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ABSTRACT 

 

 

 The kinetic and kinematic aspects of walking and running are very different 
at their preferred speed. Locomotion at gait transitions is rarely used; hence actual 
alternation across the transition speed (TS) remains an unexploited area that can 
potentially merit run/walk in race running. Awareness of the scientific knowledge in 
gait transition should therefore be valuable. The aim of this thesis was to investigate 
the gait transition phenomena and predict the transition speed on different gradients 
based on the oxygen uptake kinetics and lower limb kinematics. The study 
investigated preferred transition speed (PTS) on different gradient inclinations and 
was completed in three stages; firstly laboratory experiments TS1 and TS2 
determined the actual PTS, subsequent experiments (TS3 and TS4) examined 
changes of the oxygen kinetics across PTS. The third stage, TS5 used the kinematics 
data collected to propose mathematical models that examined the PTS. An overall 
total of seventy-nine participants (48 males and 31 females) were involved at 
different stages and rigorously undergo the separate experimental protocols. The 
findings support as well as contradict previous literature results. Firstly, the energy 
equivalent TS (EETS) based on kinetics of oxygen uptake per unit distance 
(EETS/km) and per unit stride (EETS/stride) accurately predicted the PTS on the flat 
but not on other gradients. Secondly, the increased ankle muscular constraint 
conditions of using weights did not affect the PTS. However, it significantly 
increased the oxygen uptake kinetics for run/walk on – 8 and 0 % and the Bla on the 
+ 8 %. Based on novelty of the mathematical model, the role of the dorsi and plantar 
flexors was further evidenced to influence and predict PTS regardless of gradient 
inclinations. In conclusion, the findings in this thesis indicated that different 
metabolic energy pathways regulated the run/walk and that ankle muscular 
constraints determined the PTS. Incorporating the synergistic perspective, cognitive 
influence plays an important role to overcoming difficulty of walking at running 
speeds as observed in the occurrence of hysteresis in TS1. Information on the 
run/walk can be integrated during training and race as recommended from the thesis 
findings.  
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ABSTRAK 

 

 

 Aspek kinetik dan kinematik berjalan dan berlari adalah berbeza pada halaju 
yang tersendiri. Manakala halaju transisi (PTS) di antara berjalan dan berlari jarang 
digunakan; lari/jalan di dalam zon ini berpotensi meningkatkan prestasi atlet acara 
larian jarak jauh. Oleh itu, kesedaran pengetahuan saintifik tentang transisi gaya 
lari/jalan adalah penting. Tujuan tesis ini adalah mengkaji fenomena transisi di antara 
mod lari dan jalan, dan meramal perubahan PTS pada cerun yang pelbagai 
berdasarkan kinetik pengambilan oksigen dan kinematik segmen kaki. Kajian 
terhadap PTS telah dijalankan di atas pelbagai cerun dan dijalankan dalam tiga fasa; 
iaitu, pertama TS1 dan TS2 untuk mengenalpasti PTS sebenar, fasa kedua (TS3 dan 
TS4) mengkaji perubahan kinetik pengambilan oksigen dalam zon PTS kedua-dua 
fasa ini telah dijalankan di dalam makmal. Fasa ketiga (TS5) menganalisa data 
kinematik yang diperolehi untuk membangunkan beberapa model matematik 
berkaitan PTS. Seramai tujuh puluh sembilan peserta (48 lelaki dan 31 perempuan) 
terlibat tetapi jumlah sampel berbeza bagi setiap fasa kajian. Hasil kajian menyokong 
serta bercanggah dengan dapatan kajian lepas. Pertama, tenaga setara TS (EETS) 
berdasarkan kinetik pengambilan oksigen per unit jarak (EETS / km) dan per unit 
langkah (EETS / langkah) dengan tepat meramalkan PTS di cerun mendatar tetapi 
tidak pada kecerunan lain. Kedua, PTS tidak berubah walaupun kontraksi otot pada 
pergelangan kaki telah ditingkatkan dengan menambah beban. Namun begitu, kadar 
kinetik pengambilan oksigen telah meningkat secara signifikan semasa lari/jalan di 
atas cerun – 8 dan 0 %, disertai peningkatan signifikan pada konsentrasi Bla semasa 
lari/jalan pada cerun + 8 %. Ketiga, novelti pembangunan model mathematik telah 
membuktikan pengaruh dan peranan otot dorsi dan plantar flexors ke atas PTS 
semasa lari/jalan di semua cerun yang dikaji. Kesimpulannya hasil kajian tesis telah 
mengenalpasti bahawa dua jenis tenaga metabolik mengawal selia lari/jalan pada 
cerun yang berlainan, serta kekangan pengecutan otot pada buku lali 
bertanggungjawab menentukan kadar keupayaan lari/jalan (PTS). Dari perspektif 
sinergistik, histerisis hasil dapatan kajian TS1 menunjukkan peranan kognitif bagi 
mengatasi stres apabila terpaksa berjalan pada halaju yang biasa digunakan untuk 
berlari. Maklumat mengenai lari/jalan boleh disepadukan semasa latihan dan 
perlumbaan seperti yang disyorkan daripada penemuan tesis ini. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1  Introduction 

