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ABSTRACT 

 

 

 

Utilization of electrical energy is important for economic growth and 

improvement of people's living, especially for rural and remote areas which have 

access to the water but lack of electricity supply. It is known that global energy, 

especially in developing countries such as Malaysia, is still heavily dependent on 

fossil fuels, which are costly, cause environmental pollution and rapidly depleting. 

Hydrokinetic energy, which is one of green and environmentally friendly energy 

resources, is promising to replace fossil fuels for electricity generation. The objectives 

of this research are firstly to investigate the effect of arm on torque coefficient of 

turbine in low speed current, and secondly to determine the effect of self-adjusting 

blades on power coefficient. Numerical and experimental research methodologies 

have been applied to achieve the objectives. RANS equations have been applied in 

CFD simulations using ANSYS-CFX commercial code. For validation of the 

simulation results, towing tank experiments using fixed blades condition to obtain 

suitable arm length have been carried out at the Marine Technology Centre (MTC)-

Universiti Teknologi Malaysia (UTM). Based on the results obtained by fixed blades 

condition, a series of test using self-adjusting blades have been done in three 

conditions of load at different current speeds to determine the performance of turbine. 

The results show that the arm length and blades angle have a strong effect on the 

performance of turbine, where there is 23% increase in terms of performance of self-

adjusting blades turbine compared to fixed blades turbine. This is because the 

returning blade angle is in closed position which decreases the hydrodynamic 

resistance. In addition, the advancing blade angle is in open condition to have the 

maximum force acting. The combined effects result in the increase of torque by the 

turbine. The maximum efficiency of the modified self-adjusting system was 16% at 

tip speed ratio, λ=0.45. The developed turbine can be applied as a useful tool for 

electricity generation in low speed currents. It could also be integrated with a wide 

range of generators with different loads.   
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ABSTRAK 

 

Penggunaan tenaga elektrik adalah penting untuk perkembangan ekonomi dan 

pembangunan taraf hidup, terutamanya di kawasan pedalaman dan terpencil yang 

menerima bekalan air namun kekurangan saluran bekalan elektrik. Kita sedia maklum 

bahawa tenaga global, khususnya di negara-negara membangun seperti Malaysia, 

masih bergantung pada bahan api fosil, yang mana adalah mahal, penyebab 

pencemaran alam sekitar dan semakin kehabisan. Tenaga hidrokinetik, yang mana 

merupakan salah satu sumber tenaga hijau dan mesra alam, berpotensi menggantikan 

bahan api fosil untuk penjanaan tenaga elektrik. Objektif kajian ini adalah pertama, 

untuk mengkaji pengaruh lengan pada pekali tork turbin dalam arus halaju rendah, dan 

kedua adalah untuk mengenalpasti kesan penggunaan bilah bolehubah pada pekali 

kuasa. Kaedah berangka dan eksperiment telah gunakan untuk mencapai objektif 

kajian. Persamaan RANS telah digunakan dalam simulasi CFD menggunakan kod 

komersil ANSYS-CFX. Untuk pengesahan hasil keputusan simulasi, eksperimen 

tangki tunda menggunakan situasi bilah tetap untuk mendapatkan panjang lengan yang 

sesuai telah dijalankan di Pusat Teknologi Marin (MTC)- Universiti Teknologi 

Malaysia. Berdasarkan keputusan daripada situasi bilah tetap, satu siri ujian 

menggunakan bilah boleh laras-sendiri telah dijalankan dalam tiga situasi bebanan 

pada halaju arus berlainan untuk mengenalpasti prestasi turbin. Keputusan 

menunjukkan bahawa panjang lengan dan sudut bilah mempunyai pengaruh yang 

besar pada prestasi turbin, di mana prestasi bilah bolehubah mempunyai peningkatan 

sebanyak 23% berbanding bilah tetap turbin. Ini berikutan sudut bilah kembali adalah 

dalam posisi tertutup, dan mengurangkan rintangan hidrodinamik. Tambahan pula, 

sudut bilah maju adalah dalam posisi terbuka untuk tindakan tekanan maksimum.  

Gabungan kesan-kesan ini telah meningkatkan tork turbin. Keberkesanan maksimum 

oleh sistem bolehubah yang telah dimodifikasi ini adalah 16% pada nisbah halaju 

hujung, λ=0.45. Turbin ini boleh diaplikasikan sebagai alat yang berguna untuk 

penjanaan tenaga elektrik pada arus halaju rendah. Ia juga boleh diintegrasikan dengan 

pelbagai jenis janakuasa dengan beban  yang berbeza.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

1.1 Background 

The variety of energy in such country reflects the strength of the economic, 

social, environmental and security development issues. It can be used as an sign for 

income level, poverty, jobs and, access to social services, population growth, industrial 

and agricultural production. On the other hand, the shortage of electrical energy causes 

the economic crisis in many countries. Many people all over the world, especially in the 

rural and poor areas have no access to electricity. According to one-third of the world’s 

population does not have access to electricity, but does have access to flowing water 

(Bertsch, 2012).  

