PERFORMANCE OF SOLID MATERIAL DIVERTER SUBJECT TO IMPACT COLLISION WITH RESPECT TO ANGLE VARIATION

TENGKU FIRDAUS BIN TUAN LAH

UNIVERSITI TEKNOLOGI MALAYSIA

PERFORMANCE OF SOLID MATERIAL DIVERTER SUBJECT TO IMPACT COLLISION WITH RESPECT TO ANGLE VARIATION

TENGKU FIRDAUS BIN TUAN LAH

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2017

DEDICATION

Specially for my beloved wife, parents, brothers, sister and friends Who has a chamber in my heart...

ACKNOWLEDGEMENT

Alhamdulillah. The author would like to express his utmost gratitude to his supervisor, Dr. Shek Poi Ngian for his guidance and support upon accomplishment of this research and also to the co-supervisor, Dr. Ahmad Kueh Beng Hong also for his guidance and assistance throughout the study.

The author would also like to gives special acknowledgments to Ir. Hj. Kamarul Bahrin Bin Mohamad, the Project Leader of Sustainable Hydrokinetic Renewal Energy (SHRE) for the continuous contribution of his support and ideas truly make this study in success.

I would like to express lots of appreciation to all superb team-mates of this project from either from Jabatan Kerja Raya nor Universiti Teknologi Malaysia for the brilliant support and ideas in helping the author in making this study realisation.

And also to all co-research officer of SHRE who always contribute technical knowledge sharing and assistance along the period of this journey.

I would also like to acknowledge his colleagues and the structural laboratory staff team, and all the staff of Faculty of Civil Engineering for their support. Last but not least, deepest appreciation and thanks to my beloved wife, parents, brothers, sisters and friends for their encouragement and full moral support during the preparation of this thesis.

ABSTRACT

Sustainable Hydrokinetic Renewal Energy Power Generation System (SHRE) is an energy harvesting system that operates in the river of Sarawak and subjected to impact of floating debris. In order to resist the impacts from floating debris, the Solid Material Diverter (SOLMAD) is proposed for the protection of SHRE system. Floating debris in the river, normally timber logs, could damage the SOLMAD and misalign the turbine orientation, which in return could reduce the lifespan and efficiency of the hydrokinetic turbine to harness energy. This research aims to model SOLMAD of various angles that are subjected to impact loading induced by floating debris. Five angle variations, namely 15° , 30° , 45° , 60° , and 75° were taken into consideration for analysis and design of the SOLMAD. The size of timber logs, river profile, and flow velocity were obtained from site sampling data collection at the Balleh River, Sarawak. The mass from the recorded sampling of floating debris and velocity of the river were then converted into equivalent impact forces on the SOLMAD structure using the Work-Energy method. Scaled down models were investigated experimentally in the laboratory to investigate their stability and validate the theoretical impact forces calculated using the Work-Energy method. A total of five models were developed with 3-dimensional line elements using the STAAD.Pro software. The models were analysed under the most critical load cases using the calculated equivalent impact forces to obtain the internal forces and displacements. The models were then designed with optimised steel section using Eurocode 3. The study showed that structural orientation of 15° and 30° performed better in terms of stability and float ability on the water compared to the other angle orientations. From the structural design standpoint, by using Eurocode 3, angle section of 100 mm x 100 mm x 12 mm and 150 mm x 150 mm x 12 mm were adopted as the most optimum sections to design the SOLMAD. Based on the overall performance of structural stability in water and structure self-weight, the selection of 30° model was proposed as the SOLMAD structure.

ABSTRAK

Sistem Penjanaan Kuasa Tenaga Hidrokinetik Boleh Diperbaharui (SHRE) adalah sistem penuaian tenaga yang beroperasi di sungai Sarawak dan mengalami perlanggaran dengan bendasing terapung. Untuk mengatasi kesan dari bendasing terapung, Penyisih Bendasing (SOLMAD) dicadangkan untuk melindungi sistem SHRE. Bendasing terapung di sungai, biasanya kayu balak, boleh merosakkan SOLMAD dan mengubah orientasi turbin, yang mana boleh mengurangkan jangka hayat dan kecekapan turbin hidrokinetik untuk penuaian tenaga. . Kajian ini bertujuan untuk mengkaji model SOLMAD dengan variasi sudut perlanggaran oleh bendasing terapung. Variasi lima sudut, iaitu 15°, 30°, 45°, 60° dan 75° diambil kira untuk tujuan analisis dan reka bentuk SOLMAD. Saiz kayu balak, profil sungai, dan halaju aliran diperoleh dari pengumpulan data pengambilan tapak di Sungai Balleh, Sarawak. Ketumpatan sampel bendasing terapung yang direkodkan dan halaju sungai kemudian diubah menjadi daya impak setara pada struktur SOLMAD menggunakan kaedah Tenaga-Kerja. Model berskala kecil dikaji secara eksperimen di makmal untuk dikaji kestabilan dan validasi pengiraan daya impak secara teori menggunakan kaedah Tenaga Kerja. Sejumlah lima model telah dibangunkan dengan unsur garisan 3 dimensi menggunakan perisian STAAD.Pro. Model-model ini dianalisis di bawah beban kes yang paling kritikal dengan menggunakan daya impak setara yang dikira untuk mendapatkan daya dalaman dan daya anjakan. Model-model keluli ini direkabentuk secara optimum menggunakan Eurocode 3. Kajian menunjukkan struktur berorientasi 15° dan 30° lebih baik dari segi kestabilan dan keupayaan untuk terapung di atas air berbanding sudut yang lain. Dari sudut rekabentuk struktur, dengan menggunakan Eurocode 3, keluli bersudut 100 mm x 100 mm x 12 mm dan 150 mm x 150 mm x 12 mm telah digunakan sebagai bahagian paling optimum untuk rekabentuk SOLMAD. Berdasarkan prestasi keseluruhan dari segi kestabilan struktur dalam air dan struktur berat sendiri, pemilihan model 30° dicadangkan sebagai struktur SOLMAD.