 

Walking and running are two characteristically different gaits or pattern of 

locomotion, a term used interchangeably (Zehr and Duysens, 2004), when moving at 

different range of speeds. Human use each gaits for different task oriented purpose; 

walking is chosen over running during normal activities of daily life, in theory 

because walking at preferred speed incurs minimal metabolic energy expenditures to 

cover a given distance (Long and Srinivasan, 2013). Athletes regulate their pace 

during competitions such as cycling, swimming, and skating to last the durations and 

distance, but more importantly as strategy to win  (Abbiss and Laursen, 2005; De 

Koning et al. 2011). However, purposeful fast walking and continuous running is 

preferred during exercise with the intention of increased energy consumptions and 

caloric expenditures (Harvie, 2011; Noakes, 2003; Williams, 2012). 

 

 Massive numbers of individuals from different age categories participate in 

running and walking as exercise and sport. More than fifty thousand people are 

reported to register in one running competitions that increases yearly since the 1970s 

(Bale, 2004; Eden, 2009; Galloway 2013; Malaysia Book of Records, 2014; Wegelin 

and Hoffman, 2011). These events are so prevalent and appeal to both males and 

females because of its simplicity not requiring much equipment or involving high 

levels of motor skills (Harvie, 2011; Noakes, 2003). Rather than for competitive 

reasons, evidence have shown that humans run for the sake of camaraderie, 
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appreciation of nature, cultivation of positive identity as an active sports person that 

gave 'life meaning', and importantly to finish (Eden, 2009; Doppelmayr and 

Molkenthin, 2004; Shipway, 2010).  

 

 Various training strategies and pacing tactics easily accessible from popular 

running literature are available for interested beginners to start racing. However high 

number of runners DNF (did not finish), 86 % women and 14 % men reported to 

drop out before the finishing line during a single competition (the 2014 Standard 

Chartered Kuala Lumpur City Marathon). Fluctuations in velocities and ability to 

maintain specific pacing ensure finishing and distinguished the different calibre 

runners (Abbiss and Laursen, 2008; Del Coso et al. 2013; Santos et al. 2014). In the 

cross country or ultra distance races athletes constantly alternate between running 

and walking (run-walk-run), which is a common technique when facing uneven or 

hilly terrains (March et al. 2011). As a method, the run-walk (RW) that consisted of 

systematic combination of running with short intervals of brisk walking has been 

adopted for shorter distance races (Galloway, 2010; Galloway, 2013). Anecdotal 

evidence suggests that systematic use of RW serve to delay fatigue (Galloway, 

2013).  

 

 Alternation between walking and running gaits or literally known as gait 

transition, are field of studies investigated in other theoretical areas of research. 

