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ABSTRACT

Fiber Bragg Grating (FBG) sensing has been intensively studied in the
application of smart structures because of its immense advantages offered over those of
the conventional sensors. In this study, the sensing characteristics of FBG bonded onto
graphene and polymer plate are demonstrated under various mechanical deflections
within the tension and compression modes. The sensing elements utilized for this
purpose were 5 mm, 15 mm, 25 mm, and 35 mm FBG sensor bonded onto the surface
of graphene with polymer plate. To accomplish these tasks, the lateral displacement
was changed stepwise at different stress locations of 1 cm, 2 cm, and 3 cm applied
away from the movable end of the FBGs, by which the curvature of the graphene
with polymer plate is changed. An almost linear relationship between the sensitivity
and deflection was observed for the FBGs bonded onto polymer plate and deflected
at stress locations of 1 cm and 2 cm. However for the stress location of 3 cm it was
deviated from being linear. Meanwhile FBGs bonded with graphene on polymer plate,
the relation curves were also deviated from being linear. The sensitivity at 3 cm stress
location for tension and compression modes was found to be larger than those for other
applied stress locations and this is valid for both cases; graphene on polymer plate
or on polymer plate only. It was also established that regarding the shift in Braggs
wavelength center, both tension and compression processes are valid and comply with
the physical observations. Moreover, for the FBGs bonded with grapheme on polymer
plate, the sensitivity was increased upon the increment of grating length. It was also
discovered that sensitivity of the FBG sensor for the small grating lengths of FBG (5
mm and 15 mm) was enhanced and it was observed that the response of compression
mode is better than that of tension. However, for large grating lengths (25 mm and
35 mm), the tension mode response was found to be larger than that of compression.
It was noticed that the hysteresis effect is significant in the tension mode and showed
greater values in the large grating FBG. An interest linear relationship was determined
between the optical and intensity (electrical) outputs.
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ABSTRAK

Pengesanan parut gentian Bragg (FBG) telah dikaji secara intensif di dalam
penggunaan struktur pintar disebabkan oleh banyak kelebihannya berbanding dengan
pengesan konvensional. Dalam kajian ini, ciri pengesanan FBG yang dilekatkan
pada grafin dan plat polimer telah ditunjukkan dalam pelbagai pemesongan mekanikal
antara mod tegangan dan mampatan. Elemen pengesanan yang digunakan untuk tujuan
ini adalah pengesan FBG 5 mm, 15 mm, 25 mm dan 35 mm yang dilekatkan pada
permukaan grafin dengan plat polimer. Untuk melengkapkan tugasan ini, sesaran
sisi telah diubah secara berperingkat pada lokasi tekanan yang berbeza iaitu 1 cm,
2 cm, dan 3 cm dari hujung FBG yang boleh digerakkan, yang mana kelengkungan
grafin dengan plat polimer diubah. Satu hubungan yang hampir linear antara sensitiviti
dan pemesongan telah diperhatikan bagi FBG yang dilekatkan pada plat polimer dan
telah dipesongkan pada lokasi tekanan 1 cm dan 2 cm. Walau bagaimanapun, bagi
lokasi tekanan 3 cm, keluk kaitannya menyimpang dari linear. Sementara itu FBG
yang dilekatkan pada grafin dengan plat polimer, keluk kaitannya juga menyimpang
dari linear. Sensitiviti pada 3 cm lokasi tekanan bagi mod tegangan dan mampatan
didapati lebih besar berbanding dengan mod yang dikenakan pada lokasi yang lain dan
ini benar bagi kedua-dua kes; grafin yang dilekatkan pada plat polimer atau hanya pada
plat polimer sahaja. Selain itu juga, berkaitan anjakan dalam pusat gelombang Bragg,
kedua-dua tegangan dan mampatan adalah sah dan mematuhi pemerhatian fizikal.
Tambahan pula, untuk FBG dilekatkan dengan grafin pada plat polimer, sensitiviti FBG
meningkat dengan bertambahnya panjang parutan. Juga diperolehi bahawa sensitiviti
pengesan FBG dengan panjang parutan FBG yang kecil (5 mm dan 15 mm) telah
dipertingkat dan dapat diperhatikan tindakbalas mod mampatan adalah lebih baik
berbanding regangan. Walaubagaimana pun untuk panjang parutan yang besar (25 mm
dan 35 mm), tindakbalas mod regangan didapati lebih besar berbanding mampatan.
Ia nya juga mendapati yang kesan histeris adalah signifikan dalam mod tegangan
dan menunjukkan nilai yang lebih besar dalam FBG yang parutannya besar. Suatu
hubungan linear yang menarik telah ditentukan antara output optikal dan keamatan
(elektrikal).
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

In the last couple decades, the scientific community has witnessed a great
development in the production and utilization of small sized, light weight, flexible
and economical friendly devices thanks to the continuous research works performed
by the scientists. Very recently, Fiber Bragg Grating (FBG) sensors have received
considerable attention and have been subjected to intensive research works. Fiber
Bragg grating (FBG) is a type of distributed Bragg reflector constructed in a short
segment of optical fiber that reflects particular wavelengths of light and transmits
all others. The achievement of this unique property is by the creation of a periodic
variation in the refractive index of the fiber core, which generates a wavelength specific
dielectric mirror (Othonos and Kalli, 1999). The formation of permanent gratings
in an optical fiber was first demonstrated by Hill et al. (1978), at the Canadian
Communications Research Centre (CRC) (Hill and Meltz, 1997; Morey et al., 1990).