TABLE OF CONTENTS

CHAPTER		PAGE	
	DEC	ii	
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABS	TRACT	V
	ABS	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	xi	
	LIST	FOF FIGURES	xiii
	LIST	TOF SYMBOLS, NOTATION AND	xvii
	ABB	REVIATIONS	
	LIST	TOF APPENDICES	xxii
1	INTI	RODUCTION	1
	1.1	General	1
	1.2	Research Background	2
	1.3	Research Problem	4
	1.4	Research Objectives	4
	1.5	Research Scope	5
	1.6	Significance of Research	7
	1.7	Structure of Thesis	7
2	LITH	ERATURE REVIEW AND	9
	BAC	KGROUND OF RELATED WORKS	
	2.1	Introduction	9
	2.2	Types of Diverter	9

2.2.1	Furling (CADDET,1998)	10
2.2.2	Screen/grid System (Anyi &	10
	Kirke, 2010)	
2.2.3	Swept Blade (Larwood and	10
	Zuteck, 2006) and (Ashwill and	
	Kanaby,2007)	
2.2.4	Turbine Mounting (Shafei &	11
	Ibrahim, 2014)	
2.2.5	Pontoon (Anyi & Kirke, 2010)	11
2.2.6	Pivot Arm (Anyi & Kirke,	11
	2010)	
2.2.7	Bridge/jetty (Lowe, 2007)	12
2.2.8	Suction Tube or ducting (Kirke,	12
	2005)	
2.2.9	Floating Booms (Wallerstein et	12
	al.1996)	
2.2.10	Non-Clogging Hydrokinetic	13
	Turbine	
2.2.11	Crashworthy Device (E.Liu,	14
	Hao, 2015)	
2.2.12	Debris Sweeper	15
	(Kesper, Johnson, 2015)	
Divert	er Preliminary Design Concept	18
2.3.1	Deflector	18
2.3.2	Bridge Deflector	19
2.3.3	Icebreaker Shape and Function	19
	Study	
Materi	al And Component Selection	21
Stabili	ty of a Floating Structure	22
Impac	t Test and Wooden Debris	24
2.6.1	Impact Test	24
2.6.2	Logs Properties & Floating	28
	Condition in River	

2.3

2.4
 2.5
 2.6

		2.6.3 Impact of Wooden Debris to	31
		Structure	
		2.6.4 Impact Behaviour	33
	2.7	Summary	35
3	мет	HODOLOGY	36
U	3.1	Introduction	36
	3.2	Methodology	37
	3.3	Conceptual Design of SHRE Solid	38
		Material Diverter (SOLMAD)	
		3.3.1 Diverter Preliminary Design	39
		Concept	
		3.3.2 Modelling of SOLMAD	40
	3.4	Floating and Buoyancy of SOLMAD	41
	3.5	Calculation of Impact Force	42
	3.6	Impact Test	42
	3.7	Validation of Theoretical Impact Force	43
	3.8	Determination of Metacenter	44
	3.9	Stability Test	44
	3.10	River Profile	45
	3.11	Collection of Log Data	46
	3.12	Theoretical Prediction of Maximum	47
		Impact Forces	
	3.13	Modelling of SOLMAD	47
	3.14	Calculation of Selfweight	49
	3.15	Concluding Remark	50
4	STAI	BILITY AND STRENGTH OF	51
	SOL	MAD	
	4.1	Introduction	51
	4.2	SOLMAD Detail Frame Design	51
	4.3	Floating And Buoyancy	56
	4.4	Calculation of Impact Force	57

	4.5	Impact	Test	57	
	4.6	Validati	ion of Theoretical Impact Force	60	
	4.7	Determ	ination of Metacenter	61	
	4.8	Stability	y Test	61	
	4.9	River P	rofile	66	
	4.10	Collecti	on of Log Data	68	
	4.11	Theoret	ical Prediction of Maximum	70	
		Impact	Forces		
	4.12	Modelli	ng of SOLMAD	71	
		4.12.1	Analysis of 15° Model	71	
		4.12.2	Analysis of 30° Model	73	
		4.12.3	Analysis of 45° Model	74	
		4.12.4	Analysis of 60° Model	75	
		4.12.5	Analysis of 75° Model	76	
		4.12.6	Comparison of Results	77	
	4.13	Calcula	tion of Selfweight	81	
		4.13.1	Optimum Design of SOLMAD	81	
		4.13.2	Steel weight Comparison for	84	
			different Angle		
	4.14	SOLMA	AD For SHRE	86	
	4.15	Summa	ry	87	
5	CONC	CLUSIO	NS AND	88	
	RECOMMENDATIONS FOR FUTURE				
	WOR	KS			
	5.1	General		88	
	5.2	Experin	nental And Site Investigation	89	
		For Full	l Scale Data		
	5.3	Analyti	cal Study and Design	89	
		Determ	ination For SOLMAD		
	5.4	Recom	nendations for Further Works	90	
REFERENCE	S			92 - 96	
APPENDICES A-B				97 – 103	

LIST OF TABLES

TABLE NO.

