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ABSTRACT 

 
 
 

The high content of carbon dioxide (CO2) in sour crude natural gas can cause 
damage to the pipeline system and reduce natural gas quality. Green technology via catalytic 
methanation reaction was found to be the best method for sour gas sweetening, whereby 
methane (CH4) is produced thus increasing the gas quality. In this study, the manganese-
ruthenium (Mn/Ru) oxide catalysts were modified through the addition of copper (Cu), 
chromium (Cr), iron (Fe), vanadium (V) and zinc (Zn) to produce excellent methanation 
catalysts. The catalysts were prepared via the wet impregnation method, followed by ageing 
process for one day and calcination at various temperatures for 5 hours, and tested on 
simulated natural gas (CO2/H2) using a Pyrex glass reactor with an internal diameter of 10 
mm at atmospheric pressure. The catalysts have undergone several optimizations such as 
calcination temperatures, various loading amount of catalysts, weight hourly space velocity 
(WHSV) as well as reproducibility, regenerability and stability testing. The results showed 
that Ru/Mn/Cu(10:30:60)-Al2O3 catalyst calcined at 1000oC was the most active, with 98.5% 
CO2 conversion and 19.7% CH4 yield achieved at 220oC. The second most active catalyst 
was Ru/Mn/Fe(5:35:60)-Al2O3 with 93.2% CO2 conversion and 19.2% CH4 yield achieved at 
270oC. The Cu based catalyst was verified by response surface methodology-central 
composite design (RSM-CCD) and the optimum conditions were with the loadings of 60% 
of Cu, 29.5% of Mn and 10.5% of Ru at calcination temperature of 1010oC with 1200    
mL/g-1h-1 WHSV to achieve the 96.6% of CO2 conversion, while the experimental result 
gave 98.5% CO2 conversion, which was 1.9% higher than the suggested value. For Fe based 
catalyst, the optimum conditions were with the loadings of 60% of Fe, 34.5% of Mn and 
5.5% of Ru at calcination temperature of 1010oC with 1200 mL/g-1h-1 WHSV to achieve the 
96.6% of CO2 conversion, while the experimental result gave 95.5% which was 1.1% less 
than the suggested value. Analysis of the results of the characterization by X-ray diffraction 
(XRD) and X-ray photoelectron spectroscopy (XPS) for Cu based catalyst showed the active 
species were RuO2, Mn3O4 and CuO, while field emission scanning electron microscopy 
(FESEM) assigned the presence of small particles that were homogeneously distributed. For 
Fe based catalyst, the active species were RuO2, Mn3O4 and Fe3O4 with small particles that 
distributed homogeneously on the catalyst surface as shown in the FESEM micrograph. 
Energy dispersion X-ray (EDX) analysis for both catalysts also confirmed the presence of all 
elements in the prepared catalysts. From the nitrogen adsorption (NA) analysis, a higher 
surface area and macroporous property of the materials may have contributed to the higher 
catalytic activity. Temperature programmed desorption (TPD) results also confirmed that 
both catalysts showed superior performance for sorption of CO2, while the temperature 
programmed reduction (TPR) gave reduction sites at lower temperatures. The 
Ru/Mn/Cu(10:30:60)-Al2O3 catalyst was more efficient towards CO2 conversion, exhibited 
good reliability and reproducibility as well as regenerability compared to the 
Ru/Mn/Fe(5:35:60)-Al2O3 catalyst. Furthermore, the mechanistic study by Fourier transform 
infrared (FTIR) spectroscopy suggested that Cu based catalyst has more tendency to form 
bridged bidentate carbonate and bidentate carbonate species, whereas the Fe based catalyst 
has more tendency to form monodentate species in the initial state, then forming the formate 
when it was hydrogenated, and to finally release methane. 
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ABSTRAK 

 
 
 

