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ABSTRACT 

Flutter is a dynamic aeroelastic phenomenon. Current aeroelastic theoretical 
models have some issues with the parameters related to the outcomes of wing flutter 
speed analysis. The typical trend in applying static derivatives in estimating wing 
flutter speed is one of the factors for the inconsistency. This study aimed to establish 
dynamically measured derivatives with comparisons to conventional static 
derivatives in predicting the wing flutter speed by using aeroelastic stiffness and 
damping equation. A free oscillation wind tunnel test rig was designed to measure 
the dynamic derivatives of rigid wings with flexible mounting at root simulated 
within a reduced frequency, Km range from 0.04 to 0.40 under subsonic 
incompressible flow. The dynamically measured aerodynamic stability derivatives 
were determined from oscillation frequencies and amplitude decay of the wind-off 
and wind-on time response history. Four rectangular 3D wing models with NACA 
0010, NACA 0012, NACA 0014 and NACA 0018 aerofoil configurations were 
tested. Each wing model has a wingspan of 0.36m and chord length of 0.16m with an 
aspect ratio of 4.5. The aerodynamic loads model with the dynamic derivatives was 
applied into the aeroelastic equation of motion to solve the flutter speed via 
eigenvalue solution. It was found that the 

DynamicLC )(


and 
DynamicMC )(


were 10%-40% 

higher than 
StaticLC )(


and 

StaticMC )(


for all the wing models. However, the differences 

between the dynamically and statically measured derivatives reduced by 12% for 

LC and 7% for 
MC as the thickness-to-chord ratio of the wing model increased. The 

measured 
DynamicLL CC

q
)(


 increases when aerofoil thickness-to-chord ratio increases. 

Besides, less fluctuations in 
DynamicLL CC

q
)(


 was seen for Km<0.10 and the measured 

DynamicMM CC
q

)(


 was reduced as Km increased, with insignificant differences for all 

wing models. The predicted wing flutter speeds with dynamic derivatives are two 
times less than the estimations with Theodorsen model and 20% higher than the 
estimations with Scanlan model. These show that the dynamically measured 
derivatives have improved the wing flutter speed analysis for optimisation. 
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ABSTRAK 

Kibaran merupakan satu fenomena aeroanjalan dinamik. Model teori 
aeroanjalan kini mempunyai beberapa masalah dengan parameter yang berkaitan 
dengan hasil analisis kelajuan kibaran sayap. Kecenderungan tipikal dalam 
menggunakan derivatif statik dalam menganggarkan kelajuan kibaran sayap 
merupakan salah satu faktor ketidaktentuan tersebut. Kajian ini bertujuan untuk 
mengenalkan penggunaan derivatif yang diukur secara dinamik dengan 
perbandingan terhadap derivatif statik lazim bagi meramalkan kelajuan kibaran 
menggunakan persamaan kekakuan dan redaman aeroelastik. Rig ujian terowong 
angin ayunan bebas direka bentuk untuk mengukur derivatif dinamik sayap tegar 
dengan pemasangan fleksibel di pangkal yang disimulasikan dalam julat frekuensi 
pemudah, Km dari 0.04 ke 0.40 di bawah aliran angin subsonik tak boleh mampat. 
Derivatif kestabilan aerodinamik yang diukur secara dinamik ditentukan daripada 
frekuensi ayunan dan reputan amplitud sejarah respon masa tanpa angin dan dengan 
angin. Empat model sayap 3D segiempat tepat dengan konfigurasi aerofoil NACA 
0010, NACA 0012, NACA 0014 dan NACA 0018 telah diuji. Setiap model sayap 
mempunyai rentang sebesar 0.36m, rerentas 0.16m dan nisbah bidang 4.5. Model 
beban aerodinamik dengan derivatif dinamik digunakan dalam persamaan 
pergerakan aeroanjalan untuk menyelesaikan kelajuan kibarannya melalui 
penyelesaian nilai eigen. Didapati bahawa DinamikLC )(


 dan 

DinamikMC )(


 adalah 10%-

40% lebih tinggi daripada
StatikLC )(


 dan 

StatikMC )(


 bagi semua model sayap. Walau 

bagaimanapun, perbezaan di antara derivatif yang diukur secara dinamik dan statik 
berkurang sebanyak 12% untuk 

LC  dan 7% untuk 
MC  apabila nisbah ketebalan 

kepada rerentas bagi model sayap bertambah. 
DinamikLL CC

q
)(


  yang diukur 

bertambah apabila nisbah ketebalan kepada rerentas bertambah. Di samping itu, 
kurang perubahan dalam 