TITLE

PAGE

1.1	JKR-UTM-UPM SHRE Sub Project/Systems	2
2.1	List of the Previous Studies on Solid Material Handler	16
2.2	Classification of Timber Weight (FRIM,2009)	28
2.3	Classification of Medium Hard wood based on Natural	29
	Durability (MTIB, 2004).	
4.1	Maximum Floatation Mass of 300mm Diameter x 5.4m	56
	Length PVC Pipe	
4.2	Maximum Floatation Mass for All Models	56
4.3	Maximum Impact Force Comparison of Theoretical	57
	Approches (Work Energy, Contact Stiffness & Impulse	
	Momentum method)	
4.4	Comparison Between Laboratory Test and Theoretical	60
	Approaches	
4.5	Metacentre Determination of Angle Models at Rest	61
4.6	The maximum forces, maximum compression stress,	72
	maximum tension stress and maximum displacement at 15°	
	Model	
4.7	The maximum forces, maximum compression stress,	74
	maximum tension stress and maximum displacement at 30°	
	Model	

4.8	The	maximum	forces,	maximum	compression	stress,	75
	maxii	mum tension	n stress a	nd maximur	n displacement	t at 45°	
	Mode	el					
4.9	The	maximum	forces,	maximum	compression	stress,	76
	maxi	mum tension	n stress a	nd maximur	n displacement	t at 60°	
	Mode	el					
4.10	The	maximum	forces,	maximum	compression	stress,	77
	maxi	mum tension	n stress a	nd maximur	n displacement	t at 75°	
	Mode	el					
4.11	The h	nighest maxi	mum int	ernal forces	recorded at fo	r every	78
	mode	el					
4.12	The U	Utilization R	atio betw	veen Design	Capacity and	Critical	83
	Load						
4.13	The s	section prop	osal for	every degree	e model and th	ne total	84
	steel	weight of th	e Truss S	SOLMAD str	ructure		
4.14	Comp	parison of Pa	arameter	on Angle M	odels		85

xii

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

1.1	Schematic JKR-UTM-UPM Sustainable Hydrokinetic	1
	Renewal Energy Turbine System Sketch	
1.2	The floaters (UPVC pipe) were slot in through the frame	3
	structure to create buoyancy to SOLMAD	
2.1	Furling of micro-hydrokinetic battery-charging device	10
	(Hands On: The Earth Report, 2004)	
2.2	Debris boom on 5 kW Encurrent Turbine in Ruby, Alaska	13
	Alaska (Tyler, 2011).	
2.3	Non clogging Turbine - (a) Normal operation, (b) one	14
	blade swings back in plane of rotation and (c) coning	
	downstream.	
2.4	Crashworthy device in handling impact collision (Qiu and	14
	Yu, 2012)	
2.5	Research debris diversion platform with sweeper	15
2.6	Solid Material Protection Illustration (Federal Highway	18
	Administration, 2011)	
2.7	Bridge Diverter/Protection (Marvig, 2011)	19
2.8	Ice Breaking Operation (Department of Fisheries and	20
	Ocean, 2012)	
2.9	Hull Areas for a Type Ship (Department of Fisheries and	21
	Ocean, 2012)	
2.10	Illustration of the metacentric height (Genosas, 2011)	22
2.11	Relationship between Metacenter And Center Of Gravity	24
	(Toshio, 2006)	

2.12	Load frame used for measuring impact forces in the flume	25
	experiments	
2.13	Load frame used in basin test	25
2.14	Aluminium specimen view from submersible camera the	26
	aluminium specimen impacting load cell	
2.15	Plan view of Aluminium Specimen for in-water test	26
	showing guide wires. View towards load cell column	
2.16	Pendulum Test Setup	27
2.17	Solid Material in river moving straight following river current	30
2.18	Solid Material twisting movement due to vorticity of river current	30
2.19	Solid Material stuck in water during low tide	30
2.20	Comparison of the three approaches for estimating the	33
	maximum impact force applied to a 455kg log at impact	
	velocities.(Haehnel & Daly, 2004)	
2.21	Impact force vs impacted angle showing the orientation	34
	of log affecting the amount of impact force create	
3.1	Research Methodology Flowchart	38
3.2	Solid Material Diverter (SOLMAD) Sketch	40
3.3	Area of water discharge in pipe	41
3.4	NAHRIM Flume facility for SOLMAD laboratory Test	43
3.5	The Illustration of impact test conducted in NAHRIM	43
	Flume	
3.6	Determination Solid Material Diverter (SOLMAD) Stability during place in moving current – Side View	45
3.7	The markers being place to every chainage of 10m interval near SK Sempili area of Kapit, Sarawak	46
3.8	Position of Maximum Impact Forces exerted at point P0	48
3.9	STAADPro model for 45° model receiving Maximum Impact Force	49
4.1	Frame Detail for 30° SOLMAD	53

