FLUTTER ANALYSIS OF A FLEXIBLY SUPPORTED WING

BOO KOON YAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JANUARY 2018

Specially dedicated to my soulmate

ACKNOWLEDGEMENT

I wish to express my sincere appreciation to my supervisor, Prof Madya Ir Dr Shuhaimi Mansor for his guidance and sharing his knowledge. I would also like to extend my gratitude to my co-supervisor, Prof Madya Ainullotfi Abdul-Latif for his understanding, advice and continuous support in completing my thesis.

I am grateful for the opportunity to complete my doctorate study at Universiti Teknologi Malaysia (UTM). I would also like to acknowledge UTM Aerolab for providing the testing facility to complete my study. I deeply appreciate the help and co-operation from Aerolab technicians during my experimental setup and testing.

I am blessed to have my family and friends who have provided assistance at various occasions along my study. I would also like to acknowledge Dr. Ivan for his unconditional moral support when I needed it the most during my entire PhD journey.

ABSTRACT

Flutter is a dynamic aeroelastic phenomenon. Current aeroelastic theoretical models have some issues with the parameters related to the outcomes of wing flutter speed analysis. The typical trend in applying static derivatives in estimating wing flutter speed is one of the factors for the inconsistency. This study aimed to establish dynamically measured derivatives with comparisons to conventional static derivatives in predicting the wing flutter speed by using aeroelastic stiffness and damping equation. A free oscillation wind tunnel test rig was designed to measure the dynamic derivatives of rigid wings with flexible mounting at root simulated within a reduced frequency, K_m range from 0.04 to 0.40 under subsonic incompressible flow. The dynamically measured aerodynamic stability derivatives were determined from oscillation frequencies and amplitude decay of the wind-off and wind-on time response history. Four rectangular 3D wing models with NACA 0010, NACA 0012, NACA 0014 and NACA 0018 aerofoil configurations were tested. Each wing model has a wingspan of 0.36m and chord length of 0.16m with an aspect ratio of 4.5. The aerodynamic loads model with the dynamic derivatives was applied into the aeroelastic equation of motion to solve the flutter speed via eigenvalue solution. It was found that the $(C_{L_a})_{Dynamic}$ and $(C_{M_a})_{Dynamic}$ were 10%-40% higher than $(C_{L_a})_{Static}$ and $(C_{M_a})_{Static}$ for all the wing models. However, the differences between the dynamically and statically measured derivatives reduced by 12% for C_{L_a} and 7% for C_{M_a} as the thickness-to-chord ratio of the wing model increased. The measured $(C_{L_q} + C_{L_a})_{Dynamic}$ increases when aerofoil thickness-to-chord ratio increases. Besides, less fluctuations in $(C_{L_a} + C_{L_a})_{Dynamic}$ was seen for K_m<0.10 and the measured $(C_{M_q} + C_{M_a})_{Dynamic}$ was reduced as K_m increased, with insignificant differences for all wing models. The predicted wing flutter speeds with dynamic derivatives are two times less than the estimations with Theodorsen model and 20% higher than the estimations with Scanlan model. These show that the dynamically measured derivatives have improved the wing flutter speed analysis for optimisation.

ABSTRAK

Kibaran merupakan satu fenomena aeroanjalan dinamik. Model teori aeroanjalan kini mempunyai beberapa masalah dengan parameter yang berkaitan dengan hasil analisis kelajuan kibaran sayap. Kecenderungan tipikal dalam menggunakan derivatif statik dalam menganggarkan kelajuan kibaran sayap merupakan salah satu faktor ketidaktentuan tersebut. Kajian ini bertujuan untuk mengenalkan penggunaan derivatif yang diukur secara dinamik dengan perbandingan terhadap derivatif statik lazim bagi meramalkan kelajuan kibaran menggunakan persamaan kekakuan dan redaman aeroelastik. Rig ujian terowong angin ayunan bebas direka bentuk untuk mengukur derivatif dinamik sayap tegar dengan pemasangan fleksibel di pangkal yang disimulasikan dalam julat frekuensi pemudah, K_m dari 0.04 ke 0.40 di bawah aliran angin subsonik tak boleh mampat. Derivatif kestabilan aerodinamik yang diukur secara dinamik ditentukan daripada frekuensi ayunan dan reputan amplitud sejarah respon masa tanpa angin dan dengan angin. Empat model sayap 3D segiempat tepat dengan konfigurasi aerofoil NACA 0010, NACA 0012, NACA 0014 dan NACA 0018 telah diuji. Setiap model sayap mempunyai rentang sebesar 0.36m, rerentas 0.16m dan nisbah bidang 4.5. Model beban aerodinamik dengan derivatif dinamik digunakan dalam persamaan pergerakan aeroanjalan untuk menyelesaikan kelajuan kibarannya melalui penyelesaian nilai eigen. Didapati bahawa $(C_{L_{a}})_{Dinamik}$ dan $(C_{M_{a}})_{Dinamik}$ adalah 10%-40% lebih tinggi daripada $(C_{L_a})_{Statik}$ dan $(C_{M_a})_{Statik}$ bagi semua model sayap. Walau bagaimanapun, perbezaan di antara derivatif yang diukur secara dinamik dan statik berkurang sebanyak 12% untuk $C_{L_{\alpha}}$ dan 7% untuk $C_{M_{\alpha}}$ apabila nisbah ketebalan kepada rerentas bagi model sayap bertambah. $(C_{L_q} + C_{L_{\dot{\alpha}}})_{Dinamik}$ yang diukur bertambah apabila nisbah ketebalan kepada rerentas bertambah. Di samping itu, perubahan $(C_{L_a} + C_{L_{\dot{\alpha}}})_{Dinamik}$ dilihat bagi K_m<0.10 kurang dalam dan $(C_{M_q} + C_{M_{\dot{\alpha}}})_{Dinamik}$ yang diukur berkurang apabila K_m bertambah, dengan perbezaan yang tidak signifikan untuk semua model sayap. Kelajuan kibaran sayap yang diramalkan dengan derivatif dinamik adalah dua kali ganda kurang daripada anggaran dengan model Theodorsen dan 20% lebih tinggi daripada anggaran dengan model Scanlan. Ini menujukkan bahawa derivatif dinamik menambahbaik analisis kibaran sayap bagi pengoptimuman.

TABLE OF CONTENTS

СНАРТЕВ	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF SYMBOLS	xix
	LIST OF ABREVIATIONS	XXV
	LIST OF APPENDICES	xxvi
1	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Problem Statement	6
	1.3 Research Objectives	6
	1.4 Scopes of the Research	7
	1.5 Significance of Study	8
	1.6 Thesis Outline	9

LITI	ERATURE REVIEW	1
2.1	Introduction	1
2.2	Flutter Phenomenon	1
	2.2.1 History of Aircraft Wing Flutter Incidents	1
	2.2.2 Aircraft Flutter Flight Test	1
2.3	2-DOF Aeroelastic Wing Model	1
2.4	Computational Method (CFD/CSD) for Aircraft Flutter	
	Analysis	1
2.5	Aerodynamic Loads Modelling	1
	2.5.1 Theodorsen's Function, C(K _m)	1
	2.5.2 Scanlan's Flutter Derivatives	2
	2.5.3 Aerodynamic Stability Derivatives	2
2.6	Aeroelastic Equation of Motion for Wing Flutter Analysis	2
	2.6.1 Aeroelastic Equation of Motion Using Theodorsen's	
	Function, C(K _m)	3
	2.6.2 Aeroelastic Equation of Motion Using Scanlan Flutter	
	Derivatives	3
	2.6.3 Aeroelastic Equation of Motion Using Aerodynamic	
	Stability Derivatives	3
	2.6.4 Quasi-Steady Aeroelastic Equation of Motion	4
2.7	Aerodynamic Stability derivatives	4
	2.7.1 Statically and Dynamically Determined Aerodynamic	
	stability derivatives	2
	2.7.2 Hysteresis Loop of Aerodynamic stability derivatives	2
2.8	Measurement of Aerodynamic Stability Derivatives Using	
	Dynamic Flutter Test Rig	Z
2.9	Reduced Frequency, K _m	5
2.10	The Effect of Composite Structure on Flutter Speed	
	Prediction	5
2.11	Summary	5
RES	EARCH METHODOLOGY	5