Based on their unique characteristics, FBGs have proven to be ideal for a
variety of applications such as dynamic strain, pressure measurement, temperature of
a full scale pre-stressed concrete bridge made with high performance concrete during
the construction process, buildings, piles, bridges, pipelines, tunnels, and dams (Matin
et al., 2005; Lin et al., 2002; Li et al., 2004). It is also used for maintenance inflight
monitoring and space vehicles, marine and medical science ((Miesen et al., 2011; Chan
et al., 2006). Its application has also been extended to provide online monitoring
of cracks or leaks in reactor vessel head penetration of Nuclear power plant (NPP)
(Seo et al., 2009). According to literature, its wide application area has been mainly
attributed to its ability to keep its reflectivity under radiation exposure (Lee et al.,
2010b), its immunity to electromagnetic interference, applications in remote sensing,
stability in harsh environments, multiplexing capability, high sensitivity, wide dynamic
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range and simplicity.

In the past decade, several researchers have tried to enhance the sensitivity
of FBGs by taking out different methods. For example, (Seo et al., 2009) reported
that the cantilever sensor exhibited a high sensitive resonance frequency spectrum.
Subsequently, (Lee et al., 2010b) used a Cu-coated fiber to develop a FBG acoustic
sensor for integrated structural health monitoring (ISHM) of nuclear power plant
(NPP). By carrying out a full 3-D numerical analysis and experimental verification
of an acoustic sensor in the frequency range 0.5-30.0 kHz, (Moccia et al., 2011),
reported the first evidence of the resonant behaviour of an underwater acoustic sensor
constituted by an FBG coated by a ring-shaped material. Furthermore, an FBG device
can easily replace the dependence on piezo ceramic (PZT, or lead zirconate titanate
(Pb[Zrx,Ti1−x]O3) strain gage to convert an deflection into an output voltage. This is
because the electronic parts of the strain gages are subjected to continuous harm and
degradation when immersed in water. In addition, the wiring that is a characteristic of
strain gage makes the final device heavy and bulky. This can also be simplified by the
use of FBG (Kleckers, 2009; Moccia et al., 2011).

On the other hand, various methods have been undertaken by researchers
to produce the tension and compression in the FBGs. (Fayed et al., 2010) used
fast Changeable Electromagnetic Force, while (Mavoori et al., 1999) employed
magnetic actuator, and (Iocco et al., 1999) utilized piezoelectric actuator. Furthermore,
motorized actuator was used to produce axial strain (tension or compression) by
Mavoori et al. (1999). Alternatively, other researchers (Goh et al., 2003) applied
beam bending method, of which a cantilever beam with applied lateral strain is used
to produce the tension and compression (Qin et al., 2001; Kang et al., 2012; Yu et al.,
1999; Feng et al., 2016). Specifically, liner displacement measurement is an important
area of interest, in which a number of FBG strain sensor configurations have been
demonstrated (Mizutani and Groves, 2011; Waldbjørn et al., 2014; Yau, 2014).

The selection of suitable materials presenting high flexibility and excellent
curvature deviation for the purpose of producing a systematic deflection in the FBGs
is of great importance. Graphene sheet has very high mechanical strength and can be
stretched by as much as 20%. Ma et al. (2012) emphasized that with such unique
characteristics of graphene, it is possible to build miniature pressure and acoustic
sensors with high sensitivity and dynamic range. Therefore, interested by the enhanced
properties of graphene, this research work was conducted to report on and analyse the
performance of Fiber Bragg Grating (FBG) bonded onto the graphene with polymer
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plate substrate at different applied stress locations. The FBG is bonded with graphene
on polymer plate to represent a physical cantilever, by which the deflection in the
free end of the cantilever is achieved within the range of µm. As such, upon having
the applied linear lateral displacement, the curvature of the graphene with polymer
plate is subjected to increase or decrease. This variation in curvature is imperatively
transferred to the FBG, which results in a tension or compression in the FBG
architecture. The Bragg wavelength and area under the reflection spectrum are varied
based on the stress applied to the FBG. This deviation process is repeated for different
grating lengths of FBGs and the results are analysed and compared considering the
tension and compression modes. Finally, attempts to deduce an empirical equation that
is best fitted to correlate the reflected output voltage and optical power are presented.