According to most of the researchers, human switches in both directions of walking 

to running and vice-versa because the kinetic and kinematic variables involved 

within each gaits had reached critical limits. By switching from one to the other 

presents a behaviour that the system is conserving some physiological or 

biomechanical variables (Beaupied et al. 2005; Borghese et al. 2006; Diedrich and 

Warren, 1998; Hanna et al. 2000; Hreljac, 1993a, 1995a; Li et al. 1999; Long and 

Srinivasan, 2013; Margaria et al. 1963; Minetti et al. 1994; Minetti and Ardigo, 

2001; Prilutsky and Gregor, 2001; Raynor et al. 2002; Segers, 2007). However there 

remain inconclusive agreements among them regarding mechanisms that triggered 

gait transition.  

 

 The gait transition velocity or preferred transition speed (PTS) also varies and 

found to be affected by different experimental methodologies used (Hanna et al. 
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2000; Minetti et al. 1994; Minetti et al. 2003; Segers, 2007a), resulted from activities 

of daily routines or natural gait change versus more experimentally controlled 

conditions (Bessot et al. 2015; Long and Srinivasan, 2013; Minetti et al. 1994; 

Minetti et al. 2003; Segers, 2007a), or influenced by specific strategies that are 

useful in certain type of sports (Beupied et al. 2003; Usherwood and Bertram, 2003). 

The optimal transition speed (TS) advantageous for different kind of situations has 

also not been investigated thoroughly (Abdolvahab, 2015; Long and Srinivasan, 

2013). 

 

 

1.2 Background of Problem 

 

 Adult human comfortably walk at speeds between 1.2 ± 0.5 m.s.-1 and PTS 

between walking and running occurred around 2.0 ± 0.5 m.s.-1 (Alexander, 1989; 

MacLeod et al., 2014). Walking metabolically cost less at lower speeds and running 

at higher speeds, hence gait transition is hypothesized to optimize the oxygen uptake 

kinetics or minimizes the metabolic energy expenditures (Alexander, 1989; Hreljac 

1993a, 1993b; Long and Srinivasan, 2013; Margaria et al. 1963; Minetti et al. 1994). 

Faster walking is limited by the kinetic / potential energy system of the pendulum 

mechanism modelled for walking (Cavagna et al. 1977; Segers et al. 2013; 

Usherwood, 2005), and kinematics of the ankle joint accelerations decreased 

considerably as a result of changing gait from walking to running (Hreljac, 1995a; 

Borghese et al. 2006).  

 

 Gait transition occurs in both directions of walking to running (walk-run) and 

from running to walking (run-walk). Theoretically the PTS should be the same 

regardless of directions, but the PTS of walk-run is usually greater than PTS of run-

walk (Diedrich and Warren, 1995; Li, 2000). Factors like methodological differences 

was cited for discrepancy in the variations observed (Hreljac, 2006). Other factors 

such as cognitive influence was also suggested (Abdolvahab, 2015; Li, 2000).  

 

 When human experimental participants were not told the specific distance 

and durations they have to travel either on the treadmill (Daniel and Newell, 2002) or 
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overground (Long and Srinivasan, 2013) the gait fluctuated between walking and 

running up to 3 m.s.-1 showing indistinct cut-off or a definite PTS. In experiment 

where subjects were asked to maintain a single gait for 30 s, human can walk at 

average speeds of 3.6 m.s.-1 and run at 0.4 m.s.-1 and when given a chance to change 

gaits they prefer to switch from run-walk at 1.84 m.s.-1 and walk-run at 2.25 m.s.-1 

(Li, 2000). Humans are capable of running and walking at much lower and higher 

velocity respectively than their PTS. Furthermore, when race walkers altered aspects 

of their lower limb kinematics and kinetics to compensate for increased mechanical 

and muscular power, the unique walking method can reach speeds up to 4 m.s.-1 

(Borghese et al. 1996; Hanley et al. 2011). The peak walking speed exhibited by the 

elite walker is only slightly slower than average running pace of Haile Gebreselasie 

winning at 2:03:59 in the 2008 Berlin marathon, but matches or even beating the 

average marathon finishers’ pace of 2.2 – 2.7 and 3.8 – 4.0 m.s.-1 for the slower and 

faster group (Del Coso et al. 2013). 