Electricity is the fastest-growing final form of energy that International Energy 

Agency (IEA) estimated a 53% increase in global energy consumption is foreseen by 

2030 (International Energy Agency (IEA), 2014,). It is noteworthy that world energy, 

especially in developing countries such as Malaysia (Chong and Lam, 2013) is still 

heavily dependent on fossil fuels, which are costly, environmental pollutant and rapidly 

being depleted. At current production rates, global proven reserves of crude oil and 

natural gas are estimated to last for 41.8 and 60.3 years, respectively (Altan et al., 2008 

and Kaltschmitt et al., 2007), so that the role of renewable energy as green and clean 
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energy to generate electricity, reduce the greenhouse gas emissions and decrease the 

fuel prices (Bernad et al. 2008) is significant. 

Malaysia is considering renewable energy to alleviate the high dependency on 

fossil fuel. It is in the process of utilizing its available resources and discovering its 

potential.  It is considerable Malaysia has a significant amount of hydropower resources 

as renewable energy, due to the geographical location of Malaysia, with the surrounding 

South China Sea, equatorial climate, high rainfall rate of around 250 cm per year, long 

coastlines such as the Straits of Malacca, many rivers and irrigation channels (Chong 

and Lam, 2013). In addition, some remote areas in Malaysia beside the ocean but 

without access to electricity are poised to exploit the great potential of ocean energy as 

hydrokinetic energy to generate electricity, such as Sabah and Sarawak using 

hydrokinetic devices. 

Also, hydropower among the other renewables energy is the prime choice to 

contribute to the world’s energy generation because it is continuously available, high 

density, powerful, predictable and independent of random weather conditions, as 

opposed to solar and wind options, and has less impact on environmental and human 

activity (William and Jain, 2011; Junior, 2011; Paish, 2002; Frankel, 2002 and Yuen et 

al. 2009). 

 

There are different types of hydrokinetic turbine horizontal axis (axial-flow) and 

vertical axis turbine where the turbine blades would turn the generator by capture the 

energy of the water flow to produce electricity (Sornes, 2010; Frankel, 2004 and 

Gorlov, 2004). There is no consensus yet on whether horizontal axis or vertical axis will 

be the best option for using water current energy; however, the vertical axis turbine 

appears to have advantages over the horizontal axis turbine in several aspects (Eriksson 

et al., 2008). 

 

Conventional current turbines which include Darrieus, Gorlov (helical), Davis, 

Cyloidal and Kobold turbines are very much depending on current speed and water 
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depth. However, the average ocean current velocity in many locations in Malaysia is 1 

m/s (Royal Malaysia navy, 2010 and Hassan et al., 2012), while the optimum current 

speed for ideal turbine operation is at least 2 m/s (4 knots) (Hassan et al., 2012). Hence, 

the use of conventional current turbines is no longer a feasible solution to employ them 

for generating electricity in low current speed. As a result, modifications of turbine 

system are needed to harness maximum power, especially for remote areas alongside 

the ocean. 

 

Despite attempts to develop renewable energy, up to now it has not been used to 

its maximum potential in Malaysia because of restrictions on the head and current 

speeds (Yogi, 2010 and Kamarulzaman, 2012) and it will be such a waste if these 

natural sources of energy leave without any usage. It is essential for Malaysia to strike a 

balance in terms of policies, and in the meantime continue the improvement and 

development of kinetic energy devices towards a greater contribution of hydrokinetic 

energy as renewable energy to ensure a secure and sustainable future. 

Vertical axis current turbine to control energy of low speed currents is at the 

early stage of development but have significant effect to generate electricity for future 

supply of clean energy.  

This research presents a new design of Vertical Axis Current Turbine (VACT) 

applicable in low speed current which increase torque and decrease resistant of water 

leading high output power and hence generate more electricity while is being 

increasingly used to harness kinetic energy of water and convert it into other useful 

forms of energy as a clean and renewable energy. 
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1.2 Problem statement  

Nowadays, population growth, electrical demands, rising fuel prices, depleting 

fossil resources, their environmentally harmful effects and economic problems, are 

serious subjects to replace fossil resources with renewable energy to generate electricity 

especially in developing countries. 

 

Malaysia is a country that is surrounded by rivers, ocean and irrigation or rainy 

channels have rich energy resources, but some of rural and remote areas where they are 

located alongside ocean are very poor, with low living conditions and limited access to 

media and information which grid extension way for electrification of them is 

uneconomical hence hydrokinetic technology can generate a significant amount of 

electric power. Another challenge is the characteristics of Malaysian currents. The 

Malaysian ocean current velocity, averagely, is 1 m/s which are approximately half of 

the speed for ideal turbine operation. These characteristics of the Malaysian current 

impose some limitations on the energy that can be extracted, that some modifications 

must be undertaken to allow hydrokinetic turbines to overcome this velocity limitation 

so as to extract maximum power from the current and permit electrification of rural and 

remote areas with access to running water but little electricity. There are very few and 

limited studies that considered the problems associated with the low current speed in 

Malaysia. 