2

3

3.1 Introduction

viii

59

3.2	Overview	59
3.3	Modelling of Aerodynamic Loads for a 2-DOF 3D Wing	
	Model	62
	3.3.1 Aerodynamic Stability Derivatives Method	64
3.4	Aeroelastic Plunging Motion	66
	3.4.1 Wind-Off Plunging Model	67
	3.4.2 Wind-On Plunging Model	68
3.5	Aeroelastic Pitching Motion	72
	3.5.1 Wind-Off Pitching Model	74
	3.5.2 Wind-On Pitching Model	75
3.6	Aeroelastic Plunge and Pitch Motion with Aerodynamic	
	Stability Derivatives	78
3.7	Solution of the Plunge and Pitch Equation	79
3.8	Matlab and Simulink Programming for Flutter Speed	
	Predictions	82
3.9	Summary	83
EVD	FDIMENTAL OFTID	05
EAF	EKINENTAL SETUP	03
4.1	Introduction	85
4.2	Specifications of the UTM-Low Speed Wind Tunnel	85
	4.2.1 Balance Specifications	86
4.3	Design of the Dynamic Oscillatory Test Rig for Flutter	
	Analysis	87
	4.3.1 Design Requirements and Specifications	89
	4.3.2 Mechanical Design of the Oscillatory Test Rig	
	Mechanism	90
	4.3.3 Linear Spring Selection and Rig Dimensions	92
4.4	Specifications of the Selected Wing Models	93
4.5	Data Acquisition Model and Setup of the Dynamic Test Rig	95
	4.5.1 Calibration of the Potentiometer	97
	4.5.2 Signal to Noise Ratio Reduction	98
4.6	Dynamic Measurement and Estimation of Aerodynamic	
	Stability Derivatives	99
	4.6.1 Estimation of Lift Force Derivatives	103

4

		4.6.2 Matlab Programming	104
		4.6.3 Power Spectral Density (PSD) Matlab Programming	
		Validation	105
	4.7	Calibration of the Dynamic Oscillatory Test Rig	106
		4.7.1 Structural Stiffness and Damping of the Oscillatory	
		Test Rig	106
		4.7.2 Wind-Off Tests	109
		4.7.3 Estimation on the Moment of Inertia	111
	4.8	Validation of the Dynamic Test Rig	112
	4.9	Precision of the Dynamic Oscillatory Test Rig	116
	4.10	Summary	117
5	RES	ULTS AND DISCUSSIONS	118
	5.1	Introduction	118
	5.2	Static Wind Tunnel Test	118
		5.2.1 Statically Measured Aerodynamic Lift Derivative, $C_{L_{\alpha}}$!
		and Pitching Moment Derivative, $C_{M_{\alpha}}$	119
	5.3	Dynamic Wind Tunnel Test	123
		5.3.1 Dynamically Measured Aerodynamic Pitch Stiffness	
		Derivative, $C_{M_{\alpha}}$ and Pitch Damping Derivative,	
		$\mathbf{C}_{\mathbf{M}_{q}} + \mathbf{C}_{\mathbf{M}_{a}}$	123
		5.3.2 Dynamically Measured Aerodynamic Lift Stiffness	
		Derivative, $C_{L_{\alpha}}$ and Lift Damping Derivative,	
		$\mathbf{C}_{\mathbf{L}_{q}} + \mathbf{C}_{\mathbf{L}_{\dot{a}}}$	126
		5.3.3 Magnification Factor of Dynamically Measured	
		Derivatives	130
	5.4	Numerical Solution for Wing Flutter Speed Prediction	132
		5.4.1 Eigenvalue Movement Plot, V-ζ, V-g and V-f Plot	136
	5.5	Parametric Study of Flutter Characteristics	139
		5.5.1 Wing Flutter Speed and Flutter Frequency Predictions	139
	5.6	Summary	144

6	CON	CLUSIONS AND RECOMMENDATIONS	146
	6.1	Introduction	146
	6.2	Conclusions	147
		6.2.1 Improved Mathematical Model for Flutter Analysis	147
		6.2.2 Measurement of Aerodynamic Stability derivatives	147
		6.2.3 Comparisons and Parametric Study	148
		6.2.4 Summary of Findings	149
	6.3	Limitations and recommendations for Future Research	
		Works	149
REFEREN	ICES		151
Appendices	s A-D		159-190

xi

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Estimated flutter speed of Goland's wing (Haddadpour and	ł
	Firouz-Abadi, 2006)	43
2.2	Statically and dynamically determined aerodynamic stability	I
	derivatives from static and dynamic wind tunnel test	t
	respectively	46
2.3	Interest of reduced frequency, K_m range for wing flutter	
	analysis	55
2.4	Predicted flutter speed of composite wing box with fibre	e
	orientation optimisation (Guo, Bannerjee and Cheung, 2003)	56
3.1	Parameters for both plunge and pitch motion during wind-or	1
	and wind-off conditions for the aeroelastic equation of motion	84
4.1	Selected spring stiffness, K_s (Nm ⁻¹) for wind tunnel test	92
4.2	Dimensions and specifications of each NACA wing model with	1
	C = 0.16m and $bh = 0.36m$	93
4.3	Computed aerodynamic stability derivatives with the simulated	l
	time response oscillations of NACA 0012 at V=20 ms ⁻¹	106
4.4	Estimated and measured natural frequencies, f_n (Hz) for NACA	L
	0012 wing model at $X_f = 0.5$ C	109
4.5	Moment of inertia for the four tested NACA wing models	112
4.6	Measured reduced frequency, K _m test matrix for NACA 0012	2
	wing model for	r
	$V_{airspeed} = 10 ms^{-1}, 15 ms^{-1}, 20 ms^{-1}, 25 ms^{-1}, 30 ms^{-1}$ and $40 ms^{-1}$	113
5.1	Statically measured aerodynamic lift and pitching moment	t
	derivatives for NACA 0012 at $X_f = 0.5$ C	120

5.2	Comparison between statically determined aerodynamic lift	
	derivatives, $C_{{\scriptscriptstyle L}_{\alpha}}$ for all four NACA wing models with	
	published data (Abbott and Von Doenhoff, 1959)	122
5.3	Comparison between statically determined aerodynamic	
	pitching moment derivatives, $C_{M_{\alpha}}$ for all four NACA wing	
	models with published data (Abbott and Von Doenhoff, 1959)	123
5.4	Resulting data from the time response plot at $V = 20 \text{ms}^{-1}$ and	
	oscillation frequency of 3.5606 Hz with assumed wind-off	
	damping ratio, $\zeta_{off} = 0.03$	133
5.5	Structural stiffness of the four NACA wing models in both	
	plunge and pitch motion	134
5.6	Summary of the dynamically measured aerodynamic stability	
	derivatives for each NACA wing models	135
5.7	Resulting deviations, % for each NACA wing models between	
	Scanlan method and dynamic method	143

LIST OF FIGURES

FIGURE NO	D. TITLE	PAGE
1.1	Collar Aeroelastic Diagram (Bisplinghoff and Ashley, 1962)	3
1.2	Flutter speed prediction procedure through solution with	l
	mathematical modelling	5
2.1	Lumped mass model of aircraft wing (Shokrieh and Behrooz	I
	2001)	16
2.2	2-DOF cantilevered wing model with uniform mass and	l
	stiffness (Goland, 1945)	16
2.3	Two dimensional aerofoil that was undergoing plunge and pitch	l
	motion (Wright and Cooper, 2008)	19
2.4	The function of F and G against $1/K_m$ (Theodorsen, 1935)	20
2.5	Definition of thin aerofoil (Bisplinghoff and Ashley, 1962)	21
2.6	Hancock classical binary wing model (Wright and Cooper,	,
	2008)	30
2.7	Pressure distribution over the wing section (Waszak, 1998)	39
2.8	Established lift curve slope, $C_{l_{\alpha}}$ and pitching moment	t
	derivatives, $C_{m_{\alpha}}$ of NACA 0012 aerofoil (Abbott and Von	l
	Doenhoff, 1959)	45
2.9	Comparison between the experimental and predictions of	f
	unsteady time-accurate Euler solutions for lift and pitching	5
	moment coefficient versus the angle of attack of NACA 0012	
	(Da Ronch et al., 2013)	47
2.10	Wind tunnel flutter test rig (a) Side view (b) Planform view	7
	(Molyneux, 1957)	50
2.11	Wind-tunnel flutter test rig design (a) Schematic view of the	•
	experimental setup (upper view) (Block and Strganac, 1998) (b))
	Position of the wing model inside the wind tunnel (Block and	l