Kandungan karbon dioksida (CO2) yang tinggi dalam gas asli mentah masam boleh 
menyebabkan kerosakan pada sistem saluran paip dan menurunkan kualiti gas asli. Teknologi 
hijau melalui tindak balas metanasi bermangkin didapati adalah kaedah yang terbaik untuk 
merawat gas masam kepada gas asli manis, di mana gas metana (CH4) yang dihasilkan akan 
dapat meningkatkan kualiti gas. Dalam kajian ini mangkin mangan-rutenium (Mn/Ru) oksida 
telah diubahsuai dengan penambahan kuprum (Cu), kromium (Cr), besi (Fe), vanadium (V) dan 
zink (Zn) untuk menghasilkan mangkin metanasi yang terbaik. Mangkin telah disediakan melalui 
kaedah pengisitepuan basah, diikuti dengan proses penuaan selama satu hari dan pengkalsinan 
pada pelbagai suhu selama 5 jam, dan diuji ke atas gas asli simulasi (CO2/H2) menggunakan 
reaktor kaca Pyrex berdiameter internal 10 mm pada tekanan atmosfera. Mangkin yang 
disediakan telah menjalani pelbagai pengoptimuman seperti suhu pengkalsinan, pelbagai jumlah 
muatan mangkin, halaju ruang berat setiap jam (WHSV) serta kebolehulangan, penjanaan semula 
dan ujian kestabilan. Keputusan menunjukkan bahawa mangkin Ru/Mn/Cu(10:30:60)-Al2O3 
yang dikalsin pada suhu 1000oC adalah yang paling aktif, dengan 98.5% penukaran gas CO2 dan 
19.7% hasil gas CH4 dicapai pada 220oC. Mangkin yang kedua aktif adalah Ru/Mn/Fe(5:35:60)-
Al2O3 dengan 93.2% penukaran gas CO2 dan 19.2% hasil gas CH4 dicapai pada suhu 270oC. 
Mangkin berasaskan Cu telah tentusahkan dengan kaedah gerak balas permukaan-rekabentuk 
komposit berpusat (RSM-CCD) dan keadaan optimum ialah pada muatan 60% Cu, 29.5% Mn 
dan 10.5% Ru pada suhu pengkalsinan 1010oC dengan 1200 mL/g-1h-1 WHSV untuk mencapai 
96.6% penukaran CO2, manakala keputusan eksperimen memberikan 98.5% penukaran CO2, di 
mana ianya 1.9% lebih tinggi daripada nilai cadangan. Untuk mangkin berasaskan Fe, keadaan 
optimum ialah pada muatan 60% Fe, 34.5% Mn dan 5.5% Ru pada suhu pengkalsinan 1010oC 
dengan 1200 mL/g-1h-1 WHSV untuk menghasilkan 96.6% penukaran CO2, manakala keputusan 
eksperimen memberikan 95.5% iaitu 1.1% lebih rendah daripada nilai cadangan. Analisis 
keputusan pencirian pembelauan oleh sinar-X (XRD) dan fotoelekton sinar-X (XPS) untuk 
mangkin berasaskan Cu menunjukkan spesies aktif adalah RuO2, Mn3O4 dan CuO, manakala 
mikroskopi imbasan elektron pancaran medan (FESEM) menyatakan kehadiran zarah kecil yang 
bertaburan dengan sekata. Untuk mangkin berasaskan Fe, spesies aktif adalah RuO2, Mn3O4 dan 
Fe3O4 dengan zarah kecil bertaburan secara sekata di permukaan mangkin seperti yang 
ditunjukkan dalam mikrograf FESEM. Analisis tenaga serakan sinar-X (EDX) untuk kedua-dua 
mangkin juga mengesahkan kehadiran semua unsur dalam mangkin yang disediakan. Daripada 
analisis penjerapan nitrogen (NA), luas permukaan yang lebih tinggi dan ciri makroliang bahan 
tersebut berkemungkinan menyumbangkan kepada aktiviti pemangkinan yang lebih tinggi. 
Keputusan penyahjerapan suhu berprogram (TPD) juga mengesahkan bahawa kedua-dua 
mangkin menunjukkan prestasi yang lebih tinggi terhadap penjerapan gas CO2, manakala 
penurunan suhu berprogram (TPR) memberikan kawasan penurunan pada suhu lebih rendah. 
Mangkin Ru/Mn/Cu(10:30:60)-Al2O3 adalah lebih cekap terhadap penukaran gas CO2, 
mempamerkan kebolehpercayaan yang baik, dan kebolehulangan serta penjanaan semula yang 
baik berbanding dengan mangkin Ru/Mn/Fe(5:35:60)-Al2O3. Tambahan lagi, kajian mekanisme 
menggunakan spektroskopi inframerah transformasi Fourier (FTIR) mencadangkan mangkin 
berasaskan Cu lebih cenderung membentuk spesies karbonat bidentat berjejambat dan karbonat 
bidentat, manakala mangkin berasaskan Fe lebih cenderung membentuk spesies monodentat pada 
keadaan permulaan, kemudiannya membentuk format apabila ianya dihidrogenkan, dan akhirnya 
membebaskan gas metana. 
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CHAPTER I 