DinamikLL CC
q

)(


  dilihat bagi Km<0.10 dan 

DinamikMM CC
q

)(


  yang diukur berkurang apabila Km bertambah, dengan perbezaan 

yang tidak signifikan untuk semua model sayap. Kelajuan kibaran sayap yang 
diramalkan dengan derivatif dinamik adalah dua kali ganda kurang daripada 
anggaran dengan model Theodorsen dan 20% lebih tinggi daripada anggaran dengan 
model Scanlan. Ini menujukkan bahawa derivatif dinamik menambahbaik analisis 
kibaran sayap bagi pengoptimuman. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Flutter is the most challenging structural dynamic problem which is defined as 

an aeroelastic vibration that causes instability to a structure. The occurrence of flutter 

is due to the coupling of aerodynamic force, inertial force and elastic force as 

illustrated in Fig. 1.1. This is known as the Collar Aeroelastic diagram, which was 

created for a better understanding of the overall aeroelastic problems. The combination 

of aeroelastic forces and elastic forces causes the aeroelastic effects on the structure.  

For instance, the occurrence of wing flutter depends on the elasticity of the 

wing structure itself rather than the influence of vibrational forces from other aircraft 

components compared to buffeting and dynamic response. Buffeting is caused by the 

aerodynamic impulses that are generated by the wake behind the wing, nacelle or other 

parts of aircraft structure while dynamic response occurs when sudden aerodynamic 

loads input is detected due to gusts, hard landing or vigorous manoeuvre of control 

surfaces. Thus, this leads to extra precautionary steps being required during the 

structural design process to avoid flutter as comparing buffeting and dynamic 

response. 
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Figure 1.1 Collar Aeroelastic Diagram (Bisplinghoff and Ashley, 1962) 

Since the flutter phenomenon is disastrous, ground vibration testing and Flutter 

Flight Tests (FFT) are compulsory requirements for an aircraft to be certified free from 

flutter. It is stated in CFR, section 23.2245 that an aircraft should be able to 

demonstrate that flutter did not occur within the designed flight envelope of a 20% 

safety margin or the flutter speed, VFL should be higher than the dive speed, DV  

(Sedaghat et al., 2000; Shokrieh and Behrooz, 2001). However, the actual FFT can be 

risky and time consuming when the predicted aircraft flutter speed is overestimated 

during the aircraft design process (Lind and Brenner, 1997). It can cause flutter early 

during the flight test. This is dangerous for the test pilots as the flight speed increases 

where prominent vibrations might occur before the predicted wing flutter speed during 

the flight test. Furthermore, flutter phenomenon is due to the dynamic instability of 

the aircraft which can be shifted drastically by a few knots increase in flying speed. 

Hence, this situation shows the importance in estimating the aircraft flutter speed with 

accuracy before the FFT. 

The flutter speed estimation can be carried out through computational, 

numerical or experimental analysis. The three analysis methods for wing flutter speed 

solutions have been investigated individually or coupled among each other for better 

flutter speed estimations over time. Firstly, improvements on the computational 

capability of the computer lead to the fast growing of aeroelasticity analysis software 

to solve complicated aeroelastic problems. Currently, ZAERO/ZONA is the most 

Aerodynamic Forces 

Elastic Forces Inertial Forces 

Aeroelastic effects on  
Dynamic Stability 

i. Flutter 
ii. Buffeting 
iii. Dynamic Response 

Mechanical Vibrations 
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commonly used software by the industries especially in the field of aeronautical 

engineering for aeroelastic related problems (De Leon et al., 2012). It is a complete 

software package that can solve fluid-structure interaction problems. The aeroelastic 

problems can also be solved by coupling the solution from both computational fluid 

dynamic (CFD) analysis and computational structural dynamic (CSD) analysis. The 

CSD analysis can be carried out in any FEM programs such as MSC/NASTRAN for 

most of the cases.  

The wing flutter phenomenon can also be modelled mathematically into an 

aeroelastic equation of motion and solved for its flutter speed through eigenvalue 

solution. Estimation of wing flutter speed through the solution of the mathematical 

model is the most popular method among the three due to its simplicity and relative 

ease of understanding to estimate the flutter speed. 

