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ABSTRACT

Wastewater treatment methods are intended to improve the quality of

wastewater to prevent many health problems stemming from water sources. Among

popular treatment methods are oxidation pond and constructed wetland (CW)

treatment. There are some mathematical models for simulating oxidation pond

process where some important parameters are considered such as bacteria (cleansing

agent), pollutants and dissolved oxygen (DO). However, previous results did not

provide good approximation of the required parameters. Meanwhile, for constructed

wetland models, the stability analysis was rarely considered. However, the steady-

state and bifurcation analyses are usually crucial in determining the reliability of

the models that is under study. In this thesis, dynamic mathematical models are

developed to allow simulation and prediction of the wastewater treatment process

for both oxidation pond and CW case studies. The nonlinear system of ordinary

differential equations (ODE) using multiple substrate limiting factors with interactive

reactions and partial differential equations (PDE) using advection-diffusion-reaction

equations are implemented for CW and oxidation pond, respectively. Water quality

indexes considered in this study are chemical oxygen demand (COD), biochemical

oxygen demand (BOD), ammonium nitrogen (NH+
4 ), nitrate (NO3), and DO. For

oxidation pond system, the input of microbe-based product (mPHO) is added to

the model, whereas the effect of living plants (Typha Angustifolia) is introduced in

the CW treatment system to mimic the natural behaviour of the wetland system.

Since the models are nonlinear, coupled, and dynamic, computational algorithms with

specific numerical methods are employed to simulate the dynamical behaviour of

the system. Implicit Runge-Kutta method is selected for solving the ODE model.

Whereas, for the PDE, the implicit Crank-Nicolson method is used. The process

model built is then optimised using gradient-free optimisation method (least squares)

algorithms NonlinearModelFit in Mathematica to identify the optimal solution

for improving the efficiency of the simulation process. Stability, bifurcation, and

numerical analyses are presented to illustrate the dynamical behaviour of the proposed

model. Numerical results also revealed that the proposed models have good accuracy

when compared to the experimental data. The two separate mathematical models for

oxidation pond and constructed wetland, both are then applied to simulate a wastewater

treatment site with pond-constructed wetland system. The combined mathematical

model results in a further removal of COD as well as an increase of DO up to 94.1%

and 97.4% respectively when compared to a single oxidation pond model.
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ABSTRAK

Kaedah rawatan air sisa adalah bertujuan untuk meningkatkan kualiti air sisa

bagi mengelakkan banyak masalah kesihatan yang berpunca daripada sumber air.

Antara kaedah rawatan yang popular adalah kolam pengoksidaan dan tanah bencah

yang dibina (CW). Terdapat beberapa model matematik untuk mensimulasikan proses

kolam pengoksidaan di mana beberapa parameter penting diambilkira seperti bakteria

(ejen pembersihan), pencemaran dan oksigen terlarut (DO). Walau bagaimanapun,

keputusan yang sedia ada tidak memberikan aggaran yang baik bagi parameter yang

diperlukan. Sementara itu, bagi model tanah bencah yang dibina, analisis kestabilan

jarang dipertimbangkan. Walau bagaimanapun, analisis kestabilan dan pencabangan

biasanya penting dalam menentukan kebolehpercayaan model yang dikaji. Dalam

tesis ini, model matematik dinamik dibangunkan untuk membolehkan simulasi dan

ramalan proses rawatan air sisa untuk kedua-dua kajian kes kolam pengoksidaan

dan CW. Sistem tak linear persamaan pembezaan biasa (ODE) menggunakan faktor

terhad pelbagai substrat dengan reaksi interaktif dan persamaan pembezaan separa

(PDE) menggunakan persamaan alir lintang-penyebaran-reaksi diterapkan masing-

masing untuk CW dan kolam pengoksidaan. Indeks kualiti air yang diukur dalam

kajian ini ialah permintaan oksigen kimia (COD), permintaan oksigen biokimia

(BOD), ammonia nitrogen (NH+
4 ), nitrat (NO3), dan DO. Untuk sistem kolam

pengoksidaan, fungsi input produk berasaskan biologi (mPHO) ditambah pada model,

manakala faktor tumbuhan hidup (Typha Angustifolia) diperkenalkan bagi sistem

rawatan CW untuk menggambarkan sistem semula jadi tanah bencah. Memandangkan

model yang dibina tak linear, terkait, dan dinamik, algoritma pengiraan dengan

kaedah berangka yang khusus digunakan untuk mensimulasikan sifat dinamik

sistem. Kaedah Runge-Kutta tersirat dipilih untuk menyelesaikan model ODE.