	Strganac, 1998) (c) Isometric drawing of the test rig (Predoiu et	
	al., 2006)	51
2.12	Modern design of wind tunnel flutter test rig (Gjerek,	
	Drazumeric and Kosel, 2012)	52
2.13	Wing flutter frequency, $f_{\rm f}$ versus reduced frequency, $K_{\rm m}$ for the	
	wing flutter analysis that was plotted based on the results from	
	Table 2.3	54
3.1	Overall research methodology flow chart	60
3.2	(a) Bending of Hancock wing model (b) Simplified cantilevered	
	beam model	63
3.3	(a) Torsional motion of Hancock wing model (b) Simplified	
	cantilevered beam model	64
3.4	Wing model of a 2-DOF aeroelastic system	64
3.5	Plunge motion of the wing that is induced by the aerodynamic	
	lift force due to pitch angle and pitch rate	69
3.6	Pitch motion of the wing that is induced by the aerodynamic	
	pitching moment due to pitch angle and pitch rate of the wing	72
3.7	Eigenvalue plot	80
3.8	V-g plot (Moosavi, Naddaf Oskouei and Khelil, 2005)	81
3.9	V-f plot (Moosavi, Naddaf Oskouei and Khelil, 2005)	82
3.10	Eigenvalue movement plot (Moosavi, Naddaf Oskouei and	
	Khelil, 2005)	82
4.1	Floor plan of UTM-LST	86
4.2	Position of the wing model inside the UTM-LST test section (a)	
	isometric view (b) front view and (c) side view	88
4.3	Schematic diagram of the oscillatory wing test rig (a) plan view,	
	(b) front view and (c) side view	91
4.4	The four tested wing models with NACA symmetrical aerofoils	94
4.5	Geometries of the NACA wing models and the location of	
	flexural axis, X	94
4.6	Schematic diagram of the test rig instrumentation setup	96
4.7	Vishay Spectrol potentiometer scaling and calibration plot	98
4.8	Time response decay sample data during wind-off condition	99

4.9	Estimation of lift force derivatives with the variation of axis of	
	rotation	103
4.10	Validation of Matlab program of PSD solution and Simulink	
	time response simulations	105
4.11	FBD of the moment arm from the dynamic test rig for its	
	structural stiffness determination	107
4.12	Comparison between estimated and measured wind-off natural	
	frequencies for NACA 0012 wing model at $X_f = 0.5$ C	110
4.13	Wind-off and wind-on (V=20ms ⁻¹) damping ratio, ζ versus	
	damped frequencies repeatability test for NACA 0012 wing	
	model at $X_f = 0.5$ C	111
4.14	Second moment of inertia estimation for NACA 0010, NACA	
	0012, NACA 0014 and NACA 0018 wing models with	
	equivalent system torsional stiffness versus measured natural	
	frequencies, ω_n^2 at $X_f = 0.5$ C	112
4.15	Recorded time history plot of NACA 0012 wing model with	
	oscillation frequency of 2.2730 Hz, 2.9925 Hz and 3.5606 Hz	
	for both wind-off and wind-on (20ms ⁻¹) conditions	114
4.16	Damping ratio, ζ versus damped frequency, ω_d (Hz) of NACA	
	0012 during wind-off and wind-on, $V = 20 \text{ms}^{-1}$ at $X_f = 0.5 \text{C}$	114
4.17	Frequency ratio, $f_{\rm on}/f_{\rm off}$ versus reduced frequencies, K _m of	
	NACA 0012 wing model with $V = 20 \text{ms}^{-1}$ at $X_f = 0.5 \text{C}$	115
4.18	Frequency ratio, $f_{\rm on}/f_{\rm off}$ versus reduced frequency, K _m of	
	NACA 0012 wing model with the wind speed range from	
	V=20ms ⁻¹ to V=40ms ⁻¹ at $X_f = 0.5$ C	115
4.19	Measurement of moment of inertia for NACA 0012 wing model	
	from two repeated dynamic tests at $X_f = 0.5$ C	116
4.20	Frequency ratio, $f_{\rm on}/f_{\rm off}$ versus reduced frequency, K _m of	
	NACA 0012 wing model with springs K3T to K9T at	
	$V = 20 \text{ms}^{-1}$ shows good repeatability of the two repeated tests	117

5.1	Static lift coefficient, C_L versus angle of attack, α of NACA	
	0012 wing model at $X_f = 0.5$ C	120
5.2	Static pitching moment coefficient, C_M versus angle of attack, α	
	of NACA 0012 wing model at $X_f = 0.5$ C	120
5.3	Statically measured $(C_{L_{\alpha}})_{\text{Static}}$ for the four wing models with	
	NACA aerofoil cross sections against its airspeed/(Re) number	
	at $X_f = 0.5$ C	121
5.4	Statically measured $(C_{M_{\alpha}})_{\text{Static}}$ for the four wing models with	
	NACA aerofoil cross sections against its airspeed/(Re) number	
	at $X_f = 0.5$ C	122
5.5	Variation of the dynamically measured $(C_{M_{\alpha}})_{Dynamic}$ for the four	
	NACA wing models relative to its K_m at $X_f = 0.5C$	125
5.6	Variation of the dynamically measured $(C_{M_q} + C_{M_{\dot{\alpha}}})_{Dynamic}$ for	
	the four NACA wing models versus its reduced frequency, $K_{\mbox{\scriptsize m}}$	
	at $X_f = 0.5$ C	126
5.7	Comparison of the measured frequency ratios between the 'mid'	
	and 'rear' flexural axis for NACA 0012 wing model	127
5.8	Variation of the dynamically measured $(C_{L_{\alpha}})_{Dynamic}$ for the four	
	NACA wing models with relative to its reduced frequency, $\ensuremath{K_m}$	
	at $X_f = 0.5C$	129
5.9	Variation of the dynamically measured $(C_{L_q} + C_{L_{\dot{\alpha}}})_{Dynamic}$ for	
	the four NACA wing models with relative to its reduced	
	frequency, K_m at $X_f = 0.5C$	129
5.10	Magnification factors of the four NACA wing models at	
	$X_f = 0.5$ C between the measured $(C_{L_{\alpha}})_{Dynamic}$ and $(C_{L_{\alpha}})_{Static}$	131
5.11	Magnification factors of the four NACA wing models at	
	$X_f = 0.5$ C between the measured $(C_{L_{\alpha}})_{Dynamic}$ and $(C_{L_{\alpha}})_{Static}$	131
5.12	Resulted time response plot of a NACA 0012 wing model with	
	the aerodynamic stability derivatives that were determined from	

theoretical, static and dynamic measurement at $X_f = 0.5$ C ,

$$V = 20 \text{ms}^{-1}$$
 and 3.5606 Hz 133

5.13	Eigenvalues movement plot with oscillation frequency of	
	3.5606 Hz and dynamically measured aerodynamic stability	
	derivatives for NACA 0012 wing model	137
5.14	V- ζ plot of NACA 0012 wing model with oscillation frequency	
	of 3.5606 Hz and dynamically measured aerodynamic stability	
	derivatives for wing flutter speed estimation	138
5.15	V-g plot of NACA 0012 wing model with oscillation frequency	
	of 3.5606 Hz and dynamically measured aerodynamic stability	
	derivatives for wing flutter speed estimation	138
5.16	V-f plot of NACA 0012 wing model with oscillation frequency	
	of 3.5606 Hz and dynamically measured aerodynamic stability	138

5.17Predicted wing flutter speed for the wing model with NACA
0010, NACA 0012, NACA 0014 and NACA 0018 aerofoil
configurations at1415.18Predicted wing flutter speed for the wing model with NACA
0010, NACA 0012, NACA 0014 and NACA 0018 aerofoil
configurations at
$$X_f = 0.5$$
C by using Theodorsen's method,
Scanlan's method and dynamic methods.1425.19Predicted wing flutter speed for the wing model with NACA
0010, NACA 0012, NACA 0014 and NACA 0018 aerofoil142

configurations at $X_f = 0.5$ C

143

LIST OF SYMBOLS

AC	-	Aerodynamic center
$A^{\ast}_{i=l,2,3}$	-	Scanlan's flutter derivatives for pitch motion
$\mathbf{A}_{n=1,2,3}$	-	Structural inertia matrix
a	-	Distance ratio of b w.r.t h
a _A	-	Aerofoil lift curve slope
aw	-	Wing lift curve slope
B _{n=1,2,3}	-	Aerodynamic damping matrix
b	-	Distance between the leading edge and the reference axis, h
bh	-	Half-wing span (m)
С	-	Chord length (m)
\overline{c}	-	Mean aerodynamic chord
CG	-	Center of gravity
C(K _m)	-	Theodorsen's circulation function
CA	-	Aerodynamic damping
C _{A,U}	-	Plunge aerodynamic damping
Са, в	-	Pitch aerodynamic damping
Ca,δ	-	Control surfaces aerodynamic damping
$C_{l_{\alpha}}, a$	-	Aerofoil aerodynamic lift curve slope (rad ⁻¹)
C_L	-	Wing lift coefficient (deg ⁻¹)
C _{L_o}	-	Wing aerodynamic lift at zero angle of attack (rad ⁻¹)
$C_{L_{\alpha}}$	-	Wing aerodynamic lift stiffness derivative (Wing lift
		curve slope) (rad ⁻¹)
$C_{\scriptscriptstyle L_{\dot\alpha}}$	-	Wing aerodynamic lift damping derivative due to angle
		of attack rate
C_{L_q}	-	Wing aerodynamic lift damping derivative due to pitch
		Rate