4.2	Detail of Panel from the Frame Structure	53
4.3	Dimension of 15° of Impact model SOLMAD	54
4.4	Dimension of 30° of Impact model SOLMAD	54
4.5	Dimension of 45° of Impact model SOLMAD	55
4.6	Dimension of 60° of Impact model SOLMAD	55
4.7	Dimension of 75° of Impact model SOLMAD	55
4.8	Solid wood being release to SOLMAD Model	58
4.9	Solid wood being release to SOLMAD Model	58
4.10	Wood being move after impacting Load cell	59
4.11	The impact data logger and computer for data acquisition	59
4.12	Results of Impact Test	59
4.13	Determination Solid Material Diverter (SOLMAD)	63
	Stability during place in moving current - 15° Model	
4.14	Determination Solid Material Diverter (SOLMAD)	63
	Stability during place in moving current - 30° Model	
4.15	Determination Solid Material Diverter (SOLMAD)	64
	Stability during place in moving current - 45° Model	
4.16	The half submerge experience by 45° degree model	64
4.17	Determination Solid Material Diverter (SOLMAD)	65
	Stability during place in moving current - 60° Model	
4.18	Determination Solid Material Diverter (SOLMAD)	65
	Stability during place in moving current - 75° Model	
4.19	The mapping of markers location and their cross section	67
	profiling near SK Sempili area of Kapit, Sarawak	
4.20	River cross section profile indicating the bottom bed and	68
	the river velocity through the cross section near SK	
	Sempili area of Kapit, Sarawak.(Chainage U18)	
4.21	Solid debris lying on riverbed during low water tide at	68
	Balleh River	
4.22	Sampling Works for Properties of debris	69
4.23	Log Classification Due to Weight	70
4.24	Maximum Impact Forces exerted at structure element at	79
	Point P22- 15° Model	

4.25	Maximum Impact Forces exerted at structure element at	79
	Point P5-30°	
4.26	Maximum Impact Forces exerted at structure element at	80
	Point P4-45° Model	
4.27	Maximum Impact Forces exerted at structure element at	80
	Point P3- 60° Model	
4.28	Maximum Impact Forces exerted at structure element at	81
	Point P0- 75° Model	
4.29	30° Model with UA150x90x10 LD and UA100x100x12	86
	Sections	

LIST OF SYMBOLS, NOTATION AND ABBREVIATIONS

SYMBOLS:

λ	-	Slenderness ratio
δ	-	Deflection
ε	-	Strain or constant in classification of a section
λ_{LT}	-	Equivalent slenderness ratio
Α	-	Cross sectional area
В	-	Breadth of structure
D	-	Depth of section
DWT	-	Dead Weight Tonne (US Tonne)
Ε	-	Young's modulus (205000 N/mm ²)
Fi _{max}	-	Maximum force
F _{v(kips)}	-	Maximum force (kips)
F _x	-	Critical Force
Н	-	Height of submerged structure
KE	-	Kinetic energy
KM	-	Keel to metacentre distance
KB	-	Center of Buoyancy
m_1	-	Mass of log
\mathbf{M}_{cy}	-	Moment capacity of section in major axis
M_{cz}	-	Moment capacity of section in minor axis
\mathbf{M}_{y}	-	Applied end moment about the major axis
M_z	-	Applied end moment about the minor axis
N _{b.Rd}	-	Buckling resistance
Р	-	Concentrated load
p_c	-	Compression resistance

p_{cy}	-	Compression resistance on minor axis
P_u	-	Ultimate axial load
p_y	-	Design yield strength
p_{v}	-	Vertical shear force resistance
R_p	-	Yield strength
R_m	-	Tensile strength
S	-	Stopping distance
S_x	-	Plastic modulus about the major axis
S_y	-	Plastic modulus about the minor axis
t _i	-	Time of initial contact
V	-	Shear force in beam
V	-	Volume of displacement
Z_x	-	Elastic section modulus about the major axis
Z_{y}	-	Elastic section modulus about the minor axis

NOTATION:

PO	-	Location for maximum impact force exerted to most
		front member of SOLMAD
P1	-	Location no. 1 for maximum impact force exerted to
		SOLMAD Wall
P2	-	Location no. 2 for maximum impact force exerted to
		SOLMAD Wall
Р3	-	Location no. 3 for maximum impact force exerted to
		SOLMAD Wall
P4	-	Location no. 4 for maximum impact force exerted to
		SOLMAD Wall
P5	-	Location no. 5 for maximum impact force exerted to
		SOLMAD Wall
P6	-	Location no. 6 for maximum impact force exerted to
		SOLMAD Wall