 

 Humans are however unable to continuously maintain a constant running or 

fast walking speed for a long durations, distances, and hilly terrains (Hreljac, 2004; 

Santos et al. 2014; Usherwood, 2005:). Velocities fluctuations are displayed as 

different types of paces; the basic types constitute the positive, negative, even and 

other variable profiles (Abbiss and Laursen, 2008; De Koning et al. 2011). Pacing is 

the regulation of effort to distribute speed and power output or the energetic reserves 

to last throughout durations of a sporting event (Abbiss and Laursen, 2008; Del Coso 

et al. 2013; De Koning et al. 2011; Dolan et al. 2011; Ely et al. 2008; Foster et al. 

2004). An explosive or all-out pace is the least energy conservative and best suited 

for sprints, as running speed increases the power output would decreased from the 

start towards the end (Abbiss and Laursen, 2008). Other pace strategies is common 

in events lasting more than 1 minute (Abbiss and Laursen, 2008).  Runners would 

train their selected pace as tactic to win but end up displaying positive pace profiles 

(fast to slow) because other factors would affect the eventual pace on actual race day 

(see Figure 1.0) (Santos et al. 2014).  
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Figure 1.0 : Positive pace (fast to slow) of all calibre runners in a marathon (taken 

from Santos et al. 2014). 

 

 

  Haney and Mercer (2011) stipulated that pace variability increases due to 

higher fatigue levels as runners get closer towards the finishing line. Del Coso et al., 

(2013) suggested it could be due to increased muscle temperature and damage 

causing changes to the footstrike patterns slowing the velocity, while less 

experienced runners would quit before finishing due to extreme fatigue. Even though 

the overall paces are positive (Figure 1.0), the faster athletes demonstrated more 

stable and even pacing pattern compared to the rest (Haney and Mercer, 2011; March 

et al. 2011; Santos et al. 2014). These researchers reiterated that fitter and faster men 

and women run at more consistent speed with only slight reduction in velocities than 

less competitive runners. However more race participants consist of recreational 

runners and displaying variable pace or erratic profiles (Gosztyla et al. 2006; Haney 

and Mercer, 2011; Morin et al. 2011; Santos et al. 2014; Stellingwerff et al. 2011).  

 

 Galloway (2010) is a runner and coach who used and recommended the 

regular walk break routine to novices in the 5 k up to marathon distances. This 

seemingly important skill provide rough guidelines suggesting that if a runner 

average speed is 1.9 or 3.0 m.s.-1 then the self-selected routine of run to walk breaks 
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could be taken at durations 30:30 (seconds) or 4:1 (minutes) respectively (Galloway, 

2013). By the way, the average speeds corroborate the transition and maximal 

walking velocities in human gait transition studies. 

 

 The technique is somehow unclear, especially to participants that consist 

mostly of recreational and female runners who train alone without proper coaches. 

These runners usually walk when they reached extreme tiredness or sometimes take 

longer breaks than planned (Shipway, 2010).  They also find it difficult to run back 

after the walk breaks (Barrios, 2003; Chase and Hobbs, 2010). Subjective cues like 

walk up the hills and climbs, run the flats and downhill also do not help have. This 

demonstrates the internal demand to decide and cognitive influence to match pacing 

during a race. Implications of interspersing walking into running from the 

perspective of kinematics and kinetics have also not been discussed. Moreover 

academic literatures regarding the techniques of RW are scarce or non-existent (De 

Koning et al. 2011; Haney and Mercer, 2011). 

 

 

1.3 Problem Statement  

 

Humans can choose to walk, run or rest and switch from walking to running 

close to 2.0 m.s.-1 because it is metabolically more economical during activity of 

daily lives (Alexander, 1989; Minetti et al. 1994). With motivations to win increase 

caloric expenditures are disregarded, adult humans are capable to maintain a single 

very fast walking at 3.0 to 4.0 m.s.-1 or continuously run above 2.5 m.s.-1 during time 

constraints or short bursts of exercise and fitness activities (Long and Srinivasan, 

2013). However there is conflict between conserving metabolic energy expenditure, 

delaying blood lactate accumulation and fatigue to last a race distance versus 

fulfilment of participations during competitions since the goal is to finish (Shipway, 

2010).  