Bagi model PDE, kaedah Crank-Nicolson tersirat digunakan. Model proses yang

dibina kemudiannya dioptimumkan dengan algoritma NonlinearModelFit dalam

Mathematica iaitu kaedah pengoptimuman bebas kecerunan (kuasa dua terkecil)

untuk mengenalpasti penyelesaian yang optimum bagi meningkatkan kecekapan

proses simulasi. Kestabilan, pencabangan, dan analisis berangka dibentangkan untuk

menggambarkan keadaan dinamik model yang dicadangkan. Keputusan berangka juga

menunjukkan ketepatan yang baik apabila dibandingkan dengan data eksperimen. Dua

model matematik yang berasingan untuk kolam pengoksidaan dan tanah bencah yang

dibina kemudiannya kedua-duanya digunakan sekali untuk mensimulasikan proses

rawatan air sisa dengan sistem kolam-tanah bencah. Model matematik gabungan

menghasilkan penyingkiran COD serta peningkatan DO masing-masing sehingga 94.1

% dan 97.4 % berbanding model kolam pengoksidaan tunggal.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Mathematical modelling is an important and well-known field of study which

has led to the enrichment of science and technology. Fields that require mathematical

modelling include medicine, ecology, biology, finance, and economics. This has further

encouraged many researchers to develop new models to fulfill the demand arose from

these fields. These new mathematical models are expected to aid in analyzing and

solving the problems encountered by the fields mentioned. A mathematical model

is a simplified version of the real world process employing the tools of mathematics

such as statistics, probability theory, graph theory, and differential equations. These

mathematical methods help in understanding the nature of problems that cannot be

clearly interpreted through phenomenological observation. Sometimes, one needs to

develop a new method to solve the problems or modify the standard previous methods

that have been successful. Challenges should be taken as a motivation for researchers

to mathematically model the current problems and facilitate it to be understood by the

public.
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1.1.1 Wastewater

One of the main problems widely concerned is the issue of environmental

pollution. Development without a systematic planning is like ignoring the

sustainability of environment. There are a huge number of wastes being produced

daily as the result of human activities; for instance, solid waste, hazardous waste,

wastewater (sewage and surface runoff), and radioactive waste. Wastewater can be

classified into several types including industrial waste, municipal waste, food waste,

and sewage from houses. This kind of wastes has to be carefully treated to ensure that

there would be no harm to human and the environment. If untreated wastewater is

allowed to accumulate in the river followed by the processing of decomposed organic

material, it can lead to water pollution. Additionally, untreated wastewater usually

contains numerous pathogens or diseases caused by microorganisms.

Severe pollution has become our main concern that leads to the production

of a mathematical model that is able to preserve and conserve the environment to run

smoothly, thus helping the development of human capital. The execution of wastewater

treatment process depends on symbiotic relationships of biological organism found in

a system. Therefore, understanding the ecological system is very crucial to construct

the so-called symbiotic relationship and function related to wastewater treatment

processes.

1.1.2 Oxidation Pond

Oxidation pond techniques have become very popular among small

communities due to their low construction and operating costs [1]. The construction

and maintenance costs of this treatment are inexpensive compared to other recognized

treatment systems including microbial fuel cell (MFC), membrane bioreactor (MBR),

and rotating biological contactor (RBC). The core procedure of an oxidation pond
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treatment process is the degradation of contaminants and organic matter in two

conditions; where oxygen is present (aerobic) or absence (anaerobic). At each stage,

existing microorganisms are used to breakdown either organic or inorganic substances

of influent and to reduce organic material into more concise forms, which are carbon

dioxide, water, and cell biomass.