The equation is constructed by modelling the inertial forces, elastic forces and 

aerodynamic loads of the aeroelastic structure. The elastic forces carry the structural 

stiffness and damping of the wing, while the aerodynamic loads carry the aerodynamic 

stiffness and damping of the wing. In this study, the aerodynamic loads are referred to 

the aerodynamic lift and pitching moment of the wing under flying conditions. Ashley, 

Zartarian and Neilson (1951) stated that aerodynamic loads were the important input 

parameters in the flutter speed estimation process as they can alter the total system 

stiffness and damping of an aeroelastic structure.  

The mathematical model for wing flutter speed estimation of a 2D rectangular 

wing model under subsonic and incompressible flow regime has been established as 

derived by Theodorsen (1935). Uncertainties and applied assumptions for the input 

aerodynamic stability derivatives of the aerodynamic loads model in the established 

mathematical model are found to be one of the contributing factors that can cause 

inaccurate estimation of the wing flutter speed as illustrated in Fig. 1.2 (Dowell and 

Tang, 2002). The three most commonly used aerodynamic loads modelling are 

discussed in the following paragraphs. 
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Figure 1.2 Flutter speed prediction procedure through solution with mathematical 

modelling 

Both Theodorsen’s Function and Scanlan’s flutter derivatives modelled the 

aerodynamic loads with frequency domain by generalizing the motions into reduced 

frequency as mK C V= pf  where f is the oscillation frequency (Hz), C is the chord 

length (m) and V is the freestream velocity (ms-1). Both aerodynamic lift and pitching 

moment that were modelled with Theodorsen’s function and Scanlan’s flutter 

derivatives includes the Theodorsen’s circulation function, m m mC(K ) F(K ) iG(K )= +  

in the function of reduced frequency. The application of both methods were claimed 

to result in reasonable flutter speed estimations for aircraft wings. However, the main 

drawback of the two methods is the assumption of thin aerofoil theory for the 

aerodynamic loads modelling where the aerofoil thickness to chord ratio of the wing 

was neglected in both methods. These shortcomings will be carried forward to the 

aeroelastic equation of motion which causes uncertainties on the estimated wing flutter 

speed.  

In this study, the dynamically measured aerodynamic stability derivatives were 

chosen as input parameters for the aerodynamic loads modelling. The aerodynamic 

loads were modelled with the dynamically measured aerodynamic stability 

derivatives. These were determined from dynamic wind tunnel tests to simulate the 

transient case conditions. In this case, the accuracy of the estimated wing flutter speed 

was improved as the inclusion of dynamically measured aerodynamic stability 

derivatives in the aeroelastic equation is able to resemble the actual flow structure for 

the wing rather than the statically measured aerodynamic stability derivatives. 

Furthermore, it was strengthened by taking the aerofoil thickness to chord ratio into 

consideration for each wing models. Both the dynamically and statically measured 

MATHEMATICAL 
MODEL 

Aeroelastic Equation of 
Motion 

INPUT OUTPUT 

Aerodynamic loads Modelling 

• Theodorsen’s Circulation Function 

• Scanlan’s Flutter Derivatives 

• Aerodynamic Stability Derivatives 

Flutter Speed 
Predictions 
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aerodynamic stability derivatives were obtained through the wind tunnel test by using 

a free oscillation testing technique.  

The design of the dynamic free oscillatory test rig was adapted and modified 

to measure the aerodynamic stability derivatives transiently. The dynamically 

measured aerodynamic stability derivatives were determined from the recorded time 

response histories of the oscillating wing model. The test rig is a 2-DOFs free 

oscillating system for the wing model where only pitch motion was able to be 

simulated in this study due to the limitation of the test rig in plunge motion. The plunge 

motion of the wing model is analysed theoretically by using the experimentally 

measured data of the pitch motion. The relative differences between the measured time 

response plots of the wind-on and wind-off condition for the tested wing model in the 

wind tunnel was assumed to be the effects solely caused by the aerodynamic lift and 

pitching moment. It is identical to the “Aerodynamics is Aeroelasticity Minus 

Structure (AAEMS)” identification method as mentioned by Song, Kim and Song 

(2012). 

1.2 Problem Statement 

The process to identify the flutter speed for an aircraft wing is complex due to 

non-linearities and time varying nature of the aeroelastic structure (Dansberry et al., 

1993; Zhao and Hu, 2004; Ertveldt et al., 2013). The aerodynamic loads where they 

may either dampen, stiffen, deaden or soften the total wing structural stiffness and 

damping during flying conditions (STRGANAC, 1988; Song, Kim and Song, 2012). 