P7	-	Location no. 7 for maximum impact force exerted to
		SOLMAD Wall
P8	-	Location no. 8 for maximum impact force exerted to
		SOLMAD Wall
Р9	-	Location no. 9 for maximum impact force exerted to
		SOLMAD Wall
P10	-	Location no. 10 for maximum impact force exerted
		to SOLMAD Wall
P11	-	Location no. 11 for maximum impact force exerted
		to SOLMAD Wall
P12	-	Location no. 12 for maximum impact force exerted
		to SOLMAD Wall
P13	-	Location no. 13 for maximum impact force exerted
		to SOLMAD Wall
P14	-	Location no. 14 for maximum impact force exerted
		to SOLMAD Wall
P15	-	Location no. 15 for maximum impact force exerted
		to SOLMAD Wall
P16	-	Location no. 16 for maximum impact force exerted
		to SOLMAD Wall
P17	-	Location no. 17 for maximum impact force exerted
		to SOLMAD Wall
P18	-	Location no. 18 for maximum impact force exerted
		to SOLMAD Wall
P19	-	Location no. 19 for maximum impact force exerted
		to SOLMAD Wall
P20	-	Location no. 20 for maximum impact force exerted
		to SOLMAD Wall
P21	-	Location no. 21 for maximum impact force exerted
		to SOLMAD Wall
P22	-	Location no. 22 for maximum impact force exerted
		to SOLMAD Wall
P23	-	Location no. 23 for maximum impact force exerted

		to SOLMAD Wall
P24	-	Location no. 24 for maximum impact force exerted
		to SOLMAD Wall
P25	-	Location no. 25 for maximum impact force exerted
		to SOLMAD Wall
P26	-	Location no. 26 for maximum impact force exerted
		to SOLMAD Wall
P27	-	Location no. 27 for maximum impact force exerted
		to SOLMAD Wall
P28	-	Location no. 28 for maximum impact force exerted
		to SOLMAD Wall
P29	-	Location no. 29 for maximum impact force exerted
		to SOLMAD Wall
P30	-	Location no. 30 for maximum impact force exerted
		to SOLMAD Wall
P31	-	Location no. 31 for maximum impact force exerted
		to SOLMAD Wall
P32	-	Location no. 32 for maximum impact force exerted
		to SOLMAD Wall
P33	-	Location no. 33 for maximum impact force exerted
		to SOLMAD Wall
P34	-	Location no. 34 for maximum impact force exerted
		to SOLMAD Wall
P35	-	Location no. 35 for maximum impact force exerted
		to SOLMAD Wall
P36	-	Location no. 36 for maximum impact force exerted
		to SOLMAD Wall
P37	-	Location no. 37 for maximum impact force exerted
		to SOLMAD Wall
P38	-	Location no. 38 for maximum impact force exerted
		to SOLMAD Wall

XX

ABBREVIATIONS:

ASTM	-	American Society For Testing and Materials
BS 5950	-	British Standard 5950
BSI	-	British Standard Institution
DWT	-	Deadweight Tonne
EC 3	-	Eurocode 3
UA	-	Universal Angle section
ULS	-	Ultimate Limit State
SLS	-	Serviceability Limit State
LL	-	Live load
DL	-	Dead load

LIST OF APPENDICES

APPENDIX TITLE PAGE

11	Wooden Deons Bamping)
В	Maximum Impact Force Calculation	102

CHAPTER 1

INTRODUCTION

1.1 General

Solid material diverter (SOLMAD) is a system introduced to the JKR-UTM-UPM sustainable hydrokinetic renewal energy (SHRE) turbine system in order to endure turbine steadiness by diverting any moving solid materials through the river currents from impairing the turbine system (Figure 1.1). The SOLMAD system is one of eleven systems or projects that need to be developed in order to form a complete hydrokinetic turbine system that can function in the river as shown in Table 1.1. SHRE turbine system is one of the models that will produce electricity from hydrokinetic energy of the river flow. The pilot project for this turbine system was carried out in one of the rivers in the state of Sarawak. The content of the regulation of the local authorities of Sarawak restricts any construction of fixed structures in the river; therefore, a floating solid debris diverter structure has to be built.

Figure 1.1 Schematic of JKR-UTM-UPM Sustainable Hydrokinetic Renewal Energy Turbine System Sketch

No.	SHRE-SubProject
1.	Modular Floating Pontoon System (MFLOPS) -
2.	Hydrokinetic Turbine Energy Transmission System (HTETS)-
3.	Hydrokinetic Energy Transformation System (HETS)-
4.	Hydrokinetic Turbine Anchoring System (HTAS)
5.	Solid Material Diverter (SOLMAD)
6.	Intelligent Hydrokinetic Control & Monitoring System (iHCMS)
7.	Hydrokinetic Turbine Operational Control System (HTOCS)
8.	Integrated Green Energy Profiler Environmental Logger (iGEPEL)
9.	Hydrokinetic Crude Energy Stabilizer (HCES)
10.	Hydrokinetic Power and Control Protection System (HPCPS)
11.	Hydrokinetic Green Energy Converter (HGEC)

Table 1.1: JKR-UTM-UPM SHRE Sub Project/Systems

1.2 Research Background

SOLMAD consists of floaters that cover the frame structure (main structure) and grating as the structure deck as shown in Figure 1.2. The floaters use UPVC end capped material while the grating is galvanised iron and the main structure uses angle iron with a variety of sizes. The joints of the frame structure are joined together using bolts and nuts. The SOLMAD structure, which will be operating on the surface of the river, will be anchored to the bottom of the river using a concrete block. It also functions as an anchor for the turbine pontoon structure which is attached to the back of the structure. The structure is designed to be modular due to mobility reason as the location restricts in using machineries plant.