 

Not considering injury, the faster athletes always finished. Slower runners 

either finished very late or DNF. The difference between the two groups is the more 

even against variable pacing profiles (Abbiss and Laursen, 2008; De Koning et al. 
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2011; Haney and Mercer, 2011; March et al. 2011; Santos et al. 2014). Fatigue, 

elevation or changes in terrain can influence pace of runner, walking was more 

efficient and faster than running when facing these challenges (Barrios, 2003; Chase 

and Hobbs, 2010). The RW strategy allowed non-elite runners to achieve similar 

finish time with running only group with reduced muscle discomfort (Hottenrott et 

al. 2014). The RW has been a successful strategy for cross-country and ultra distance 

runners because energy expenditure is regulated (Lambert et al. 2004). Despite 

research like this, information pertaining to the amount of regular walk and run 

intervals and why runners complaint of difficulty to return to running after walk 

breaks is also inadequate. 

 

 

1.4 Purpose of Study 

 

 Aim of the present thesis was to investigate the gait transition phenomena and 

predict the transition speed on different gradients based on the oxygen uptake 

kinetics and lower limb kinematics. Several mechanisms that have been previously 

proposed as the influencing factor that trigger gait transition were also investigated. 

The findings will contribute as valuable insight into the RW as skills for runners and 

trainers. 

 

 

1.4.1 Research Objective 

 

The following are objectives of this thesis:  

 

1. To identify the preferred transition speed (PTS) between running and 

walking on different gradient inclinations and factors that affect them. 

2. To examine the oxygen uptake kinetics (⊽O2) during extended walking 

and running across the range of transition velocities and identify the 

theoretically optimal transition speed, which may have implications on 

types of pacing. 
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3. To examine the kinematics data at stance and swing of the final walking 

phase and proposed mathematical models to assess influence of gradients 

on the PTS. 

 

 

1.4.2  Research Questions  

 

 To achieve the above research objectives the following research questions 

were asked: 

 

RQ1. What is the PTS between walk-run and run-walk on different gradient 

inclinations? 

 

RQ2. How do the stage interval durations affect the PTS? 

 

RQ3.    3.1 What is the kinetics of oxygen consumptions (⊽O2 in ml.    kg.-

1.min.-1) of both continuous walking (Cw) and continuous run 

(Cr) on three gradient conditions? 

 3.2 If the two metabolic cost curves intersects, what are the 

optimal or theoretical transition speed based on energy 

equivalent costs (EETS/km) per unit distance and 

(EETS/stride) per frequency of stride walking and running at 

overlapping speeds on each gradient condition compared to the 

PTS? 

 

RQ4. What is the affect of increasing muscular effort on the PTS, oxygen 

uptake kinetics and blood lactate concentrations? 

 

RQ5. Kinematically, how does the rigid stiff-limbed configuration of the 

thigh, leg and foot determine gait transition from walk-to-run on 

different gradient inclinations? 
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1.5 Significance of Study 

 

 Athletes of different sports and standings have trained and used different 

pacing strategies to regulate rate of work output and optimize overall performance. 

However, the optimal concept of the RW pacing remains unclear (Abbiss and 

Laursen, 2008). The RW technique claimed to relieves the perception of pain and 

fatigue experienced during a race was based more on anecdotal reports (Haney and 

Mercer, 2011; Morgan and Pollock, 1977). Furthermore races are run on undulating 

terrains, gait alternations between running and walking on various gradient 

inclinations and the metabolic energy expenditure during extended walking and 

running may provide further information on the different pacing techniques.  

 

 Both walking and running at velocities of gait transition is considered 

unnatural, but are potentially informative as shown by Gutmann et al. (2006). In their 

experiment subjects were forced to walk and run at a controlled speed for several 

weeks.  By adjusting their stride length and frequency, the subjects were able to 

adapt to the situations fairly quickly with significantly efficient metabolic and 

mechanical costs.  