Thus, the estimated wing flutter speed is inaccurate and becoming more complicated 

in transient conditions. The prediction of aerodynamic loads of a wing in the form of 

stiffness and damping in the aeroelastic model are not well modelled especially in 

transient case and it is influenced by a primary configuration such as aerofoil thickness 

to chord ratio (Hoa, 2004; Florance, Chwalowski and Wieseman, 2010). 

Three commonly used methods to model the aerodynamic loads for aeroelastic 

equation in predicting wing flutter speed are Theodorsen’s circulation function by 

Theodorsen (1935), Scanlan’s flutter derivatives by Scanlan and Tomo (1971) and 
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aerodynamic stability derivatives by Waszak (1998). However, Theodorsen’s 

circulation function assumes the generated wake at the trailing edge of the aerofoil to 

be flat. The assumption is only true for thin aerofoil sections and very large aspect 

ratio wings. Furthermore, the quasi-steady aerodynamic model from Theodorsen’s 

function by assuming C(Km)=1 has been proven to produce an underestimated flutter 

speed (Haddadpour and Firouz-Abadi, 2006). Meanwhile, Scanlan’s flutter 

derivatives are obtained with reference to Theodorsen’s function. Both Theodorsen’s 

and Scanlan’s method apply linear steady-state lift curve slope,  in the formulated 

aeroelastic equation of motion for flutter speed solution which limit the accuracy of 

the predicted flutter speed. 

In this study, the dynamically measured aerodynamic stability derivatives were 

proposed to model the transient aerodynamic loads and will be applied into the 

aeroelastic equation rather than using conventional statically measured aerodynamic 

stability derivatives. It is proven by experimental evidence that the existence of 

transient growth of energy in the time response data of an oscillating wing model up 

to the critical flutter speed in reality and worth to be studied (Hémon, De Langre and 

Schmid, 2006).  

1.3 Research Objectives  

The objectives of this study are to: 

(i) Determine the mathematical modelling of aerodynamic loads model in 

the form of aerodynamic stability derivatives for better prediction of 

wing flutter speed with the input from dynamically measured 

aerodynamic stability derivatives. 

(ii) Determine the aerodynamic stability derivatives with respect to time, 

reduced frequency and aerofoil thickness to chord ratio through 

dynamic wind-tunnel test. 

(iii) Prediction and analysis of the wing flutter speed by using the 

theoretical, statically and dynamically determined aerodynamic 

lC a
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stability derivatives through the established aeroelastic mathematical 

model for both thin and thick aerofoil configurations. 

1.4 Scopes of the Research 

After reviewing and analysing the previous methods for wing flutter speed 

prediction, this study focuses on the application of aeroelastic equation of motion in 

determining the flutter speed. The aerodynamic lift and pitching moment model in the 

equation were modelled in the form of aerodynamic stability derivatives. In this study, 

the dynamically measured aerodynamic stability derivatives are to be transient case 

derivatives as they were determined from dynamic wind tunnel testing. Furthermore, 

the dynamically measured aerodynamic stability derivatives are highly dependent on 

its oscillating frequency, refereed time and wind speed.  

A dynamic test rig was designed to perform a free oscillation test for plunge 

and pitch motion in order to measure 
q qL L L M M MC ,C C ,C and C C

a a a a
+ +  

! !
 dynamically. 

The oscillation frequency was control by a set of linear springs with different stiffness 

in order to match the range of reduced frequency that were used to sense the 

aerodynamic loads during wind-on condition inside the wind tunnel. The task was 

carried out by the free oscillation test rig where the derivatives of the wing model were 

obtained based on the relative difference between the measured wind-on and wind-off 

time response data of the oscillation amplitudes. 

The measurement of steady-state aerodynamic stability derivatives were also 

taken from the static wind-tunnel test. This was to quantify the difference by 

comparing the statically measured aerodynamic stability derivatives to the 

dynamically measured derivatives in the form of magnification factor. A parametric 

study on the effect of aerofoil thickness to chord ratio on the estimated wing flutter 

speed was also performed in this study as the parameters were not considered by the 

other two methods (i.e. Theodorsen’s and Scanlan’s methods). A set of NACA series 

symmetrical aerofoil configurations which are NACA 0010, NACA 0012, NACA 

0014 and NACA 0018 were selected as the tested wing model for the wind tunnel test. 