Figure 1.2 The floaters (UPVC pipe) were slot in through the frame structure to create buoyancy to SOLMAD

The characteristic of a large solid material poses a much greater risk to the structure, turbine blade, and platform fitness since the impact momentum is quite high. Large debris most commonly enters the flow either during a flood event or because of bank erosion (Bradley et al., 2005). The magnitude of the forces can be large enough to cause substantial or even catastrophic damage to the structure (Haehnel & Daly, 2002a). The probability of the platform that supports the turbine system to be misaligned due to an impact will significantly reduce the efficiency of the blade in harnessing kinetic energy from the river current. In the river, it is impossible to avoid any contact between the turbine system structure and solid debris that flows along the river. Hence, the best solution to this problem is to minimise the impact stress induced during the collision by using a structure to divert the debris away from the blade turbine. During the divert process, a structure will experience the collision impact between the solid material and the diverter itself, where the surface of the contacted structure will tend to have an increase in deformation and stress induced. This event could be critical if the selection of optimum angle diversion and stress analysis study are not taken into consideration cautiously as they would make the structure functions at its optimum stage. Impact orientation could be in the range of 1° to 90° according to the position of impact wall and logs alignment during collision. The behaviour of the impact could induce certain stress at the impacted wall, which will reduce the lifespan of the SOLMAD system that was initially designed to be sustainable with effective life cycle cost. The impact wall is the structure that has direct contact with the solid material. It must be able to perform its diverting function with a permissible stress occurrence. The selection of the angle of impact from 1° to 90° in variation is crucial to ensure that the turbine could sustain for a longer period of time in the river.

1.3 Research Problem

The diverting event would certainly induce stress during the impact between the debris and the wall of the diverter. Therefore, management of stress is necessary to minimise the amount of stress induced. For that reason, by changing the angle of the wall, the impact orientation will be changed as it reduces the stress induced, because the stress will increase the durability of the SOLMAD structure. Wooden log position varies when it is streaming in the river. The stress amount of log impact could vary due to the orientation (angle) of the log that is moving through the water. Stress analysis on the impact wall is one of the imperative elements to particularly study the stress by the angle of impact. Since the angle orientation of the log is practically impossible to control, the angle of diverter could be changed to lower the amount of stress by the angle of impact of the wall structure. By using experimental laboratory impact test and STAADPro design analysis software, the study of impacted wall can be done comparatively. In this study, the most optimum angle of the structure wall to receive the impact stress was determined, hence, the system was able to improve its stiffness during the diverting event.

1.4 Research Objectives

The objectives of this study are as follows:

a) To investigate the effect of angle variations to the design of SOLMAD through finite element modeling.

 b) To conduct economic comparisons in terms of savings steel weight for SOLMAD at different angles.

1.5 Research Scope

The scopes of this research covered analytical, parametric, and laboratory experiment studies. The parametric and analytical studies emphasised on the analysis of impact by finite element method and the analytical of results, while the experimental study validated and justified the simulation of finite element method as follows:

- i. The paper covered the study of stress analysis that occurred by impact collision between the SOLMAD structure with the solid material (woody debris).
- ii. The angle of wall will be varies to several angle (15°,30°,45°,60°,75°). The 5 angles of orientation which has been selected which is assume to be adequate.
 For further study, the exact optimum wall impact can be done in the future.
- iii. The ability of the SOLMAD to float on the river was made possible by the introduction of floaters. The SHRE Project decided to use 300 mm diameter UPVC pipes with end capped as floaters.
- iv. The stability of SOLMAD was determined by the metacentre determination and stability test. The consideration of metacentre was applied during the regular river current flow since hydrodynamic effects such as wave was covered in this study. The stability test consisted of five scale models with variations of impact angle (15°,30°,45°,60°,75°) tested in a laboratory flume at the National Hydraulic Research Institute of Malaysia (NAHRIM) located in Serdang.

- v. Since the profile of the river varied due to the bed condition, which determined the vorticity of the flow and movement of the log, the research considered the condition where the log moved straight by following the river current.
- vi. The types of debris included in the study were solid wood trees due to their solid mass debris and most frequent flow in the river. This research assumed the study of diverting large wooden logs to be the biggest challenge in handling debris in the specific river and all small solid materials were also considered to be diverted by this structure.
- vii. The testing simulation neglected the hydro dynamics effect on the wall even though it can reduce the amount of stress. The study only considered the genuine impact regardless of the hydrodynamic effect and movement ability of the actual structure in the river because the effect of water was secondary compared to the "pure" structural impact, thus, it can likely be neglected for the design.
- viii. The study also covered structure element of the impacted collision that occurred first. The determination at the hit point considered the highest in stress but the overall structural integrity was also considered by the analysis.
- ix. Laboratory test was conducted to verify the selection of the impact forces' equations. The test was conducted in a flume since the scale model was acceptable by assuming it as a simplified dynamic model and it was used to provide an accurate estimation of the impact demands (Piran et al. 2014). Since impact collision force was considered greater than water viscosity, which was 0.001 Pa.s (Pascal-second), kg/m/s, the backwater condition can be neglected.
- x. The finite element method associated by using STAADPro software that applied the maximum impact force calculated before was used in this study.

 xi. The self-weight determination of the five models with the variations of angle was based on the weight of the SOLMAD structure designed using the STAADPro software.