Oxidation pond chosen for the pilot scale study is an exposed oxidation pond

located at Taman Timor Oxidation Pond, Tampoi, Johor. This pond was chosen because

it has been experimentally studied by J-Biotech for three months period to observe

the effects of microbe-based product (mPHO) in treating sewage. Nonetheless, there

is no specific study done on this product until now. Briefly, the size of this pond is

estimated about 1,909 square metres with a depth of 1.5 metres and total water volume

of 2,864.13 cubic metres or 2,864,125.13 litres (refer to Figure 1.2 and Figure 1.3).

However, the input and output flow rate of wastewater as well as the volume of rain

may not change the volume of water in the pond as the wastewater is discharged

due to overflow. In order to intensify the effectiveness of oxidation pond technique

and to accelerate the population of Phototrophic bacteria (PSB) in the pond, mPHO

containing mainly PSB have been added regularly within three months period of study

between 13 November 2013 to 12 February 2014.

The product mPHO is made from selected species of PSB (refer Figure 1.4)

manufactured by J-Biotech. About 1,375 litres of mPHO were applied to the pond

throughout three months of treatment. Samples were collected at two points, which

are CP1 (influent and application of mPHO) and CP2 (effluent) (refer to Figure 1.5).

Comparison of data taken at both points CP1 and CP2 demonstrated that mPHO has a

good effect in reducing the concentration of pathogenic bacteria (E. coli and Coliform),

BOD, COD and other pollutants as the PSB and dissolved oxygen (DO) concentration

increases.
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Figure 1.1 Relationship between the Organic Carbon in Sewage [2]

Figure 1.2 Aerial View of Oxidation Pond, Tampoi, Johor Bahru [3]
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Figure 1.3 Physical Condition of Oxidation Pond, Tampoi, Johor Bahru [3]

Figure 1.4 Beneficial Microbe-Based Product (mPHO) Produced by J-Biotech

Company [3]

Figure 1.5 (a) Location of CP1 (influent) (b) Location of CP2 (effluent) [3]



6

1.1.3 Constructed Wetland

Constructed wetland system can be considered as a secondary or tertiary

treatment facility for treating wastewater originated from the residential, municipal

and industrial areas [4]. Besides playing an important role in wastewater treatment

process to remove contaminants including organic matter and inorganic matter (based

on COD removal and BOD removal), it is also helpful in maintaining the landscape that

preserve the natural habitats of flora and fauna [5–7]. Wetlands treatment is defined as

a treatment system using the aquatic root system of cattails, reeds, and similar plants

to treat wastewater applied to either above or below the soil surface [8–10].

This treatment system acts as a filter to remove excess nutrients in the form of

carbon and nitrogen from its source. The top layer of constructed wetland is planted

with various types of plant, while the roots are allowed to develop deep and extensive

roots that can penetrate the filter media. In fact, it can also help to develop porous

throughout the land, allowing the wastewater to seep below the soil surface. At the

root of the plant, there are fixed surfaces on which bacteria can attach and perform the

breakdown of organic matter [11]. The vegetation provides an air flow to the root zone

transporting an amount of oxygen. This environment will help aerobic bacteria to grow

while maximizing the degradation process.

However, the primary role of vegetation is to maintain permeability in the

filter and to provide habitats for microorganisms. Nutrients and organic material are

absorbed and degraded by the dense microbial population. Unlike oxidation pond,

constructed wetland system usually treats some sort of wastewater known as leachate.