The prediction of wing flutter speed was executed by solving the aeroelastic equation 
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with inclusion of theoretically, statically and dynamically measured aerodynamic 

stability derivatives through eigenvalue solution in Matlab program. 

1.5 Significance of Study 

In this study, a dynamic wind tunnel test rig had been developed to measure 

aerodynamic stability derivatives to replicate the transient case of a 3D rectangular 

wing. The lift and pitching moment derivatives are formulated in the form of 

aerodynamic stiffness and damping instead of the Theodorsen’s function and Scanlan 

flutter derivatives. This method studies the effect of thickness to chord ratio of the 

wing aerofoil where the aspect ratio of the wing is fixed at AR=4.50 in predicting the 

wing flutter speed by using aeroelastic equation of motion. The dynamically measured 

aerodynamic stability derivatives are utilised in the aerodynamic loads model instead 

of statically measured derivatives which is not emphasize by both Theodorsen’s and 

Scanlan’s method. In this method, the flutter speed is determined by considering the 

damping term of the aeroelastic equation of motion is zero. 

Thus, the input data of the damping term is crucial for the flutter speed 

predictions. The advantage of this method is that the formulated aeroelastic equation 

of motion not only includes the dynamically measured aerodynamic stiffness 

derivatives (i.e. LC a
and ) but also the dynamically measured aerodynamic 

damping derivatives (i.e. 
q qL L M MC C and C C

a a
+ +  

! !
). Therefore, the accuracy of the 

predicted wing flutter speed can be improved. By comparing the results from the three 

methods, the correlations among those methods can be used as a guideline for realistic 

flutter speed predictions. 

Although the proposed method in this study is limited to an un-tapered, un-

swept and un-cambered wing with symmetrical NACA aerofoil under subsonic 

incompressible flow condition, a good prediction of wing flutter speed with a better 

aerodynamic loads model will assist during the preliminary aircraft design phase by 

preventing the wing structure from being over-designed or under-designed. Lastly, as 

the aeroelastic equation of motion was formulated in the form of state-space equation 

MC a
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which allows it to be analysed computationally and made it compatible for control 

system design in the future study. 

1.6 Thesis Outline 

An introduction to the problem statements of aircraft wing flutter phenomena 

that lead to the research objectives of this study are stated in Chapter 1. It is followed 

by the scopes and significance of this study. 

In Chapter 2, the Theodorsen’s circulation function method, Scanlan’s flutter 

derivatives method and aerodynamic stability derivatives method are further 

discussed. The assumptions and limitations of the three methods in modelling the 

aerodynamic loads model for flutter speed estimation are clarified in the chapter. Some 

oscillatory test rig designs for the wind tunnel test from previous researchers are 

reviewed as their experimental technique is utilised in determining the aerodynamic 

stability derivatives in this study. 

Chapter 3 highlights the research methodology of this study and is presented 

in a flow chart for better understanding. The emphasis of the chapter is the derivation 

of the aeroelastic equation of motion with aerodynamic stability derivatives in solving 

for flutter speed. Both wind-on and wind-off conditions are included in the derivations 

in order to determine the dynamically (transient case) measured aerodynamic stability 

derivatives from the dynamic wind tunnel test. 

The development on the mechanism of oscillatory test rig for wind-tunnel test 

will be discussed in Chapter 4. The experimental setup, instrumentation techniques 

and the calibration of the sensor are explained in this chapter. The validation process 

of the Matlab coding in extracting the aerodynamic stability derivatives from the 

recorded time response data are also discussed in the chapter. 
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In Chapter 5, preliminary results of the static and dynamic wind tunnel test of 

NACA 0012 wing model are discussed as a baseline wing model for wing flutter 

analysis. The discussion is focused on the statically (steady-state case) and 

dynamically (transient case) measured aerodynamic stability derivatives. 

Comparisons among the predicted wing flutter speeds and flutter frequency that are 

solved from the Theodorsen’s method, Scanlan’s method, theoretical, static method 

and dynamic method for the four tested wing models (i.e. NACA 0010, NACA 0012, 

NACA 0014 and NACA 0018) are explained in the chapter. 

In Chapter 6, the study draws conclusion on the differences of the predicted 

wing flutter speed by using the dynamically measured aerodynamic stability 

derivatives compared to the Theodorsen’s method, Scanlan’s method, theoretical 

method and static method. The parametric study on the effect of aerofoil thickness to 

chord ratio, tm/C to the dynamically measured aerodynamic stability derivatives is 

concluded. 
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