 

 Experiments evaluating the alteration of leg mass distribution as in adding 

weights to the ankle or changing the position of the body’s centre of mass (with 

gradients) would also predictively result in changes to maximum walk or run speed. 

The results analysed would be informative for athletes, example those undergoing 

rehabilitation so they can exercise with high exertion but without the impacts of 

running. Alternatively, make walking harder as on gradients and controlling the 

speeds to avoid triggering the walk-run transition. Therefore information on the 

process of regulating the physiological and biomechanical processes at the borders 

between running and walking becomes very important.  
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1.6 Scope and Limitations of the Study  

 

 A mixed of recreational and trained athletes from both gender and various 

types of sports participated in the study. Four data gathering experiments to 

investigate the gait transition phenomena were undertaken and most of the 

participants were repeats during different sessions of the experiments.  

 

Subjects went through experiments on a motorized treadmill that was inclined 

to several uphill and downhill gradients in a test laboratory situation.  

 

 

1.7  Operational Definition  

 

 Definitions below listed several terminologies and specific terms frequently 

used in the thesis: 

 

Efficiency  Skilful performance that was completed with the 

least amount of energy expended and 

musculoskeletal stress.  

  

Footrace  Races on foot that cover various distances, either 

a walk or run gait is used. Be it a race walking or 

running events that are distance such as the 

marathons or triathlons. 

 

Gait transitions  A phenomenon or occurrence when the walk and 

run gaits switches back and forth or alternates. 

 

Gradients 0 % gradient - Flat or the treadmill is at neutral, 

level or horizontal position, both uphill (positive: 

+ve) and downhill (negative: -ve) incline. 

Gradual gradients are between ± 8 % and steep 
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between ± 16 % (as registered on the treadmill 

control).  

 

Mechanical cost The cost related to the intensity of motion. 

During the swing and stance phase of walk and 

run the lower limbs moves and its displacements, 

velocities/torque, and accelerations require 

muscular power to produce work. The work 

redirects the trajectory of the body’s centre of 

mass upward and forward at each transition steps. 

The mechanical cost is optimal at different speeds 

for each walk or run gait (least costly at low 

speed for walking - quantified by the sum of its 

potential and kinetic energies, and at higher speed 

for running - involving exchanges between both 

kinetic and potential energies with elastic 

energy). 

 

Metabolic cost  The cost related to physiological functions 

involving intensity of the cardiorespiratory 

system experienced during walking or running at 

different speeds.  The intensity can be perceived 

to occur at different levels - the overall body 

(global) when amount of oxygen uptake (⊽O2 in 

ml.kg.-1 km.-1) are measured as the metabolic 

energy costs relative to the distance travelled or it 

can be more localised at the lower limbs 

(peripheral) when measured relative to the stride 

frequency (⊽O2  ml.kg.-1 stride.-1). 

 

Metabolic energy expenditure  The amount of oxygen consumed  (⊽O2 ml.kg.-1 

min.-1) collected via indirect calorimetry (open 
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circuit respirometry) during walking or running 

on the treadmill.  

 

Optimal  With respect to the physiological and mechanical 

costs; shown as costing the least in terms of 

energy expenditure and/or the least 

musculoskeletal strain. It can be seen as motion 

that has a balance posture and most stable either 

during static standing or dynamic during walking 

and running. 

 

Pace  Is similar to speed since both describe how fast 

someone is moving. Pace considers the amount of 

time an athlete can cover a given distance 

(example: 10 min per km pace). 

 

Pacing  The actual distribution of speed, power output or 

energetic reserves during a given sporting event.  

 

Pacing strategy Self-selected tactic that athlete adopt from 

beginning of event.  

 

Percent gradients Rise and run of slopes; 100 % slope is 45� 

(degree) in angle; 0 % is flat; ± 8 % is graded 

uphill or downhill at 4.57�; and ± 16 % is either 

uphill or downhill at 9.09� . 