$C_{\scriptscriptstyle L_\delta}$	-	Control surface aerodynamic lift curve slope (rad ⁻¹)
$C_{_{L_{\dot{\delta}}}}$	-	Control surface aerodynamic lift derivative with respect
		to time
$C_{m_{\alpha}}$	-	Aerofoil pitching moment derivative (rad ⁻¹)
См	-	Wing pitching moment coefficient (deg ⁻¹)
C_{M_o}	-	Wing aerodynamic pitching moment at zero angle of
		Attack (rad ⁻¹)
$C_{M_{\alpha}}$	-	Wing aerodynamic pitching moment stiffness
		Derivative (rad ⁻¹)
$C_{M_{\dot{\alpha}}}$	-	Wing aerodynamic pitching moment damping
		derivative due to angle of attack rate
C_{M_q}	-	Wing aerodynamic pitching moment damping
		derivative due to pitch rate
C _{n=1,2,3}	-	Aerodynamic stiffness matrix
Cs	-	Structural damping
$C_{S,U}$	-	Plunge structural damping
C _{S,0}	-	Pitch structural damping
$C_{S,\delta}$	-	Control surfaces structural damping
C_{T}	-	Equivalent system damping
D _{n=1,2,3}	-	Structural damping matrix
e ₁	-	distance from origin of body fixed reference to center
		of gravity of the BACT wing by excluding control
		surfaces
e ₂	-	distance from origin of body fixed reference to center
		of gravity of the trailing edge control surface
E _{n=1,2,3}	-	Structural stiffness matrix
F	-	Linear displacement force
F	-	Forcing function
F(k)	-	Real value of Theodorsen's circulation function
$f_{d,\mathrm{U}}$	-	Plunge damped frequency (Hz)
$f_{\mathrm{d}, \theta}$	-	Pitch damped frequency (Hz)

$f_{ m f}$	-	Flutter frequency (Hz)
$f_{ m n,U}$	-	Plunge natural frequency (Hz)
$f_{\mathrm{n},\theta}$	-	Pitch natural frequency (Hz)
G(k)	-	Imaginary value of Theodorsen's circulation function
$\boldsymbol{H}^{*}_{i=1,2,3}$	-	Scanlan's flutter derivatives for plunge motion
I_1	-	angular moment of interia of BACT/PAPA body
		(excluding control surfaces) about the origin of the
		body fixed reference
I ₂	-	angular moment of inertia of trailing edge control
		surface about its hinge line
Iu	-	Plunge moment of inertia)
$I_{u\theta}$	-	Coupling of plunge and pitch moment of inertia
I _{ZZ}	-	Moment of inertia at Z-axis
I_{θ}	-	Pitch moment of inertia
I_{δ}	-	Control surface moment of inertia
$I_{\theta\delta}$	-	Coupling of pitch and control surface moment of inertia
K _m	-	Reduced frequency
Kr	-	Pitch equivalent system stiffness
K _A	-	Aerodynamic stiffness
$K_{A,U}$	-	Plunge aerodynamic stiffness
$K_{A,\theta}$	-	Pitch aerodynamic stiffness
$K_{A,\delta}$	-	Control surfaces aerodynamic stiffness
Kr	-	Pitch equivalent system stiffness
K _s	-	Structural stiffness
K _{S,U}	-	Plunge structural stiffness
K _{S,θ}	-	Pitch structural stiffness
$K_{S,\delta}$	-	Control surface structural stiffness
K _T	-	Equivalent system stiffness
L	-	Aerodynamic lift force (N)
L_{U}	-	Partial derivative with respect to aerodynamic lift
		force for plunge motion
$L_{\dot{U}}$	-	Partial derivative with respect to secondary
		aerodynamic lift force derivative with respect to time

for plunge motion

L_{θ}	-	Partial derivative with respect to aerodynamic lift force
		for pitch motion
$L_{\dot{\theta}}$	-	Partial derivative with respect to secondary
		aerodynamic lift force derivative with respect to time
		for pitch motion
$\ell_{\rm b}$	-	Half torsional moment arm length (m)
\mathbf{m}_1	-	mass of the BACT wing by excluding control surfaces
m ₂	-	mass of the control surfaces
М	-	Aerodynamic pitching moment force
M_{s}	-	Model mass (kg)
$M_{\rm U}$	-	Partial derivative with respect to aerodynamic pitching
		moment for plunge motion
$M_{\dot{\rm U}}$	-	Partial derivative with respect to secondary
		aerodynamic pitching moment derivative with respect
		to time for plunge motion
$M_{\rm w}$	-	Mass of the wing model (kg)
M_Z	-	Pitching moment force
$M_{\dot{\theta}}$	-	Unsteady aerodynamic term
M_{θ}	-	Partial derivative with respect to aerodynamic pitching
		moment for pitch motion
$M_{\dot{\theta}}$	-	Partial derivative with respect to secondary aerodynamic
		pitching moment derivative with respect to time for pitch
		motion
q	-	Movement of the wing components
ġ	-	Movement of the wing components derivative with
		respect to time
ÿ	-	Secondary movement of the wing components
		derivative with respect to time
$\overline{\mathbf{q}}$	-	Dynamic pressure
Q	-	Generalized aerodynamic lift and pitching moment
-		

Qo	-	Generalized aerodynamic forces at zero angle of attack
QT	-	Generalized aerodynamic forces with gravitational effect
S	-	Planform wing area (m ²)
Swet	-	Wetted wing area (m ²)
t _m	-	Aerofoil thickness at AC=0.25 \overline{c}
Т	-	Kinetic energy
t	-	Time (s)
U	-	Plunge motion or horizontal deflection of the wing
		(Positive out)
Ú	-	Plunge motion derivative with respect to time
Ü	-	Secondary plunge motion derivative with respect to time
U	-	Potential energy
Ug	-	Gravitational potential energy
V	-	Freestream airspeed (ms ⁻¹)
V_{DF}	-	Maximum dive speed (ms ⁻¹)
V_{f}	-	Flutter speed (ms ⁻¹)
V_{NE}	-	Never exceed speed (ms ⁻¹)
Х	-	Linear displacement in x-direction
ż	-	Linear displacement derivative with respect to time
ÿ	-	Secondary linear displacement derivative with respect to
		time
X_{f}	-	Flexural axis (m)
α	-	Angle of attack (degree)
ά	-	Angle of attack derivative with respect to time
$\zeta_{\rm U}$	-	Damping ratio of plunge motion
ζ_{θ}	-	Damping ratio of pitch motion
θ	-	Pitch angle (degree)
θ	-	Pitch angle derivative with respect to time
$\ddot{\Theta}$	-	Secondary pitch angle derivative with respect to time
θ_T	-	Turnable angle
ρ	-	Air density (kgm ⁻³)
ω_{d}	-	Damped frequency (rads ⁻¹)

ω _n -	Natural	frequency	$(rads^{-1})$
------------------	---------	-----------	---------------

- $\omega_{n,U}$ Natural frequency of plunge motion (rads⁻¹)
- $\omega_{n,\theta}$ Natural frequency of pitch motion (rads⁻¹)

LIST OF ABREVIATIONS

ASD	-	Aerodynamic stiffness and damping
ASE	-	Aeroservoelasticity
CFD	-	Computational Fluid Dynamics
CSD	-	Computational Structure Dynamics
DOF	-	Degree of Freedom
FEM	-	Finite Element Modelling
LCO	-	Limit Cycle Oscillations
LST	-	Low Speed Tunnel
MSC	-	MacNeal-Schwendler Corporation
NASTRAN	-	NASA Structure Analysis
PSD	-	Power Spectral Density
ROM	-	Reduced Order Model
UAV	-	Unmanned Aerial Vehicle
NACA	-	National Advisory Committee for Aeronautics