Leachate can be identified as any contaminated liquid generated from water permeating

through a solid waste disposal site moving into subsurface regions. As these wastes are

compacted or chemically react, bound water is discharged as leachate [10]. Therefore,

landfill leachate treatment has been perceived as an essential part of solid waste

management.
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Figure 1.6 (a) Phragmites Australis (b) Glyceria Maxima (c) Phalaris Arundinacea

(d) Cattails (Typha Angustifolia) [8]

Figure 1.7 Putrajaya Lake and Wetland System, Putrajaya, Malaysia [12]
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Constructed wetlands can be planted with a number of adapted, emergent

wetlands plant species. Typha Angustifolia, which belongs to the Typhaceae family,

was selected as the subject of this study (refer Figure 1.6). It is an erect, perennial

freshwater aquatic herb that can grow three or more meters in height. The linear

cattail leaves are thick, ribbon-like structures with a spongy cross-section exhibiting air

channels. The subterranean steam rises from thick rhizomes [13]. This plant has been

selected for various reasons. One of those is that it is among the most common wetland

plants available in the region (refer Figure 1.7). Besides, typha types of plant have

been extensively studied in the Europe as suitable species of vegetation in constructed

wetlands [14].

According to the study by Chew [15], the removal efficiency of nutrient from

landfill leachate in the form of ammoniacal nitrogen and nitrate by Typha Angustifolia

ranges from 42.6%–88.9%. Meanwhile, the removal of BOD and COD ranging from

62.6%–72.8% and 64.5 %–85.7%, respectively.

1.2 Background of the Problem

This study aims to explain the biological processes that underpin the wastewater

treatment system by showing how the bacteria deal with the pollutant in the sewage.

Basically, there are three major processes involved in the treatment plant, which are

biodegradation of pollutant, the decreased of oxygen levels, and the cleansing of

wastewater. Wastewater can be divided into two types, which are the one produced

by human and the other resulting from industrial activities. According to Fakhrul-

Razi et al. [16], sewage is considered as the largest contributor of organic pollution to

water resources around the world. In addition, the largest proportion (64.4%) of total

waste in Malaysia is also contributed by sewage, followed by animal husbandry wastes

(32.6%), agricultural resources (1.7%) and lastly industrial waste (1.3%) in terms of

biochemical oxygen demand (BOD) load. If the wastewater is not well treated and

directly discharged into the environment, water-borne diseases will be spread.
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It all started around the early twentieth when many researchers are trying to

design an environmental friendly system utilizing biological treatment. This biological

treatment was constructed to preserve the environment and to treat the wastewater.

Since then, the treatment system has become the foundation of many wastewater

treatment systems worldwide. The treatment method involves retaining bacteria

naturally present in high concentration or population of wastewater treatment plant. It

comprises several types of bacteria and protozoa found in treatment plant collectively

referred as activated sludge [2]. The essence of the treatment is that bacteria break

down organic carbon as a source of energy and food. As a result, bacteria can grow

while the wastewater is being cleansed. Treated sewage at treatment plant is usually

safe to be discharged into rivers or sea. Although the idea of applying bacteria into

this treatment looks simple, the process is actually more complex considering many

parameters that affect the treatment system. These include the changes in composition

of bacteria, external factors such as weather, temperature and sunlight for an exposed

treatment plant, as well as the changes in sewage passing through the treatment plant.

Industrial wastewater containing toxic chemicals at very high concentration

may also affect the treatment process as the bacteria are only able to slowly degrade

the pollutant. This toxic shock may inhibit the growth of bacteria, resulting in the

untreated effluent discharged by the treatment plant to the environment. In this case,

treatment plant will become malfunction until the dead bacteria are replaced with the

new bacterial seeds.

Normally, the composition of effluents discharged to receiving waters is

monitored by the national environment agencies. For example in Malaysia, the water

quality standard must be in agreement with the Water Environment Partnership in Asia

(WEPA). The legislation is concerned with the prevention of pollution and therefore

sets concentration limits on dissolved organic carbon as biochemical oxygen demand

(BOD), chemical oxygen demand (COD), nitrogen and phosphates (PO−3
4 ) that can

cause eutrophication if excessive [2].
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Most wastewaters largely comprised organic carbon either in solution or

particulate matter. Extremely small particle ranging from one nanometer (nm) to

100 micrometers (μm) will remain in colloidal suspension and become adsorbed to

the activated sludge during treatment. It is quite straightforward to experimentally

measure the amount of organic carbon in the sewage. There are two types of different

measurement namely combustion and chemical oxidation, which can be described as

total organic carbon (TOC) and chemical oxygen demand (COD), respectively. TOC

is calculated by the accumulation of carbon dioxide (CO2) produced by combustion at

a very high temperature. Meanwhile for COD, the sample is heated in strong sulphuric

acid (H2SO4) containing potassium dichromate (K2Cr2O7). The oxidized carbon is

determined by the amount of dichromate used in the reaction and the result is expressed

in unit of oxygen [2].

