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ABSTRACT 

In this project, the problem addressed is human activity recognition (HAR) 

from video sequence. The focussing in this project is to annotate objects and  actions 

in video using Convolutional Neural Network (CNN) and map their temporal 

relationship using full connected layer and softmax layer. The contribution is a deep 

learning fusion framework that more effectively exploits spatial features from CNN 

model (Inception v3 model) and combined with fully connected layer and softmax 

layer for classifying the action in dataset. Dataset used was UCF11 with 11 classes 

of human action. This project also extensively evaluate their strength and weakness 

compared previous project. By combining both the set of features between Inception 

v3 model with fully connected layer and softmax layer can classify actions from 

UCF11 dataset effectively upto 100% for certain human actions. The lowest 

accuracy is 27% by using this method, because the background and motion is similar 

with other actions. The evaluation results demonstrate that this method can be used 

to classify action in video annotation. 
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ABSTRAK 

Dalam projek ini, masalah yang ditangani  adakah pengecaman aktiviti 

manusia (HAR) dari urutan video. Fokus dalam projek ini mengkelaskan tindakan 

dalam video menggunakan Rangkaian Neural Convolutional (CNN) dan memetakan 

hubungan antara gambar dengan mengunakan lapisan bersambung sepenuhnya dan 

lapisan softmax. Sumbangan ke atas projek ini adalah rangka kerja pembelajaran 

yang lebih berkesan untuk mengeksploitasi ciri-ciri spatial dari model CNN (model 

Inception v3) dan menggabungkan lapisan disambungkan sepenuhnya dan lapisan 

softmax untuk mengelaskan tindakan dalam dataset. Dataset yang digunakan untuk 

projek ini adalah UCF11 dengan 11 kelas aktiviti manusia. Projek ini juga menilai 

kekuatan dan kelemahan berbanding projek sebelumnya. Penemuan pada projek ini, 

yang menggabungkan kedua-dua set ciri antara Inception model v3 dengan lapisan 

bersambung dan lapisan sotfmax dapat mengkelaskan aktiviti dari dataset UCF11 

secara berkesan dan mencapai 100% untuk aktiviti tertentu. Ketepatan terendah 

adalah 27% dengan menggunakan kaedah ini, kerana latar belakang dan gerakan 

serupa dengan tindakan lain. Hasil penilaian menunjukkan bahawa kaedah ini boleh 

digunakan untuk mengkelaskan tindakan dalam video. 
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CHAPTER 1  

                                                    INTRODUCTION  

1.1 Introduction 

Nowadays, the source of video comes from multiply sources for example, digital 

video cameras, internet (YouTube and Netflix), CCTV video, television, and others.  

Video processing is important for security, searching, education, movie and others. In 

current society where technology has already being developed rapidly, we cannot walk 

or drive around without being captured by security device or surveillance video. The 

data from video is important for user to classify the object and action in the video from 

CCTV, camera, video recording and other source. Besides that, video annotation is 

important for education especially for baby education, the video can show the object and 

action in video. For example Figure 1.1 shown the person, dog and chair, so the object 

can conclude the action of video with person playing with dog . This is easier for 

children to know the object in video. 

 

Lately, many research on deep learning in terms of image and video processing. 

Deep learning is a new area of machine learning research, where deep learning is about 

learning multiple levels of representation and abstraction that helps to make sense of 

data such as images, sound, and text. Recently, deep learning is applied to many signal 

processing areas such as image, video, audio, speech, and text and has produced 
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surprisingly good result. Convolutional Neural Network (CNN) deep learning is one of 

algorithm or method of  the deep learning. 

 

Video annotation is one of the most important application in video processing 

which is to annotate important objects and actions in video. Thus, video annotation using 

CNN deep learning approach is valuable for community right now. Automated object 

annotation in video is a crucial part within these applications and has become an 

important research area in image and video processing to ensure the minimization of 

using human control and having a faster response based on annotation in video. Figure 

1.1, how the object will be annotate with box the object in the video. 

 

 

 

Figure 1.1: Person, dog and chair detected from a video 

 

1.2 Problem Statement  

Convolutional Neural Networks (CNN) have been developed and used in many 

areas such as security and surveillance to classify  image or video content. CNN have 

been extensively applied for image and video processing problem such as recognition, 

detection, segmentation and retrieval. However, there are still many limitations of CNN 

for image and video annotation. 
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Among the challenges in video annotation using CNN algorithm is variable 

length on video processing. Normally, video segment are split into fixed chunks length 

which may span segment boundary. But variable length of video processing, the 

segment of video is  also different and this is a challenging issue for CNN to handle it. 

 

 Besides that, temporal dependence of data is another problem in video 

annotation. The ability to manipulate the temporal dependencies in video data is 

important for a number of compressed domain video processing tasks. The difficulty on 

temporal dependencies of data is to develop a method for performing frame conversion 

on video processing. So that, this frame conversion are used to develop compressed 

domain video processing algorithm for performing temporal mode conversion [7].  

 

 Besides that, in video annotation the accuracy is most important because the 

object and action desired to annotate in video. In video, there are a lot of object, so to 

classify the desired object is difficult to determine, this is quite challenging for the video 

processing algorithm. Lastly, the large number of frames and high computational 

complexity is also one of the challenges in video annotation. This is because the large 

number of frames is time consuming. 

 

Due to these challenging factors,  the video processing flow must be considered 

before integrating with CNN to ensure the object in video can be annotated correctly. 

Thus, video annotation using CNN is a bit  more complicated compare to image 

annotation using CNN. 
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1.3 Research Objectives 

This research is about to annotating action based on object in video using 

convolutional neural network (CNN).. The goals of this project is as follows: 

 

i. To annotate  object for classifying action in video using CNN. 

ii. To improve CNN implementation in terms of accuracy and performance when 

annotating the action on video. 

 

1.4 Project Scope and Limitations 

This project is focused on annotating  object and classifying the action on video 

using convolution neural network (CNN) deep learning algorithm. The UCF11 dataset is 

used in this project to compare with previous research. This tools used are Tensorflow 

and python programming. 

 

1.5  Thesis Layout 

Chapter 2 reviews the literatures and previous works related to object and action 

detection in video. Chapter 3 focuses on the project design methodology which covers 

overview of the project flow and the algorithm flowchart. Chapter 4 presents the  results 

and analysis of the works done throughout this research. Chapter 5 summarizes this 

research and gives recommendation for future wants.
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