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	Specifications of JR3 Balance	159
A2	Drawings of the Mechanical Parts of the Test Rig	159
A3	Recorded Signal of the Potentiometer	168
A4	Reduced Frequency, K _m Test Matrix for NACA	
	0010, NACA 0014 and NACA 0018 Wing Model	168
B1	Effect of Wind-Tunnel Speed (Reynolds Number,	
	Re) on $\mathbf{C}_{\mathbf{M}_{a}}$ and $\mathbf{C}_{\mathbf{M}_{q}} + \mathbf{C}_{\mathbf{M}_{a}}$	170
B2	Effect of Wind-Tunnel Speed (Reynolds Number,	
	Re) $C_{L_{\alpha}}$ and $C_{L_{\dot{\alpha}}}$	175
C1	MATLAB Program for Time Response Simulation	180
C2	SIMULINK Block Diagram	182
C3	MATLAB Program for Dynamic Wind-Tunnel	
	Test Data Processing	182
C4	Eigenvalue Solution for Wing Flutter Speed Estimation	185
D1	List of Publications	190

CHAPTER 1

INTRODUCTION

1.1 Introduction

Flutter is the most challenging structural dynamic problem which is defined as an aeroelastic vibration that causes instability to a structure. The occurrence of flutter is due to the coupling of aerodynamic force, inertial force and elastic force as illustrated in Fig. 1.1. This is known as the Collar Aeroelastic diagram, which was created for a better understanding of the overall aeroelastic problems. The combination of aeroelastic forces and elastic forces causes the aeroelastic effects on the structure.

For instance, the occurrence of wing flutter depends on the elasticity of the wing structure itself rather than the influence of vibrational forces from other aircraft components compared to buffeting and dynamic response. Buffeting is caused by the aerodynamic impulses that are generated by the wake behind the wing, nacelle or other parts of aircraft structure while dynamic response occurs when sudden aerodynamic loads input is detected due to gusts, hard landing or vigorous manoeuvre of control surfaces. Thus, this leads to extra precautionary steps being required during the structural design process to avoid flutter as comparing buffeting and dynamic response.

Figure 1.1 Collar Aeroelastic Diagram (Bisplinghoff and Ashley, 1962)

Since the flutter phenomenon is disastrous, ground vibration testing and Flutter Flight Tests (FFT) are compulsory requirements for an aircraft to be certified free from flutter. It is stated in CFR, section 23.2245 that an aircraft should be able to demonstrate that flutter did not occur within the designed flight envelope of a 20% safety margin or the flutter speed, V_{FL} should be higher than the dive speed, V_D (Sedaghat *et al.*, 2000; Shokrieh and Behrooz, 2001). However, the actual FFT can be risky and time consuming when the predicted aircraft flutter speed is overestimated during the aircraft design process (Lind and Brenner, 1997). It can cause flutter early during the flight test. This is dangerous for the test pilots as the flight speed increases where prominent vibrations might occur before the predicted wing flutter speed during the flight test. Furthermore, flutter phenomenon is due to the dynamic instability of the aircraft which can be shifted drastically by a few knots increase in flying speed. Hence, this situation shows the importance in estimating the aircraft flutter speed with accuracy before the FFT.

The flutter speed estimation can be carried out through computational, numerical or experimental analysis. The three analysis methods for wing flutter speed solutions have been investigated individually or coupled among each other for better flutter speed estimations over time. Firstly, improvements on the computational capability of the computer lead to the fast growing of aeroelasticity analysis software to solve complicated aeroelastic problems. Currently, ZAERO/ZONA is the most

commonly used software by the industries especially in the field of aeronautical engineering for aeroelastic related problems (De Leon *et al.*, 2012). It is a complete software package that can solve fluid-structure interaction problems. The aeroelastic problems can also be solved by coupling the solution from both computational fluid dynamic (CFD) analysis and computational structural dynamic (CSD) analysis. The CSD analysis can be carried out in any FEM programs such as MSC/NASTRAN for most of the cases.

The wing flutter phenomenon can also be modelled mathematically into an aeroelastic equation of motion and solved for its flutter speed through eigenvalue solution. Estimation of wing flutter speed through the solution of the mathematical model is the most popular method among the three due to its simplicity and relative ease of understanding to estimate the flutter speed.

The equation is constructed by modelling the inertial forces, elastic forces and aerodynamic loads of the aeroelastic structure. The elastic forces carry the structural stiffness and damping of the wing, while the aerodynamic loads carry the aerodynamic stiffness and damping of the wing. In this study, the aerodynamic loads are referred to the aerodynamic lift and pitching moment of the wing under flying conditions. Ashley, Zartarian and Neilson (1951) stated that aerodynamic loads were the important input parameters in the flutter speed estimation process as they can alter the total system stiffness and damping of an aeroelastic structure.

The mathematical model for wing flutter speed estimation of a 2D rectangular wing model under subsonic and incompressible flow regime has been established as derived by Theodorsen (1935). Uncertainties and applied assumptions for the input aerodynamic stability derivatives of the aerodynamic loads model in the established mathematical model are found to be one of the contributing factors that can cause inaccurate estimation of the wing flutter speed as illustrated in Fig. 1.2 (Dowell and Tang, 2002). The three most commonly used aerodynamic loads modelling are discussed in the following paragraphs.

- Scanlan's Flutter Derivatives
- Aerodynamic Stability Derivatives

Both Theodorsen's Function and Scanlan's flutter derivatives modelled the aerodynamic loads with frequency domain by generalizing the motions into reduced frequency as $K_m = \pi f C/V$ where *f* is the oscillation frequency (Hz), C is the chord length (m) and V is the freestream velocity (ms⁻¹). Both aerodynamic lift and pitching moment that were modelled with Theodorsen's function and Scanlan's flutter derivatives includes the Theodorsen's circulation function, $C(K_m) = F(K_m) + iG(K_m)$ in the function of reduced frequency. The application of both methods were claimed to result in reasonable flutter speed estimations for aircraft wings. However, the main drawback of the two methods is the assumption of thin aerofoil theory for the aerodynamic loads modelling where the aerofoil thickness to chord ratio of the wing was neglected in both methods. These shortcomings will be carried forward to the aeroelastic equation of motion which causes uncertainties on the estimated wing flutter speed.

In this study, the dynamically measured aerodynamic stability derivatives were chosen as input parameters for the aerodynamic loads modelling. The aerodynamic loads were modelled with the dynamically measured aerodynamic stability derivatives. These were determined from dynamic wind tunnel tests to simulate the transient case conditions. In this case, the accuracy of the estimated wing flutter speed was improved as the inclusion of dynamically measured aerodynamic stability derivatives in the aeroelastic equation is able to resemble the actual flow structure for the wing rather than the statically measured aerodynamic stability derivatives. Furthermore, it was strengthened by taking the aerofoil thickness to chord ratio into consideration for each wing models. Both the dynamically and statically measured aerodynamic stability derivatives were obtained through the wind tunnel test by using a free oscillation testing technique.

The design of the dynamic free oscillatory test rig was adapted and modified to measure the aerodynamic stability derivatives transiently. The dynamically measured aerodynamic stability derivatives were determined from the recorded time response histories of the oscillating wing model. The test rig is a 2-DOFs free oscillating system for the wing model where only pitch motion was able to be simulated in this study due to the limitation of the test rig in plunge motion. The plunge motion of the wing model is analysed theoretically by using the experimentally measured data of the pitch motion. The relative differences between the measured time response plots of the wind-on and wind-off condition for the tested wing model in the wind tunnel was assumed to be the effects solely caused by the aerodynamic lift and pitching moment. It is identical to the "Aerodynamics is Aeroelasticity Minus Structure (AAEMS)" identification method as mentioned by Song, Kim and Song (2012).

1.2 Problem Statement

The process to identify the flutter speed for an aircraft wing is complex due to non-linearities and time varying nature of the aeroelastic structure (Dansberry *et al.*, 1993; Zhao and Hu, 2004; Ertveldt *et al.*, 2013). The aerodynamic loads where they may either dampen, stiffen, deaden or soften the total wing structural stiffness and damping during flying conditions (STRGANAC, 1988; Song, Kim and Song, 2012). Thus, the estimated wing flutter speed is inaccurate and becoming more complicated in transient conditions. The prediction of aerodynamic loads of a wing in the form of stiffness and damping in the aeroelastic model are not well modelled especially in transient case and it is influenced by a primary configuration such as aerofoil thickness to chord ratio (Hoa, 2004; Florance, Chwalowski and Wieseman, 2010).