1.6 Significance of Research

Optimum design of the SOLMAD system should be economical, light, and good in mobility during installation on site later. The research application could help designers of any floating structures on rivers, especially in the remote areas of Sarawak because data acquisition for this study was done in a remote area in Kapit, Sarawak, Malaysia.

1.7 Structure of Thesis

This thesis consists of five chapters. Chapter 1 explains the background, objectives, and scope of the study. Chapter 2 reviews the previous studies on diverter, preliminary design concept of SOLMAD, material and component selection, stability of a floating structure, impact test, and wooden debris. Chapter 3 will explain the research methodology. This chapter covered the detail frame design of SOLMAD, theoretical part of the metacentre and determination of the centre of buoyancy, and theoretical stability test and impact done in the laboratory. Chapter 3 will also cover the methodology of the SOLMAD structure including stability, buoyancy, impact force analysis, design section, and data collection. On the other hand, Chapter 4 covers the stability of the SOLMAD which included the stability test and determination of metacentre calculations, a collection of river velocity and profile, a collection of log data, and theoretical prediction of maximum impact force. The laboratory impact test was executed in a flume while the validation of the theoretical impact forces was made based on the laboratory impact force data. The log data and river profile collection on site were also elaborated in this chapter. Other than that, this chapter will also present the analysis of the SOLMAD structure, design section properties, and overall weight of the structure with a comparison to the proposed angle models. The selection of the SOLMAD impact forces was explained in the final topic of this chapter. Last but not least, Chapter 5 will determine the conclusion and recommendation for further studies.

REFERENCES

Abela, M. (2013) Stainless Steel Armor Plate Design for Protecting Supercavitating Baffle Blocks against Debris Impacts in High-Velocity Stilling Basins. ASCE Journal, 177–186.

Anyi, M. and Kirke, B. (2010). *Energy For Sustainable Development: Evaluation of small axial flow Hydrokinetic turbines for remote communities*. Technical Report. Sustainable Energy Center, University of South Australia, Adelaide, Australia.

Anyi, M. and Kirke, B. (2015). *Test on a Non-Clogging Hydrokinetic Turbine*. Technical Report. Sustainable Energy Center, University of South Australia, Adelaide, Australia.

American Association of State Highway and Transportation Officials (1998). ASSHTO LRFD Bridge Design Specification. Washington, DC. ASSHTO.

Ashwill, T. and Kanaby, G. (2007).Sweep-twist adaptive blade. *European Wind Energy Conference and Exhibition (EWEC)* 7-10 May. Milan, Italy, 10-24.

Bahafun, K. A. B. (2007). *Analysis Of Renewable Energy In Malaysia*. PhD Thesis, University Of New South Wales, Australia.

Barras, C. B. (Ed). (2001). *Ship Stability Notes & Examples*. Oxford, Butterworth-Heinamman.

Bradley, J., Richards, D. and Bahner, C. (2005) *Debris Control Structures – Evaluation and Countermeasures*. Technical Report, Salem, Oregon. U.S. Department of Transportation: Federal Highway Administration.

British Standards Institution (2005). *Eurocode 3: Design of steel structures – Part 1-1: General rules and rules for buildings*. London: British Standard Institution.

Center of Analysis and Dissemination of Demonstrated Energy Technology.(1998). *Water Current Turbines Pump Drinking Water*. CADDET Renewal Energy Technical Brochure No 83:1998 Retrieved from <u>http://www.caddet.re.org</u>

Collu, M., Maggi, A., Gualeni, P., Rizzo, C. M. and Brenan, F. (2014). *Stability* requirement for floating offshore wind-turbine (FOWT) during assembly and temporary phase: overview and application. Ocean Engineering, 84, 164-175.

Department of Fisheries And Ocean (2012). -Ship Hull Design In Ice Operation (Chapter 5)- Ice Navigation In Canadian Water. Canada, Canadian Coast Guard Publication (Rev2012):132-140

Federal Emergency Management Agency. (1995) Engineering principle and practices forretrofitting floodplane residential buildings. (Report No. 259). Washington. FEMA.

Forest Research Institute of Malaysia. (2009). *Wood Identification Using Macroscopic Features*. Malaysia, FRIM Publication

Genosas, J. (2011). Stability and Metacentric Height. Retrieved from http://www.codecogs.com/users/23287/stability-and-metacentric-s2.png

Gaythwaite, J. W. (1990). Design of Marine Facilities For the Berthing, Mooring and repair of Vessel-Design of Floating Structures. New York, Van Nostrand Reinhold. Haehnel, R. B., and Daly, S. F. (2002). Maximum Impact Force of Woody Debris on Floodplain Structures Cold Regions Research and Engineering Laboratory, Hanover, U.S.A., U.S Army Corp of Engineer.

Hands On: The Earth Report. (2004). The River Run Through It (Report No. 2). Retrieved from <u>http://www.TVE.org</u>.

Haris S. and Amdhal J. (2013). *Analysis of Ship-Ship Collision Damage Accounting For Bow and Side Deformation Interaction*. Journal of Marine Structure, 32, 18-48.

