of the 

research are as follows: 
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i. To determine the effect of depths of the tunnel and density of the soil on the 

surface settlements and influence zones, induced by tunnelling in greenfield 

condition. 

ii. To determine the effects of the micropiles in reducing the ground surface 

settlements due to tunnelling in greenfield condition.  

iii. To determine the effects of tunnel excavation on the settlement and lateral 

movement of existing piles. 

iv. To establish the effects of micropiles in controlling the settlement and lateral 

movement of existing piles due to tunnelling through the development of 

various graphs, thus determining the optimum location of micropile in 

between the pile and the tunnel. 

1.4 Scope and Limitation of the Study 

This research involves both the numerical and the physical modelling. The 

numerical modelling was carried out using ABAQUS software and the physical 

modelling has been carried out in the laboratory under single gravity (1g) using a box 

of 600 mm in length, 600 mm in width and 500 mm in height. In physical modelling 

test: 

i. The circular shape tunnel was made of aluminium tube with 49 mm inner 

diameter shielded by a tube of 50 mm outer diameter. 

ii. The cover to diameter (C/D) ratios of the tunnel were 1, 2 and 3, and the 

relative densities of the sand used were 30%, 50% and 75%. 

iii. The quarry sand used in this study was obtained from a supplier and only the 

fine sand fractions were used for the physical modelling tests.  

iv. The existing pile, made of aluminium and fixed at 9 mm diameter and 220 

mm length, has been placed close to the tunnel alignment at 50 mm distance 

from tunnel centre (zone of influence). 

v. The 3.7 mm diameter steel micropiles, wrapped with sand papers, were of 110 

mm and 145 mm lengths. The micropiles had been installed in a single row 

with 3.7 mm side to side spacing above the tunnel and at several distances 

(1.25, 2.5, and 3.75 cm) from the tunnel axis. 
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1.5 Significance of the Study 

A reliable method to control the tunnelling-induced surface settlement and 

consequently the risk of adjacent buildings are vital. This research on the use of 

micropiles and the effect of tunnelling to the existing pile, draw some significant as 

the followings: 

i. The tunnelling-induced surface settlement of different soil density obtained 

from this research could contribute to the existing body of knowledge. This 

research considers the relationship among the different tunnel depth and 

density of the soil on the influence zones and surface settlements induced by 

tunnelling to better understand the behaviour of the surface settlement due to 

tunnelling. 

ii. The utilization of micropiles to minimize the ground surface settlement 

induced by tunnel in greenfield condition could be used to control the building 

damage in shallow foundation such as raft foundation. 

iii. The used of micropiles to minimize the surface settlement due to shallow 

tunnelling through sand has been a breakthrough of the successful method. 

This method also reduced the settlement and lateral movement of the existing 

pile.  

iv. The numerical modelling using ABAQUS, verified by physical model test 

results, could be used by the engineer to predict soil and pile movements due 

to tunnelling in sandy soils.  

1.6 Hypothesis 

 (i)  In greenfield condition; increasing the value of the relative density of sand 

reduces the ground movements induced by tunnelling. 

 (ii) Micropiles to reduce ground surface settlement; the length and the location of 

the micropiles affect the ability of micropiles in reducing the maximum ground 

surface settlement. 
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(iii) The pile settlement induced by tunnelling; based on the pile toe location (50 

cm, tunnel centre to pile centre), it is expected that the pile settlement is less 

than the maximum ground surface settlement.  

(iv) Micropiles to reduce pile displacements; the longer micropiles are more 

effective than the shorter micropiles to reduce the pile movements in terms of 

settlement and lateral movement of the pile. The micropiles location can be 

more significant in terms of the pile lateral movement. Moreover, the more the 

number of micropiles, the more reduction in pile movements will be achieved.  

1.7 Thesis Outline 

The thesis is composed of six chapters and three appendixes.  The summaries 

of the chapters are as follows:  

Chapter 1 explains the background of the study, statement of the problems, aim 

and objectives, scope and limitation of the study, significance of the study and 

hypothesis.  

Chapter 2 presents and discusses the ground surface settlement and pile 

movements induced by tunnel construction. The existing methods were reviewed 

based on transverse and longitudinal surface settlements associated with tunnel 

construction. Moreover, a number of available methods such as; empirical, analytical, 

numerical and physical modelling of small-scale tunnel construction in terms of 

ground settlement and pile movements were reviewed. 

Chapter 3 describes the research methodology using the flowchart and overall 

framework, which have been used for this research. It includes; basic tests on sand, 

physical modelling tests and numerical analysis. 
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Chapter 4 shows and discusses all the results obtained from physical modelling 

tests and numerical analysis. The results of using micropiles in controlling the ground 

surface settlement, pile settlement and lateral movement induced by tunnelling has 

been clearly shown in figures and discussed accordingly.  

Chapter 5 gives research conclusion, contributions and recommendations for 

future works. 
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