 
 
 
 

INTRODUCTION 

 
 
 
 
1.1  Background of Study 

 
 

Malaysia is one of the largest oil producers in South East Asia after Indonesia 

and second largest exporter of liquefied natural gas (LNG) in Qatar in 2013 (U.S 

EIA-Annual Energy Outlook, 2014). Therefore Malaysia is keen to ensure the quality 

of our primary energy source is up to the standards (EUMCCl, 2011).  

 
 

 Natural gas (NG) containing hydrogen sulfide and carbon dioxide is referred 

to as sour, and natural gas free from these two gases is referred to as sweet (Kidnay 

and Parrish, 2006) (Mokhatab et al., 2015). According to the International Energy 

Agency, about 43% of the world’s natural gas reserves (2,580 TCF) are sour and the 

Middle East, which has the world’s most sour gas reserves, contains 60% sour gas 

(U.S IEA-Annual Energy Outlook, 2014). Sour gas is problematic due to its toxicity, 

flammability, able to damage drilling equipment and corrodes piping during gas 

transportation (Mokhatab and Poe, 2012). Removal of CO2 is compulsory, as high 

content CO2 will decrease the amount of energy yielded when burning gas. The 

process for liquefying natural gas in order to be transported requires extremely low 

concentrations of CO2 with less than 50 parts per million (ppm) (William et al., 

2006).  This is because when the gas is cooled for liquefaction (down to -160oC), 

CO2 will freeze, causing blockage of flow lines and other operational problems. 

Furthermore the CO2 can solidify, causing blockage of flow lines, thus increasing the 

maintenance process and further decreasing the value of NG (Lieberman, 1987). 
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Vast amount of methods were developed dedicated to the removal of CO2 in 

NG, including membrane adsorption and cracking method. The methanation of CO2 

has the potential to address both of these problems if a catalyst can be developed that 

meets the activity, economic and environmental requirements to industrialize the 

process (Wang and Gong, 2011). 

 
 
 
 
1.2  Statement of Problem 

 
 

 As one of the leading exporters of NG, Malaysia is keen on increasing the 

quality of its product and simultaneously solving one of the major problem faced; the 

CO2 impurities in NG. Throughout time, researchers have developed methods to 

pertain the problem. Soda ash adsorption is one of the current method used as it acts 

as adsorbent to reduce the CO2 from NG. However, the high amount of waste is 

generated using this procedure. Membrane separation was also developed with the 

same aim of filtering CO2. Although it can achieve high waste reduction, it is hardly 

impossible to regenerate and reuse. The development of catalyst for CO2 conversion 

was a greener alternative as it is converts CO2 to other sellable products; methanol or 

methane (CH4). Furthermore, it is waste-free and is recyclable. Although catalytic 

conversion might seem as the best solution, the major drawbacks are the cost of 

pertaining the catalyst suitable for CO2 conversion is very expensive. Previous 

researchers (Wang and Gong, 2011), used noble metals such as Ru and Ni to obtain a 

high efficient catalytic conversion of CO2 to CH4, however these catalyst are very 

sensitive towards chemical attack whilst reaction due to presence of hydrogen 

sulphide or mercaptan and reactivated these catalyst only using harsh chemicals. In 

order to reduce the cost, researchers need to seek out alternatives such as using other 

cheaper metal oxides or a combination of metal oxides that still produces similar and 

comparable results to the noble metal catalyst. To the best of our knowledge, no 

research clearly focused on combination of metal oxides (trimetallic catalyst) as 

catalyst based on transition metals with the aim for CO2 conversion to CH4 at low 

temperatures as possible. The optimization of the combination metal oxides 

(trimetallic catalyst) was hoped to be a more greener and affordable alternative to 
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reduce CO2 impurities from NG and could be a greener alternative for energy source 

production in a whole.  