 
 

Preferred speed While tested on the treadmill and given a choice, 

participants would verbally claimed that a 

particular speed is more preferable for a certain 

gait (either a walk or a run).  
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Predicted transition speed  Is the EETS; in theory the speed at which Cw = 

Cr whereby humans chose to switch from one 

gait to the other depending on the directions of 

accelerations (slow to fast: walk-to-run or fast to 

slow: run-to-walk) 

 

Preferred transition speed  Is the PTS; due to accelerations (or decelerations) 

of the treadmill, the participants would alternate 

between walk and run gait but prefer or choose to 

use one comfortable gait that was different from 

the earlier gaits. The alternative gait chosen could 

be maintained throughout a specified time 

interval as designed in each experimental 

protocol. 

 

Transition region A region where the participants consistently 

alternate between both walking and running. 

They were unsure about which gait to use, stating 

that both gaits was uncomfortable. But when the 

treadmill was decelerated or accelerated, there 

will be a speed when they could use a specific or 

preferred gait for the durations given.  

 

 

1.8 Organization of thesis 

 

 The thesis was organized into six chapters. In Chapter 1 the introduction, 

background, objectives, significance and scope of study was presented. Chapter 2 

described the Literature Review and explained details on the basic differences and 

similarities between the walk and run gait and theoretical perspectives of gait 

transitions studies related to humans. Information on footraces and sport 

competitions, types of pacing and factors that affect pacing were also included. 
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Chapter 3 is the Research Methodology that described the research design, 

participants, details of equipment and measurements, and the general experimental 

protocols that were used during the three experimental stages (stage 1 - TS1, stage 2 

- TS2, TS3, and TS4, and stage 3 - TS5). This chapter also discussed the operational 

framework undertaken in the thesis.  

 

Chapter 4 is the Results and Analysis that included summaries of findings 

from the three experimental stages (five separate sections for TS1, TS2, TS3, TS4 

and TS5). Each subchapter contains an introduction to the study, results and analysis, 

and their respective summaries of findings. Stage 1 is section 4.2 (TS1) reporting 

findings for determination of the PTS on five gradients and two acceleration 

directions. Stage 2 consisted of section 4.3 (TS2) determination of factors affecting 

the PTS at various stage interval durations, section 4.4 (TS3) findings on the oxygen 

uptake kinetics data (⊽O2 ml.kg.-1 min.-1), metabolic cost of walking and running 

(Cw and Cr) on overlapping speeds across gait transitions. The Cw and Cr were 

calculated using two methods relative to the distance travelled (ml.kg‾¹m‾¹) and 

secondly relative to the frequency of stride (ml.kg‾¹stride‾¹). And section 4.5 (TS4) 

the metabolic efficiency was further examined with ankle loading and locomotion 

across individual subjects gait transition speed. Finally stage 4 is section 4.6 (TS5) 

that formulated the three mathematical equations novel to this thesis, and examined 

the stance and swing phase as pendulum mechanics at the final walk speed. A 

kinematic model was produced to predict and describe human gait transition speed 

on different gradients. 

 

 Chapter 5 is Discussion; this chapter discusses findings from all the three 

stages of studies in chapter 4 and attempts to tie the overall findings. Included in this 

chapter are summaries in response to the Operational Framework (Figure 3.1) shown 

in Chapter 3.  

 

 Chapter 6 is the Conclusion. It concludes the overall purpose of this thesis, 

contribution to knowledge and state the recommendations for future work in the area 

of gait transition studies. 
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1.9 Summary 

 

 This chapter serves as a guideline of the thesis where the introduction, 

background, problem and purpose statements, research objectives and questions, 

significance, scope and definitions of terms are presented. 

 

 It was the aim of the thesis to describe the human gait transition on the 

perspective of movement efficiency (kinematic and oxygen uptake kinetics). 

Findings from the study would probably contribute to further understanding on the 

strategy of alternating between gaits and on different gradient inclinations, whether it 

is better to alternate or merely use a single gait but varies the speed for the purpose 

of completing a distance foot race.  
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