Three commonly used methods to model the aerodynamic loads for aeroelastic equation in predicting wing flutter speed are Theodorsen's circulation function by Theodorsen (1935), Scanlan's flutter derivatives by Scanlan and Tomo (1971) and

aerodynamic stability derivatives by Waszak (1998). However, Theodorsen's circulation function assumes the generated wake at the trailing edge of the aerofoil to be flat. The assumption is only true for thin aerofoil sections and very large aspect ratio wings. Furthermore, the quasi-steady aerodynamic model from Theodorsen's function by assuming $C(K_m)=1$ has been proven to produce an underestimated flutter speed (Haddadpour and Firouz-Abadi, 2006). Meanwhile, Scanlan's flutter derivatives are obtained with reference to Theodorsen's function. Both Theodorsen's and Scanlan's method apply linear steady-state lift curve slope, $C_{l_{\alpha}}$ in the formulated aeroelastic equation of motion for flutter speed solution which limit the accuracy of the predicted flutter speed.

In this study, the dynamically measured aerodynamic stability derivatives were proposed to model the transient aerodynamic loads and will be applied into the aeroelastic equation rather than using conventional statically measured aerodynamic stability derivatives. It is proven by experimental evidence that the existence of transient growth of energy in the time response data of an oscillating wing model up to the critical flutter speed in reality and worth to be studied (Hémon, De Langre and Schmid, 2006).

1.3 Research Objectives

The objectives of this study are to:

- (i) Determine the mathematical modelling of aerodynamic loads model in the form of aerodynamic stability derivatives for better prediction of wing flutter speed with the input from dynamically measured aerodynamic stability derivatives.
- (ii) Determine the aerodynamic stability derivatives with respect to time, reduced frequency and aerofoil thickness to chord ratio through dynamic wind-tunnel test.
- (iii) Prediction and analysis of the wing flutter speed by using the theoretical, statically and dynamically determined aerodynamic

stability derivatives through the established aeroelastic mathematical model for both thin and thick aerofoil configurations.

1.4 Scopes of the Research

After reviewing and analysing the previous methods for wing flutter speed prediction, this study focuses on the application of aeroelastic equation of motion in determining the flutter speed. The aerodynamic lift and pitching moment model in the equation were modelled in the form of aerodynamic stability derivatives. In this study, the dynamically measured aerodynamic stability derivatives are to be transient case derivatives as they were determined from dynamic wind tunnel testing. Furthermore, the dynamically measured aerodynamic stability derivatives are highly dependent on its oscillating frequency, refereed time and wind speed.

A dynamic test rig was designed to perform a free oscillation test for plunge and pitch motion in order to measure $C_{L_{\alpha}}$, $C_{L_{q}} + C_{L_{\alpha}}$, $C_{M_{\alpha}}$ and $C_{M_{q}} + C_{M_{\alpha}}$ dynamically. The oscillation frequency was control by a set of linear springs with different stiffness in order to match the range of reduced frequency that were used to sense the aerodynamic loads during wind-on condition inside the wind tunnel. The task was carried out by the free oscillation test rig where the derivatives of the wing model were obtained based on the relative difference between the measured wind-on and wind-off time response data of the oscillation amplitudes.

The measurement of steady-state aerodynamic stability derivatives were also taken from the static wind-tunnel test. This was to quantify the difference by comparing the statically measured aerodynamic stability derivatives to the dynamically measured derivatives in the form of magnification factor. A parametric study on the effect of aerofoil thickness to chord ratio on the estimated wing flutter speed was also performed in this study as the parameters were not considered by the other two methods (i.e. Theodorsen's and Scanlan's methods). A set of NACA series symmetrical aerofoil configurations which are NACA 0010, NACA 0012, NACA 0014 and NACA 0018 were selected as the tested wing model for the wind tunnel test. The prediction of wing flutter speed was executed by solving the aeroelastic equation with inclusion of theoretically, statically and dynamically measured aerodynamic stability derivatives through eigenvalue solution in Matlab program.

1.5 Significance of Study

In this study, a dynamic wind tunnel test rig had been developed to measure aerodynamic stability derivatives to replicate the transient case of a 3D rectangular wing. The lift and pitching moment derivatives are formulated in the form of aerodynamic stiffness and damping instead of the Theodorsen's function and Scanlan flutter derivatives. This method studies the effect of thickness to chord ratio of the wing aerofoil where the aspect ratio of the wing is fixed at AR=4.50 in predicting the wing flutter speed by using aeroelastic equation of motion. The dynamically measured aerodynamic stability derivatives are utilised in the aerodynamic loads model instead of statically measured derivatives which is not emphasize by both Theodorsen's and Scanlan's method. In this method, the flutter speed is determined by considering the damping term of the aeroelastic equation of motion is zero.

Thus, the input data of the damping term is crucial for the flutter speed predictions. The advantage of this method is that the formulated aeroelastic equation of motion not only includes the dynamically measured aerodynamic stiffness derivatives (i.e. $C_{L_{\alpha}}$ and $C_{M_{\alpha}}$) but also the dynamically measured aerodynamic damping derivatives (i.e. $C_{L_{q}} + C_{L_{\alpha}}$ and $C_{M_{q}} + C_{M_{\alpha}}$). Therefore, the accuracy of the predicted wing flutter speed can be improved. By comparing the results from the three methods, the correlations among those methods can be used as a guideline for realistic flutter speed predictions.

Although the proposed method in this study is limited to an un-tapered, unswept and un-cambered wing with symmetrical NACA aerofoil under subsonic incompressible flow condition, a good prediction of wing flutter speed with a better aerodynamic loads model will assist during the preliminary aircraft design phase by preventing the wing structure from being over-designed or under-designed. Lastly, as the aeroelastic equation of motion was formulated in the form of state-space equation which allows it to be analysed computationally and made it compatible for control system design in the future study.

1.6 Thesis Outline

An introduction to the problem statements of aircraft wing flutter phenomena that lead to the research objectives of this study are stated in Chapter 1. It is followed by the scopes and significance of this study.

In Chapter 2, the Theodorsen's circulation function method, Scanlan's flutter derivatives method and aerodynamic stability derivatives method are further discussed. The assumptions and limitations of the three methods in modelling the aerodynamic loads model for flutter speed estimation are clarified in the chapter. Some oscillatory test rig designs for the wind tunnel test from previous researchers are reviewed as their experimental technique is utilised in determining the aerodynamic stability derivatives in this study.

Chapter 3 highlights the research methodology of this study and is presented in a flow chart for better understanding. The emphasis of the chapter is the derivation of the aeroelastic equation of motion with aerodynamic stability derivatives in solving for flutter speed. Both wind-on and wind-off conditions are included in the derivations in order to determine the dynamically (transient case) measured aerodynamic stability derivatives from the dynamic wind tunnel test.

The development on the mechanism of oscillatory test rig for wind-tunnel test will be discussed in Chapter 4. The experimental setup, instrumentation techniques and the calibration of the sensor are explained in this chapter. The validation process of the Matlab coding in extracting the aerodynamic stability derivatives from the recorded time response data are also discussed in the chapter. In Chapter 5, preliminary results of the static and dynamic wind tunnel test of NACA 0012 wing model are discussed as a baseline wing model for wing flutter analysis. The discussion is focused on the statically (steady-state case) and dynamically (transient case) measured aerodynamic stability derivatives. Comparisons among the predicted wing flutter speeds and flutter frequency that are solved from the Theodorsen's method, Scanlan's method, theoretical, static method and dynamic method for the four tested wing models (i.e. NACA 0010, NACA 0012, NACA 0014 and NACA 0018) are explained in the chapter.

In Chapter 6, the study draws conclusion on the differences of the predicted wing flutter speed by using the dynamically measured aerodynamic stability derivatives compared to the Theodorsen's method, Scanlan's method, theoretical method and static method. The parametric study on the effect of aerofoil thickness to chord ratio, t_m/C to the dynamically measured aerodynamic stability derivatives is concluded.

REFERENCES

- Abbas, T. and G. Morgenthal (2016). Framework for Sensitivity and Uncertainty Quantification in the Flutter Assessment of Bridges. Probabilistic Engineering Mechanics. 43, 91-105.
- Abbott, I. H. and A. E. Von Doenhoff (1959). Theory of Wing Sections, Including a Summary of Airfoil Data. Dover Publication.
- Amoozgar, M., S. Irani and G. Vio (2013). Aeroelastic Instability of a Composite Wing with a Powered-Engine. Journal of Fluids and Structures, 36, 70-82.
- Anderson Jr, J. D. (1999). A History of Aerodynamics and its Impact on Flying Machines. (8th ed.) Cambridge University Press.
- Ashley, H., G. Zartarian and D. Neilson (1951). Investigation of Certain Unsteady Aerodynamic Effects in Longitudinal Dynamic Stability. Wright Air Development Center, Air Research and Development Command, United States Air Force.
- Babbar, Y., V. S. Suryakumar, A. Mangalam and T. W. Strganac (2013). An Approach for Prescribed Experiments for Aerodynamic-Structural Dynamic Interaction. 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 07-10 January. Grapevine, Texas: AIAA, 2013-0056.
- Babbar, Y., V. S. Suryakumar and T. W. Strganac (2013). Experiments in Free and Forced Aeroelastic Response. 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 07-10 January. Grapevine, Texas: 2013-0054.
- Beran, P. S., N. S. Khot, F. E. Eastep, R. D. Snyder and J. V. Zweber (2004). Numerical Analysis of Store-Induced Limit-Cycle Oscillation. Journal of Aircraft, 41(6), 1315-1326.