Consider extracting energy of current using vertical axis current turbines, it is 

necessary to solve challenges associated with turbine configuration, enhancing the 

efficiency and achieve high output power using the best design of turbines that can be 

employed in low speed current. 

According to above challenges, the research will develop a new vertical axis 

current turbine using arm and  self-adjusting blades which can decrease the resistance 

force, produce high torque and output power, consequently generate more electricity as 

a clean source that detail of it will be elucidated in the next chapters. 
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1.3 Research Objectives 

The aim of this study is to develop new knowledge and find solution for 

challenges about increasing performance of vertical axis current turbine and find the 

suitable design that can operate in low current speed. The objectives of present research 

are as follows: 

 

i)   To develop a vertical axis current turbine suitable for low speed currents. 

 

ii) To evaluate the effect of arm and different (arm length (r)/blade diameter (d)) on 

torque and performance characteristics of vertical axis current turbine. 

 

iii) To study the resistance reduction and performance characteristics of vertical axis 

current turbine due to the self-adjusting blades and different blades angle.  

1.4 Research Scope  

The aim of the project is to evaluate the performance of new vertical axis turbine 

using arm and self-adjusting blades in low speed current. This project has been done 

using numerical and experimental method to achieve the aim of research which each 

one has several steps. The research scope is explained as follows: 

 

i) The literature review was carried out about necessity of renewable energy, 

Hydropower energy extraction technique, operation principle of turbines, 

turbine performance, development and progress of turbines. This step made a 

good guideline for present research work. 

 

ii) The Computational Fluid Dynamics (CFD) method has been used for 

numerical simulation and parametric study for investigation the torque and 

power output, optimum angle and resistance reduction of blades, pressure and 
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velocity distribution on blade surface for different rotational blades angle, 

different arm length for generate the torque.   

 

iii) Experimental work has been conducted to validate the numerical simulation. 

Characteristics of turbine performance - torque and power output - for fixed 

and self-adjusting blades conditions have been measured to compare the 

results with CFD simulation. The series of tests has been performed in 

Universiti Teknologi Malaysia (UTM) - Marine Technology Centre (MTC).  

 

 

1.5 Organization of thesis  

 

This research composed of 7 chapters. The first chapter includes the 

background, statement problem, research objectives, and research scope. The other 

chapters (2-7) explain the literature review, research methodology, experimental works, 

numerical simulation validation, parametric study, results and discussion. Also, it will 

be mentioned in the conclusion and future work chapters that all of them are to be used 

for paper publication in journals and presentation in conferences. A brief of each 

chapter is mentioned in following: 

 

Chapter 1 presents an introduction to the research study consist of the 

background, statement problem, research objectives, and research scope. 

  

Chapter 2 explains a comprehensive literature review of available scientific 

information related to topic of this research. This chapter, the necessity for renewable 

energy in the world and Malaysia, hydropower capacity, hydrokinetic technology, and 

development and progress of turbines are reviewed. 

 

In chapter 3, research methodology which composed of numerical and 

experimental methods is described. Computational methodology includes the general 

information about Computational Fluid Dynamics (CFD), turbulence models, solver, 
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model geometry and meshing, computational domains and boundary conditions. The 

experimental methodology gives the background about towing tank of Marine 

Technology Centre (MTC), Univerciti Teknologi Malaysia (UTM). Also, some 

explanation about turbine model fabrication, experimental setup, torque measurement 

and performance characteristic of turbine calculation are presented.  

 

The numerical simulation of fixed blades turbine, and self-adjusting blades 

turbine to show their characteristics in dynamic or static conditions are investigated in 

chapter 4. The numerical works have been done using high performance computer in 

centre for information and communication technology (CICT) - Universiti Teknologi 

Malaysia (UTM). 

 

In chapter 5, the experimental performance characteristics of fixed blades 

turbine, Experimental performance characteristics of self-adjusting blades turbine in 

static and dynamic conditions, experimental hydrodynamic characteristic of one blade 

and CFD validation are investigated. The results of experimental test for fixed blades 

turbine, self-adjusting blades turbine and one blade of self-adjusting blades turbine in 

different condition are analyzed and compared with numerical simulation results. The 

experimental results are validated the CFD simulations with good agreement. 

 

Chapter 6 presents the parametric study using numerical simulation. This 

chapter shows the performance characteristics of self-adjusting blades turbine affected 

by different arm to blade diameter ratio (r/d) in fixed R, different blades angle and 

different current velocity. 

 

Finally, the important and valuable conclusions are described in chapter 7 

included with results and discussion from present research. Moreover, some future 

works for next research are recommended in this chapter. 
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