However, both measurements have their own weaknesses, since they

overestimate the organic carbon compounds that cannot be broken down biologically.

Conversely, some aromatic compounds including benzene (C6H6), toluene (CH3) and

pyridine (C5H5N) are only partly oxidized in the procedure. Overall, TOC and COD

will overestimate the carbon that can be removed by activated sludge. The more

accurate method that can be used to determine the biodegradable carbon is the 5-

day biological oxygen demand (BOD5) (refer to Figure 1.1). This method is used

to measure the oxygen uptake over a 5-day period by a small seed of bacteria that

are confined in the dark, in a bottle containing the wastewater. During this time,

the biodegradable organic carbon was taken up, and a corresponding decrease in the

dissolved oxygen can be observed as some carbons were used for the respiration of the

bacteria. The values obtained for BOD5 are always lower than those for COD by two

reasons. The first reason is that activated sludge bacteria cannot chemically degrade

some of the compounds oxidized in the COD test, while the second one is that some of

the carbon removed during the BOD test is not oxidized, but ends up in a new bacterial

biomass. Thus, it can be stated that BOD is the measurement of biodegradable carbon

that is actually oxidized by the bacteria [17].
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The mathematical models of the activated sludge process from previous studies

will be discussed in Chapter 2. This section also includes relevant mathematical

background and concepts necessary for modelling the process and interpret the

solutions. The modelling equations as well as constitutive relations represent the

physical effects that are present in the process. Basically, solving these mathematical

models, requires the discretization in both space and time.

There are many studies done using ordinary differential equation models for

constructed wetland including that conducted by Rousseau [18]. However, it was found

that these studies have not considered the stability analysis of the models including the

steady-state and bifurcation analyses, which are crucial in determining the reliability

and importance of the proposed models. Therefore, a model is proposed introducing

a more simplified form for mass transport of oxygen through plant roots which is the

difference between saturated oxygen concentration and the current concentration of

dissolved oxygen (DO) compared to exponential term used by Rousseau [18].

Meanwhile, for oxidation pond model, the advection-diffusion-reaction

equation model proposed by Pimpunchat et al. [19] is extended to three state variables

in this study, which are phototrophic bacteria (PSB), chemical oxygen demand (COD)

and DO. On top of that, it has been discovered that there is no available simulation

published on the combined treatment systems (pond-constructed wetland) despite the

experimental studies done [20–23]. Thus, this present study is conducted simulating

the aforementioned system to act as a reference in improving the efficiency of

wastewater treatment system.
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1.3 Problem Statement

The sources of wastewater can be either from the industrial or non-industrial

area. The major source of pollution comes from the non-industrial parts and the waste

produced by human contributes the largest part of the non-industrial pollution. If

it cannot be well handled, many problems will arise including epidemics. Hence,

pollution level should be maintained at a very low level or at least controllable.

Wastewater with human sources can be efficiently treated by oxidation pond. In

addition, wetland system can effectively control industrial wastewater; for instance,

the wastewater discharging from construction sites. Currently, there are several

mathematical models available for simulating oxidation pond process where some

important parameters are considered such as bacteria (cleansing agent), pollutants and

dissolved oxygen (DO). However, previous results did not provide good approximation

on the required parameters. Moreover, stability analysis was rarely considered for

constructed wetland models. However, the steady-state and bifurcation analyses

are usually crucial in determining the reliability of the models that is under study.