- Billah, K. Y. and R. H. Scanlan (1991). Resonance, Tacoma Narrows Bridge Failure, and Undergraduate Physics Textbooks. American Journal of Physics, 59(2), 118-124.
- Bisplinghoff, R. L. and H. Ashley (1962). Principles of Aeroelasticity. Courier Corporation.
- Block, J. J. and T. W. Strganac (1998). Applied Active Control for a Nonlinear Aeroelastic Structure. Journal of Guidance, Control, and Dynamics. 21(6), 838-845.
- Brase, L. O. and W. Eversman (1988). Application of Transient Aerodynamics to the Structural Nonlinear Flutter Problem. Journal of Aircraft, 25(11), 1060-1068.
- Chen P. (2000). Damping Perturbation Method for Flutter Solution: The g-Method. *AIAA Journal*, 38(9), 1519-24.
- Cook, M. V. (2012). Flight Dynamics Principles: A Linear Systems Approach to Aircraft Stability and Control. (Second Edition). USA: Butterworth-Heinemann.
- Corpas, J. C. and J. L. Díez (2008). Flutter Margin with Non-Linearities: Real-Time Prediction of Flutter Onset Speed. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 222(6), 921-929.
- Da Ronch, A., A. McCracken, K. Badcock, M. Widhalm and M. Campobasso (2013). Linear Frequency Domain and Harmonic Balance Predictions of Dynamic Derivatives. Journal of Aircraft, 50(3), 694-707.
- Dansberry, B. E., M. H. Durham, R. M. Bennett, D. L. Turnock, W. A. Silva and J. A. Rivera Jr (1993). Physical Properties of the Benchmark Models Program Supercritical Wing. NASA Technical Memorandum 4457.
- Dardel M, Bakhtiari-Nejad F (2010). A Reduced Order of Complete Aeroelastic Model for Limit Cycle Oscillations. Aerospace Science and Technology, 14(2), 95-105.
- De Leon, D., C. de Souza, J. Fonseca and R. da Silva (2012). Aeroelastic Tailoring Using Fiber Orientation and Topology Optimization. Structural and Multidisciplinary Optimization, 46(5), 663-677.
- De Marqui Junior, C., D. C. Rebolho, E. M. Belo, F. D. Marques and R. H. Tsunaki (2007). Design of an Experimental Flutter Mount System. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 29(3), 246-252.

- Dimitriadis, G. and J. E. Cooper (2001). Flutter Prediction from Flight Flutter Test Data. Journal of Aircraft, 38(2), 355-367.
- Dowell, E. H. and D. Tang (2002). Nonlinear Aeroelasticity and Unsteady Aerodynamics. AIAA Journal, 40(9), 1697-1707.
- Ertveldt, J., J. Lataire, R. Pintelon and S. Vanlanduit (2013). Frequency-Domain Identification of Time-Varying Systems for Analysis and Prediction of Aeroelastic Flutter. Mechanical Systems and Signal Processing, 47(1), 225-242.
- Ertveldt, J., R. Pintelon and S. Vanlanduit (2016). Identification of Unsteady Aerodynamic Forces from Forced Motion Wind Tunnel Experiments. AIAA Journal, 54(10), 3265-3273.
- Ertveldt, J., J. Schoukens, R. Pintelon, S. Vanlanduit, B. De Pauw and A. Rezayat (2015). Design and Testing of an Active Aeroelastic Test Bench (AATB) for Unsteady Aerodynamic and Aeroelastic Experiments. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 5-9 January 2015, Kissimmee, Florida, 2015-1857.
- Fazelzadeh, S. and A. Mazidi (2011). Nonlinear Aeroelastic Analysis of Bending-Torsion Wings Subjected to a Transverse Follower Force. Journal of Computational and Nonlinear Dynamics, 6(3), 031016-1 – 8.
- Florance, J. P., P. Chwalowski and C. D. Wieseman (2010). Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program. NASA Langley Research Center.
- Friedmann, P. P. (1999). Renaissance of Aeroelasticity and Its Future. Journal of Aircraft, 36(1), 105-121.
- Garrick, I. E., & Reed III, W. H. (1981). Historical Development of Aircraft Flutter. Journal of Aircraft, 18(11), 897-912.
- Gao, C., S. Luo, F. Liu and D. M. Schuster (2005). Calculation of Airfoil Flutter by an Euler Method with Approximate Boundary Conditions. AIAA Journal, 43(2), 295-305.
- Gjerek, B., R. Drazumeric and F. Kosel (2012). A Novel Experimental Setup for Multiparameter Aeroelastic Wind Tunnel Tests. Experimental Techniques, 38(6), 30-43.
- Goland, M. (1945). The Flutter of a Uniform Cantilever Wing. Journal of Applied Mechanics-Transactions of the ASME, 12(4), A197-A208.

- Guo, S. J., J. Bannerjee and C. Cheung (2003). The Effect of Laminate Lay-Up on the Flutter Speed of Composite Wings. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 217(3), 115-122.
- Haddadpour, H. and R. Firouz-Abadi (2006). Evaluation of Quasi-Steady Aerodynamic Modeling for Flutter Prediction of Aircraft Wings in Incompressible Flow. Thin-Walled Structures, 44(9), 931-936.
- Haddadpour, H., M. Kouchakzadeh and F. Shadmehri (2008). Aeroelastic Instability of Aircraft Composite Wings in an Incompressible Flow. Composite Structures, 83(1), 93-99.
- Hancock, G., J. Wright and A. Simpson (1985). On the Teaching of the Principles of Wing Flexure-Torsion Flutter. The Aeronautical Journal, 89(888), 285-305.
- Hémon, P., E. De Langre and P. Schmid (2006). Experimental Evidence of Transient Growth of Energy before Airfoil Flutter. Journal of Fluids and Structures, 22(3), 391-400.
- Hoa, L. T. (2004). Flutter Stability Analysis Theory and Example. Tokyo Polytechnic University, Global Center of Excellence Program.
- Hollowell, S. J. and J. Dugundji (1984). Aeroelastic Flutter and Divergence of Stiffness Coupled, Graphite/Epoxy Cantilevered Plates. Journal of Aircraft, 21(1), 69-76.
- Hu, H., Z. Yang and H. Igarashi (2007). Aerodynamic Hysteresis of a Low-Reynolds-Number Airfoil. Journal of Aircraft, 44(6), 2083-2086.
- Kamakoti, R. and W. Shyy (2004). Fluid–Structure Interaction for Aeroelastic Applications. Progress in Aerospace Sciences, 40(8), 535-558.
- Kehoe, M. W. (1995). A Historical Overview of Flight Flutter Testing. NASA Technical Memerandum 4720.
- Kennett D, Timme S, Angulo J, Badcock K. (2012) An Implicit Meshless Method for Application in Computational Fluid Dynamics. International Journal for Numerical Methods in Fluids, 71(8), 1007-28.
- Koo, K. and I. Lee (1994). Aeroelastic Behavior of a Composite Plate Wing with Structural Damping. Computers & Structures, 50(2), 167-176.
- Ladzinski, M. and T. Abbey (2009). Introductory Dynamic FE Analysis Webinar. NAFEMS, The International Association for the Engineering Analysis Community.