Jene, L. L., Biebow N. and Thiede, J.(2011). *The European Research Ice Breaker Aurora Borealis Conceptual Design Study*. Technical Report, Bunders Republic, Germany, Alfered Wegener Institute.

Johnson, J. B., Schmid, J., Kasper, J. L., Seltz, A. C. and Durray, P. (2014). Protection of in River Hydrokinetic Power- Generating Devices From Surface Debris in Alaska Rivers. Alaska, U.S.A., Alaska Center For Energy and Power.

Kasper, J. L., Johnson, J. B., Duvoy P.X., Konefal, N. and Schmid, J. (2015). *A Review of Debris Detection Method.* Alaska, U.S.A., Northwest Natural Marine Renewal Energy Center.

Khan M., Iqbal, M. and Quaicoe, J. (2008). *River Current Energy Conversion Systems: Progress, Prospects And Challenges*. Renewable And Sustainable Energy Reviews, Vol. 12, 2177-2193.

Kirke, B. (2005) *Developments in Ducted Water Current Turbines*. University of South Australia. St Adelaide, Australia. Retrieve from <u>www.cyberiad.net</u>.

Larwood, S. and Zutek, M. (2006). Wind Turbine Blade Aeroelastic Modelling For Loads and Dynamic Behavior. *AWEA Wind Power Conference*. Massachusetts., June 2006. 1,1-17

Leheta, H. W., Elhewy, A. M. and Mohamed W. E. S. (2014). *Finite element simulation of barge impact into a rigid wall*. Alexandria_Engineering_Journal. 53(1), 11-21.

Liu, C., Hao, E., Zhang, S. (2015). *Optimization And Application of Crashworthy Device For The Monopile Offshore Wind Turbine Against Ship Impact*. Applied Ocean Research. Vol 51, 129-137.

Liu, Z., H., Amdhal, J. and Loset, S. (2010). *Plasticity Base Material Modelling of Ice and Its Application To Ship-Iceberg Impacts*. Cold Regions Science and Technology. Vol 65, 326-334.

Lowe, T. (2007). *Tidal Tubine*. Master of Science Thesis, University of Southampton. Southampton, U.K.

Malaysia Timber Council. (2017). *Properties of Popular Malaysian Timber*. (Brochure). Kuala Lumpur, Malaysia. Malaysia Timber Council.

Marvig, J. (2011). Sauk River Bridge. Retrieved from http://www.nscale.net/forums/showthread.php?22474-Sauk-River-Bridge-build-

National Association of Australian State Road Authorities. (1990). NAASRA Highway Bridge Design Specification. Sydney, Australia, NAASRA.

Piran, P. A., Naito, C. J. and Riggs, H. R. (2014). *Full Scale Experimental Study of Impact Demands Resulting from High Mass Low Velocity Debris*. American Society of Civil Engineers (ASCE), 4(4), 243-270.

Prete, G. (1994). *Spacetruss Structures:Typological Characteristics and Principal Construction System in Italy.* International Journal of Spacetruss, Vol. 9, 191-200.

Rigss, H. R., Kobayashi, M. H.,Cox, D. T., Naito C. J., Piran, P. A., Ko, H. T. S. and Khowitar, E. (2013). Water-Driven Debris Forces On Structures:Experimental And Theoretical Program. ASME International Conference on Ocean, Offshore and Arctic Engineering. 9-14 June. Nantes, France:ASME, 1-10

Perham, R. E. (1988). *Element of Floating Debris Control System*. Mississippi, U.S.A. US Army Corps of Engineer.

Qiu, X. M., Yu, T. X. (2012). Some Topics In Recent Advances and Applications of Structural Impact Dynamics. American Society of Mechanical Engineers (ASME), 64(3), 1-12.

Riska, K. and Strength, M. (2013). *Design of ice breaking ships*. Helsinki, Finland Cold Region Science And Marine Technology. 1–43.

Sha, S., Melville, B. W., Shamseldin, A. Y., Adams, K. N., and Beskhyroun, S. (2016). *Experimental Investigation of Tsunami-Borne Debris Impact Force on Structure: Factors affecting Impulse Mpmentum Formula*. Ocean Engineering. 127, 158–169.

Shafei, M. A. R., Ibrahim D. K. (2014). *Novel Approach For Hydrokinetic Tubine Application*. Elsevier Science. 27, 120-126.

Thanh, L. and Itoh, Y. (2013). *Performance of curved steel bridge railings subjected to truck collisions*. Engineering_Structures **54**, 34-36.

Toshio, I. (2006). *Ship Motion in wave - prediction in dynamic stability*. PhD Thesis, Tokyo University of Marine Science and Technology, Tokyo.

Tyler, N. R. (2011). *River Debris: Cause, Impacts, and Mitigation Techniques*. Alaska, U.S.A., Alaska Center for Energy and Power.

Wallerstein, N., Thorne C. R. and Abt, S. R. (1996). *Debris Control at Hydraullic Structure, Contract Modification: Management of Woody Debris in Normal Channels and at Hydraullic Structures. Mississippi, U.S.A.* US Army Corps of Engineer.

Wen, R. K. (1985). *Stiffness Matrices of Symmetric Structure*, American Society of Civil Engineer Journals.7, 1621–1625.