Thus, dynamic mathematical models are developed in this study to allow the

simulation and prediction of wastewater treatment process for both oxidation pond

and CW case studies. Furthermore, the nonlinear system of ordinary differential

equations (ODE) using multiple substrate limiting factors with interactive reactions

and partial differential equations (PDE) using advection-diffusion-reaction equations

are implemented for CW and oxidation pond, respectively.

1.4 Objectives of the Research

The objectives of this research are as follows:

1. To develop a mathematical model for wastewater treatment process of an

oxidation pond with microbe-based product (mPHO) produced by Johor

Biotechnology & Biodiversity Corporation (J-Biotech).



13

2. To develop a mathematical model for horizontal subsurface flow constructed

wetlands system with vegetation type (Typha Angustifolia) based on the study

given in Chew [15].

3. To construct numerical simulation and analysis of the models for validation.

4. To combine wastewater treatment processes by using pond-constructed wetland

system.

1.5 Scope of the Research

This research is divided into two major parts, which are oxidation pond

treatment process using microbe-based product in liquid form (mPHO) and horizontal

subsurface flow constructed wetland system using plant type (Typha Angustifolia).

1.6 Significance of the Research

The significance of this research are as follows:

1. This study emphasises the ability of mathematical modelling to facilitate the

process of wastewater treatment system using oxidation pond, which has

become an important treatment procedure in Malaysia governed by Indah Water

Consortium (IWK).

2. This study provides a mathematical model to understand the wastewater

treatment process of constructed wetland and allow it to predict the output if

the model is used for a long period.

3. The mathematical models are able to help the preservation and conservation of

environment to run smoothly in the sense that it can save a lot of maintenance

cost as well as being more efficient.



14

1.7 Thesis Organization

This thesis is organized as follows:

The first chapter explains in depth on the issue of water pollution, which has

become our main concern. It includes motivation, the background of study, problem

statement, objectives, significance as well as the scope of study to be carried out.

Chapter 2 reviews the biological processes related to water treatment process

as other studies have obtained relevant methods to treat wastewater in the past until

the present such as that conducted by Rousseau [18], Pimpunchat et al. [19] and Wang

et al. [23].

In Chapter 3, the proposed solutions are discussed in detail. It covers the

construction of model, parameter estimation and the method for nondimensionalization

of the model.

Chapter 4 presents the oxidation pond problems involving ODE as well as the

PDE models. This chapter presents four types of different models. The first model

is three competing species model, which includes three types of bacterium known as

E.coli, Coliform, and PSB. The second model is the coupled-reaction equations model,

which includes COD, DO, PSB, and Coliform. The other two are the PDE models

comprising advection-reaction equations and advection-diffusion-reaction equations

models for competing species and transport of pollutant, respectively.

Chapter 5 presents the constructed wetland problems. In this chapter, three

models are constructed based on the ODE model. The first model is the nonlinear

ordinary differential equations model consisting six state variables. The second model

is considered as the simplified model for the purpose of model analysis. Thus, the

state variables for the model were reduced to only three variables including DO,
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mixed culture bacteria (cleansing agent) and COD. Lastly, the dimensionless model

is analysed to show the behaviour of the proposed model.

Chapter 6 presents the simulation of pond-constructed wetland system. The

simulation was carried out by combining an advection-diffusion-reaction equations

model for oxidation pond with the simplified model for constructed wetland.

Finally, Chapter 7 summarizes the study with a conclusion, re-stating the

contributions as well as some suggestions for future studies.



REFERENCES

1. Abdel-Shafy, H. I. and Salem, M. A. Efficiency of Oxidation Ponds for Wastewater

Treatment in Egypt. In: Wastewater Reuse-Risk Assessment, Decision-Making

and Environmental Security. Springer, 2007. 175-184.

2. Davies, P. S. The Biological Basis of Wastewater Treatment. Strathkelvin

Instruments Ltd, 2005. 3-11.