- Lai, K. L. (2013). Reduced-Order Aeroelastic Modeling Using Coupled CFD-CSD Simulations and System Identification Technique. 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 08-11 April. Boston, Massachusetts: AIAA, 2013-1863.
- Lambourne, N. (1952). An Experimental Investigation on the Flutter Characteristics of a Model Flying Wing. R. & M. No. 2626.
- Lin, K.-J., P.-J. Lu and J.-Q. Tarn (1989). Flutter Analysis of Cantilever Composite Plates in Subsonic Flow. AIAA Journal, 27(8), 1102-1109.
- Lind, R. (2003). Flight-Test Evaluation of Flutter Prediction Methods. Journal of Aircraft, 40(5), 964-970.
- Lind, R. and M. Brenner (1997). Robust Flutter Margins of an F/A-18 Aircraft from Aeroelastic Flight Data. Journal of Guidance, Control, and Dynamics, 20(3), 597-604.
- Liu, D.-Y., Z.-Q. Wan, C. Yang and T. Yang (2010). Primary Modeling and Analysis of Wing Based on Aeroelastic Optimization. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 12-15 April. Orlando, Florida: AIAA, 2010-2719.
- Liu, F., J. Cai, Y. Zhu, H. Tsai and A. F. Wong (2001). Calculation of Wing Flutter by a Coupled Fluid-Structure Method. Journal of Aircraft, 38(2), 334-342.
- Manikandan, G. and M. A. Rao (2011). Aerofoil Flutter Analysis, Simulation and Optimization. International Journal of Advanced Engineering Sciences and Technologies, 4(1), 53-68.
- Meijer, J. J. (1995). Application of Aeroelastic Methods to Predict Flutter Characteristics of Fighter Aircraft in the Transonic Speed Range. National Aerospace Laboratory, NLR (pp. 14-1 – 14-16). Amsterdam.
- Mittal, S. and P. Saxena (2002). Hysteresis in Flow Past a NACA 0012 Airfoil. Computer Methods in Applied Mechanics and Engineering, 191(19), 2207-2217.
- Molyneux, W. (1957). The Determination of Aerodynamic Coefficients from Flutter Test Data. London: Her Majesty's Stationery Office.
- Moosavi, M., A. Naddaf Oskouei and A. Khelil (2005). Flutter of Subsonic Wing. Thin-Walled Structures, 43(4), 617-627.
- Nelson, R. C. (1998). Flight Stability and Automatic Control. WCB/McGraw Hill.

- Neumann, J. and H. Mai (2013). Gust Response: Simulation of an Aeroelastic Experiment by a Fluid–Structure Interaction Method. Journal of Fluids and Structures, 38, 290-302.
- Nieto, F., J. Owen, D. Hargreaves and S. Hernandez (2015). Bridge Deck Flutter Derivatives: Efficient Numerical Evaluation Exploiting Their Interdependence. Journal of Wind Engineering and Industrial Aerodynamics, 136, 138-150.
- Poirel, D., Y. Harris and A. Benaissa (2008). Self-Sustained Aeroelastic Oscillations of a NACA0012 Airfoil at Low-To-Moderate Reynolds Numbers. Journal of Fluids and Structures, 24(5), 700-719.
- Poirel, D. and S. Price (2003). Random Binary (Coalescence) Flutter of a Two-Dimensional Linear Airfoil. Journal of Fluids and Structures, 18(1), 23-42.
- Predoiu, I., M. Stoia-Djeska, F. Frunzulică, I. Popescu and P. Silişteanu (2006). Aeroelastic Models and the Synthesis of Controllers for Flutter Supression. SISOM. 17-19 May. Bucharest, 395-402.
- Price, S. and B. K. Lee (1993). Evaluation and Extension af the Flutter-Margin Method for Flight Flutter Prediction. Journal of Aircraft, 30(3), 395-402.
- Qiao, Y. (2012). Effect of Wing Flexibility on Aircraft Flight Dynamics. MsC Thesis. Cranfield University, United Kingdom.
- Qin, Z. and L. Librescu (2003). Aeroelastic Instability of Aircraft Wings Modelled as Anisotropic Composite Thin-Walled Beams in Incompressible Flow. Journal of Fluids and Structures 18(1): 43-61.
- Rival, D. and C. Tropea (2010). Characteristics of Pitching and Plunging Airfoils under Dynamic-Stall Conditions. Journal of Aircraft, 47(1), 80-86.
- Rivera, J., B. Dansberry, M. Farmer, C. Eckstrom, D. Seidel and R. Bennett (1991). Experimental Flutter Boundaries with Unsteady Pressure Distributions for the NACA 0012 Benchmark Model. 32nd Structures, Structural Dynamics, and Materials Conference. 08-10 April. Baltimore, MD: AIAA-1-1010-CP.
- Sarkar, P. P., N. P. Jones and R. H. Scanlan (1992). System Identification for Estimation of Flutter Derivatives. Journal of Wind Engineering and Industrial Aerodynamics, 42(1), 1243-1254.
- Scanlan, R., N. Jones and L. Singh (1997). Inter-Relations among Flutter Derivatives. Journal of Wind Engineering and Industrial Aerodynamics, 69(71), 829-837.

- Scanlan, R. H. and J. Tomko (1971). Air Foil and Bridge Deck Flutter Derivatives. Journal of Soil Mechanics & Foundations Div., 97(6), 1717-1737.
- Schuster, D. M., D. D. Liu and L. J. Huttsell (2003). Computational Aeroelasticity: Success, Progress, Challenge. Journal of Aircraft, 40(5), 843-856.
- Sedaghat, A., J. Cooper, J. Wright and A. Leung (2000). Limit Cycle Oscillation Prediction for Aeroelastic Systems with Continuous Non-linearities. 41st Structures, Structural Dynamics, and Materials Conference. 03-06 April. Atlanta, GA: AIAA-2000-1397.
- Shokrieh, M. M. and F. T. Behrooz (2001). Wing Instability of a Full Composite Aircraft. Composite Structures, 54(2), 335-340.
- Shubov, M. A. (2006). Flutter Phenomenon in Aeroelasticity and Its Mathematical Analysis. Journal of Aerospace Engineering, 19(1), 1-12.
- Soltani, M., F. Marzabadi and Z. Mohammadi (2012). Experimental Study of the Plunging Motion with Unsteady Wind Tunnel Wall Interference Effects. Experimental Techniques, 36(5), 30-45.
- Song, J., T. Kim and S. J. Song (2012). Experimental Determination of Unsteady Aerodynamic Coefficients and Flutter Behavior of a Rigid Wing. Journal of Fluids and Structures, 29, 50-61.
- Stoica, A., M. Stoia-Djeska and A. Ionita (2003). A Control Design for a Typical Flutter Suppression Problem. Proceedings of the 11th International Symposium on Systems Theory, Automation, Robotics, Computers, Informatics, Electronics and Instrumentation. October. Craiova, 619-626.
- Strganac, T. (1988). A Study of Aeroelastic Stability for the Model Support System of the National Transonic Facility. 15th Aerodynamic Testing Conference. 18-20 May. San Diego, CA: AIAA-1988-2033.
- Sváček, P. (2008). Application of Finite Element Method in Aeroelasticity. Journal of Computational and Applied Mathematics, 215(2), 586-594.
- Tang, D. and E. H. Dowell (1998). Unsteady Aerodynamic Forces and Aeroelastic Response for External Store of an Aircraft. Journal of Aircraft, 35(5), 678-687.
- Teng, Y. and H.-P. Chen (2005). Analysis of Active Flutter Suppression with Leadingand Trailing-Edge Control Surfaces via μ-Method. Aerotech Congress & Exhibition. 03-06 October. Grapevine, Texas: 2005-01-3421.

- Tewari, A. (1998). Robust Optimal Controllers for Active Flutter Suppression. Guidance, Navigation, and Control Conference and Exhibit. 10-12 August. Boston, MA: AIAA-98-4142.
- Theodorsen, T. (1935). General Theory of Aerodynamic Instability and the Mechanism of Flutter. Report National Advisory Committee for Aeronautics. (pp. 413-433), Report No. 496.
- United States of America (2017). Electronic Code of Federal Regulations. Title 14, Part 23, Subpart C.
- Ursu, I., M. Stoia-Djeska and F. Ursu (2004). Active Control Laws for Flutter Suppression. Annals of University of Craiova, 27.
- Waszak, M. R. (1998). Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications. Langley Research Center, NASA/TP-1998-206270.
- Williams, D. R., X. An, S. Iliev, R. King and F. Reißner (2015). Dynamic Hysteresis Control of Lift on a Pitching Wing. Experiments in Fluids, 56(5), 1-12.
- Wright, J. R. and J. E. Cooper (2008). Introduction to Aircraft Aeroelasticity and Loads. United Kingdom: John Wiley & Sons, Ltd.
- Zaman, K., J. Panda and C. L. Rumsey (1993). Estimation of Unsteady Lift on a Pitching Airfoil from Wake Velocity Surveys. 31st Aerospace Sciences Meeting, Aerospace Sciences Meetings. 11-14 January. Reno, NV: AIAA-93-0437.
- Zhao, Y. and H. Hu (2004). Aeroelastic Analysis of a Non-Linear Airfoil Based on Unsteady Vortex Lattice Model. Journal of Sound and Vibration, 276(3), 491-510.