1.2 Problem Statement

In order to analyse the performance of Fiber Bragg Grating FBG bonded
onto graphene substrate, it is required to design and test a number of optical fiber
sensors while utilizing FBG as the main sensing element. There is a need of using
polymer plate as cantilever and to be bonded FBG onto the graphene sheet so that
a suitable deflection is obtained by changing the lateral displacement concurrently
with the increased or decreased tension and compression in the FBG’s grating period.
Nevertheless, the effect of changing stress location on the response of FBG sensor
is remained to be highly important while investigating the effect of tension and
compression on the sensing performance of FBG. Additionally, it is questionable how
to utilize difference grating lengths of FBG to enhance the sensitivity of FBG sensor.
Furthermore, the existence of an inexact correlation between optical and reflected
intensity (electrical) outputs of FBG sensors requires rigorous research work to be
done in order to determine such correlation. Considerably, it can be possible to utilize
the electrical response of FBG devices instead of their optical related behaviours in
the real life applications, especially in the field of environmental monitoring and alarm
system.

1.3 Research Objectives

The main purpose of the current research work is to investigate the strain-
sensitivity performance of FBGs under various deflection conditions of tension and
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compression when the FBGs are bonded onto the polymer plate or a combination of
graphene and polymer plate. The aim can be achieved by the follows tasks:

1. To construct an FBG-bonded sensor configuration to be ready for analysing its
performance.

2. To obtain the response of FBG-bonded onto graphene and polymer plate at
difference stress locations.

3. To determine the effect of tension and compression on the sensing performance
of FBG-bonded with graphene on polymer plate.

4. To analyse the sensitivity of these FBG sensors by utilizing difference grating
lengths.

5. To find the correlation between optical and reflected intensity (electrical) outputs
of FBG-bonded with graphene on polymer plate.

1.4 Significance of the research

The displacement sensors are receiving considerable attention in both academia
and industry. In structural health monitoring SHM, FBG sensors are routinely used
for monitoring strain and temperature (Dong et al., 2001; Kahandawa et al., 2012).
Unlike strain and temperature, displacement is not a directly measurable quantity
using bare FBG sensors. By utilizing the strain response of FBG to its equivalent
Braggs wavelength, displacement sensors were developed and reported by researchers
(Rajan, 2015). In addition, the method of depending on piezo ceramic (PZT, or lead
zirconate titanate (Pb[Zrx,Ti1−x]O3) strain gage to convert a deflection into an output
voltage directly can easily be replaced by the use of the proposed FBG device. This is
because the electronic parts that are used for multiplexing and the related telemetry are
subjected to continuous harm and degradation when they are immersed in water. But
this degradation is rarely occurred during the utilization of FBG sensors. Furthermore,
the wiring that is a characteristic of strain gage makes the final device heavy and bulky,
whereas this can be simplified by the use of FBG. Specifically, this research is tailored
to improve and analyses the sensitivity of different grating lengths of FBG bonded
onto graphene sheet and finding a correlation between the output voltage and optical
power. This can be accomplished by using oscilloscope instead of optical spectrum
analyzer (OSA). As OSA is a costly instrument, the utilization of oscilloscope gives a
substantial cost reduction and simplicity of use. Hence, the system can be a viable tool
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to be used in several applications like environmental monitoring and alarm system.

1.5 Scope of the research

This study only considers four different grating lengths of FBGs (1550.071 nm)
having 5 mm grating, (1549.390 nm) having (15 mm and 25 mm) grating length and
(1548.990 nm) having 35 mm grating length. the FBGs are classified as lateral linear
displacement sensors along with utilizing an external power source (ALS-18-B-FA
ASE) with a spectral range from 1452 nm to 1652 nm, operating at maximum power
of (1.83 mW). The FBG will be bonded with graphene on polymer plate and made
it as a cantilever deflected at its free end. This causes the curvature of the polymer
plate to increase or decrease, which imperatively transfers the curvature onto the FBG
and results in producing a tension or compression in the FBG architecture. The reason
why graphene sheet has been selected was because of its high mechanical strength and
stretchability to about 20%. By changing the displacement in linear translation stage
(in amount of µm ), the reflection spectrum of the disturbed FBG will be obtained
in two ways; i) by using a high-speed photo diode together with an oscilloscope, ii)
second by using an optical spectrum analyzer (OSA). The lateral displacement was
changed from 0 to 7500 µm in steps of 500 µm.

1.6 Structure of Thesis

This thesis is comprised of five chapters and it is structured as follows;
Chapter1 provides the background of the study, problem statement, objectives of the
study, significance of the study and scope of the study. In Chapter 2, the related
literature review of the FBG optical sensors are presented, while Chapter 3 is devoted
to focus on the research methodology. Specifically, it started with introducing the
methodology of the preparation of the FBG-bonded with graphene on polymer plate.
In addition, it described the measurement of the FBG-bonded Sensors and the ways
of analysing the performance FBG-boned Sensors. In Chapter 4, which includes the
results and discussion part, the results of the output voltage of FBG-bonded sensors
are studied for both substrates (polymer plate and graphene with polymer plate) at
different stress locations under tension and compression process. There are done in
order to estimate the optimum substrate and stress location. Furthermore, the output
voltage for different grating lengths of FBG is analysed and targeted to determine a
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correlation between the output voltage and optical power. Finally, Chapter 5 draws the
main conclusions of this study followed by the future research recommendations.
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