3. Ockendon, J. R., Wake, G., Teo, K. L., Loxtan, R., Araujo, A., Widodo, B., Murid,

A. H. M., Hoe, Y. S., Banitalebi, A., Johar, F. and Siam, F. M. Mathematical

Modeling and Optimization for Biological-Based Treatment of Taman Timor

Oxidation Pond, Johor. Malaysian 2nd Mathematics in Industry Study Group

(MISG 2014). March 17-21, 2014. Universiti Teknologi Malaysia, Johor Bahru,

Malaysia. 2014. 1-37.

4. Maehlum, T. Treatment of Landfill Leachate in On-Site Lagoons and Constructed

Wetlands. Wat. Sci. Tech., 1995. 32(3): 129-135.

5. Campbell, C. S. and Ogden, M. H. Constructed Wetlands in the Sustainable

Landscape. USA: John Wiley & Sons. 1999

6. Knight, R. L. Wildlife Habitat and Public Use Benefits of Treatment Wetlands.

Water Science and Technology, 1997. 35(5): 35-43.

7. Kivaisi, A. K. The Potential for Constructed Wetlands for Wastewater Treatment

and Reuse in Developing Countries: A Review. Ecological Engineering, 2001.

16(4): 545-560.

8. Kadlec, R. H. and Knight, R. L. Treatment Wetlands. Florida, USA: Lewis-CRC

Press. 1996



155

9. Gearheart, R. A. The Use of Free Surface Constructed Wetlands as an Alternative

Process Treatment Train to Meet Unrestricted Water Reclamation Standards. Wat.

Sci. Tech., 1999. 40(4-5): 375-382.

10. Pankratz, T. M. Environmental Engineering Dictionary and Directory. New York:

Lewis Publishers. 2001

11. Karlovsky, P. Secondary Metabolites in Soil Ecology. Springer, 2008. 1-19.

12. Wang, L. K., Tay, J. H., Tay, S. T. L. and Hung, Y. T. Environmental

Bioengineering. New York: Springer Science & Business Media. 2010

13. Dimirezen, D. and Aksoy, A. Accumulation of Heavy Metals in Typha

Angustifolia (L.) and Potamogeton Pectinatus (L.) Living in Sultan Marsh

(Kayseri, Turkey). Chemosphere, 2004. 56: 685-696.

14. Kaseva, M. E. Performance of a Sub-Surface Flow Constructed Wetlands in

Polishing Pre-treated Wastewater-A Tropical Case Study. Water Research, 2004.

38(3): 681-687.

15. Chew Ai Ling. Nutrient Removal from Leachate Using Horizontal Subsurface

Constructed Wetlands. Master Dissertation. Universiti Teknologi Malaysia,

Malaysia; 2005

16. Fakhru
′

l-Razi, A., Zahangir A. M., Idris, A., Abd-Aziz, S. and Molla, A. H.

Filamentous Fungi in Indah Water Konsortium (IWK) Sewage Treatment Plant for

Biological Treatment of Domestic Wastewater Sludge. Journal of Environmental

Science and Health, Part A, 2002. 37(3): 309-320.

17. Gray, N. F. Biology of Wastewater Treatment, Series on Environmental Science

and Management. London: Imperial College Press. 2004

18. Diederik Rousseau. Performance of Constructed Treatment Wetlands: Model-

Based Evaluation and Impact of Operation and Maintenance. Ph.D. Thesis. Ghent

University, Ghent, Belgium; 2005

19. Pimpunchat, B., Sweatman, W. L., Wake, G. C., Triampo, W. and Parshotam, A.

A Mathematical Model for Pollution in a River and Its Remediation by Aeration.

Applied Mathematics Letters, 2009. 22: 304-308.



156

20. Wang, X., Bai, X., Qiu, J. and Wang, B. Municipal Wastewater Treatment with

Pond-Constructed Wetland System: A Case Study. Water Science and Technology,

2005. 51(12): 325-329.

21. Peng, J. F., Wang, B. Z. and Wang, L. Multi-Stage Ponds-Wetlands Ecosystem for

Effective Wastewater Treatment. Journal of Zhejiang University. Science. B, 2005.

6(5): 346-352.
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