 
 
 
 
1.3 Objectives of the Study 

 
 

The main goal of this research is to develop a combination of metal oxide 

catalyst (trimetallic catalyst) using affordable metal oxides from transition metals 

(TM) with the aim of catalyze CO2 methanation reaction effectively at low possible 

temperature and room pressure atmosphere. 

 
 

 The objectives of this research are: - 

 

1. To synthesize the best-supported chromium, copper, iron, vanadium and zinc 

oxides based catalysts for CO2 methanation reaction. 

2. To test the catalytic activity of prepared catalysts in CO2 methanation using 

simulated natural gas. 

3. To optimize the catalysts preparation, catalytic testing parameters and 

validation by response surface methodology (RSM)#

4. To characterize the potential catalysts in order to understand the chemical and 

physical properties of the catalysts. 

5. To study the mechanistic reaction involve over potential catalysts.  

 
 
 
 
1.4     Scope of the Research 
 
 

The study started with screening of first row transition metal oxides 

(chromium, copper, iron, vanadium and zinc) oxide supported on alumina to be 

selected as the best TM as base catalyst for CO2 conversion. The dopant: Mn and co-

dopant: Ru that were believed to enhance the catalytic activity of methanation 

reaction.   
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The two best performed TM-based catalyst was then selected based on its 

catalytic activity using a lab-scale reactor with simulated NG production connected 

to an Fourier transformed infra red spectrometer (FTIR). The preparation of the 

catalyst via incipient wetness impregnation method, the ratio of the combination of 

the metal oxides, the different of weight hourly space velocity (WHSV) and the 

calcination temperature were then optimized. Validation of catalyst optimization was 

performed by statistic method response surface methodology (RSM). 

 
 
The optimum preparation method were then applied to the TM based catalyst 

to be tested and evaluated for its catalytic capability in the lab-scale reactor;            

(1) % CO2 conversion, (2) % CH4 yield, (3) maximum conversion temperature, (4) 

robustness and reusability of the catalyst, and (5) % CH4 selectivity. 

 
 
The optimized catalyst was also further characterized using x-ray diffraction 

analysis (XRD), field emission scanning electron microscopy-energy dispersion       

x-ray analysis (FESEM-EDX), Fourier transformed infra red spectrometer (FTIR),     

x-ray photoelectron (XPS), temperature programmed reduction analysis (TPR), CO2-

temperature programmed desorption analysis (CO2-TPD) and nitrogen absorption 

analysis (NA). 

 
 
A study on the mechanism of the catalyst and basic chemical reaction were 

also investigated using FTIR instrument tested on the simulated natural gas. A 

mechanistic study was divided into two parts, a) study on the catalyst surface and     

b) gases phase. 

 
 
 
 
1.5 Significance of Study 

 
 

The green technology by the catalytic CO2 methanation is one of the most 

promising methods for the converting CO2 to valuable product (CH4). Using this 
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green technology, natural gas can be considered as an environmental friendly clean 

fuel, which offers important environmental benefits compared to other fossil fuels, 

and will help to reduce problems of acid rain, ozone layer depletion or greenhouse 

effect. If the proposed technology is successful, it may increase the price, quality and 

quantity of natural gas. The catalyst developed in this study will not only contributes 

to the national income but also to help country to achieved award as carbon credit. 

Furthermore, the catalyst is easy to prepare, environmental friendly technique, 

reusable, low price, robustness and can be highly activated at low temperature 

reaction. 

 
 
The ultimate goal of this study is to produce the most potential catalyst in the 

natural gas treatment that can create sustainable environment and fulfilled the 

specifications above. Thus, this catalyst can be applied to real natural gas. The 

novelties of this research study are as follows:  

 
 
1) The development of new trimetallic catalysts chromium, copper, iron, 

vanadium and zinc oxides as based catalysts. The addition of second and 

third metals towards based catalyst was carried out in order to increase 

the performances of CO2 activity.  

2) The use of alumina in the beads form as a support catalyst is not being 

used by researchers in their studies. 

3) The optimize of the catalysts preparation, catalytic testing parameters and 

validation for potential catalyst by response surface methodology (RSM)- 

central composite design (CCD). 

4) The study the mechanistic reaction involved over potential catalysts. 
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