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ABSTRACT 

Sustainable Hydrokinetic Renewal Energy Power Generation System (SHRE) is an 

energy harvesting system that operates in the river of Sarawak and subjected to 

impact of floating debris. In order to resist the impacts from floating debris, the Solid 

Material Diverter (SOLMAD) is proposed for the protection of SHRE system. 

Floating debris in the river, normally timber logs, could damage the SOLMAD and 

misalign the turbine orientation, which in return could reduce the lifespan and 

efficiency of the hydrokinetic turbine to harness energy. This research aims to model 

SOLMAD of various angles that are subjected to impact loading induced by floating 

debris. Five angle variations, namely 15°, 30°, 45°, 60°, and 75° were taken into 

consideration for analysis and design of the SOLMAD. The size of timber logs, river 

profile, and flow velocity were obtained from site sampling data collection at the 

Balleh River, Sarawak. The mass from the recorded sampling of floating debris and 

velocity of the river were then converted into equivalent impact forces on the 

SOLMAD structure using the Work-Energy method. Scaled down models were 

investigated experimentally in the laboratory to investigate their stability and validate 

the theoretical impact forces calculated using the Work-Energy method. A total of 

five models were developed with 3-dimensional line elements using the STAAD.Pro 

software. The models were analysed under the most critical load cases using the 

calculated equivalent impact forces to obtain the internal forces and displacements. 

The models were then designed with optimised steel section using Eurocode 3. The 

study showed that structural orientation of 15° and 30° performed better in terms of 

stability and float ability on the water compared to the other angle orientations. From 

the structural design standpoint, by using Eurocode 3, angle section of  100 mm x 

100 mm x 12 mm and 150 mm x 150 mm x 12 mm were adopted as the most 

optimum sections to design the SOLMAD. Based on the overall performance of 

structural stability in water and structure self-weight, the selection of 30° model was 

proposed as the SOLMAD structure. 
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ABSTRAK 

Sistem Penjanaan Kuasa Tenaga Hidrokinetik Boleh Diperbaharui  (SHRE) adalah 

sistem penuaian tenaga yang beroperasi di sungai Sarawak dan mengalami 

perlanggaran dengan bendasing terapung. Untuk mengatasi kesan dari bendasing 

terapung, Penyisih Bendasing (SOLMAD) dicadangkan untuk melindungi sistem 

SHRE. Bendasing terapung di sungai, biasanya kayu balak, boleh merosakkan 

SOLMAD dan mengubah orientasi turbin, yang mana boleh mengurangkan jangka 

hayat dan kecekapan turbin hidrokinetik untuk penuaian tenaga. . Kajian ini 

bertujuan untuk mengkaji model SOLMAD dengan variasi sudut perlanggaran oleh 

bendasing terapung. Variasi lima sudut, iaitu 15°, 30°, 45°, 60° dan 75° diambil kira 

untuk tujuan analisis dan reka bentuk SOLMAD. Saiz kayu balak, profil sungai, dan 

halaju aliran diperoleh dari pengumpulan data pengambilan tapak di Sungai Balleh, 

Sarawak. Ketumpatan sampel bendasing terapung yang direkodkan dan halaju sungai 

kemudian diubah menjadi daya impak setara pada struktur SOLMAD menggunakan 

kaedah Tenaga-Kerja. Model berskala kecil dikaji secara eksperimen di makmal 

untuk dikaji kestabilan dan validasi pengiraan daya impak secara teori menggunakan 

kaedah Tenaga Kerja. Sejumlah lima model telah dibangunkan dengan unsur garisan 

3 dimensi menggunakan perisian STAAD.Pro. Model-model ini dianalisis di bawah 

beban kes yang paling kritikal dengan menggunakan daya impak setara yang dikira 

untuk mendapatkan daya dalaman dan daya anjakan. Model-model keluli ini 

direkabentuk secara optimum menggunakan Eurocode 3. Kajian menunjukkan 

struktur berorientasi 15° dan 30°  lebih baik dari segi kestabilan dan keupayaan 

untuk terapung di atas air berbanding sudut yang lain. Dari sudut rekabentuk 

struktur, dengan menggunakan Eurocode 3, keluli bersudut 100 mm x 100 mm x 12 

mm dan 150 mm x 150 mm x 12 mm telah digunakan sebagai bahagian paling 

optimum untuk rekabentuk SOLMAD. Berdasarkan prestasi keseluruhan dari segi 

kestabilan struktur dalam air dan struktur berat sendiri, pemilihan model 30° 

dicadangkan sebagai struktur SOLMAD.  
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Solid material diverter (SOLMAD) is a system introduced to the JKR-UTM-

UPM sustainable hydrokinetic renewal energy (SHRE) turbine system in order to 

endure turbine steadiness by diverting any moving solid materials through the river 

currents from impairing the turbine system (Figure 1.1). The SOLMAD system is one 

of eleven systems or projects that need to be developed in order to form a complete 

hydrokinetic turbine system that can function in the river as shown in Table 1.1. 

SHRE turbine system is one of the models that will produce electricity from 

hydrokinetic energy of the river flow. The pilot project for this turbine system was 

carried out in one of the rivers in the state of Sarawak. The content of the regulation 

of the local authorities of Sarawak restricts any construction of fixed structures in the 

river; therefore, a floating solid debris diverter structure has to be built. 

 

 

 
Figure 1.1 Schematic of JKR-UTM-UPM Sustainable Hydrokinetic Renewal Energy 

Turbine System Sketch  

SOLMAD 

River Flow Direction 
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Table 1.1: JKR-UTM-UPM SHRE Sub Project/Systems 

1.2 Research Background  

SOLMAD consists of floaters that cover the frame structure (main structure) 

and grating as the structure deck as shown in Figure 1.2. The floaters use UPVC end 

capped material while the grating is galvanised iron and the main structure uses angle 

iron with a variety of sizes. The joints of the frame structure are joined together using 

bolts and nuts. The SOLMAD structure, which will be operating on the surface of the 

river, will be anchored to the bottom of the river using a concrete block. It also 

functions as an anchor for the turbine pontoon structure which is attached to the back 

of the structure. The structure is designed to be modular due to mobility reason as the 

location restricts in using machineries plant. 

No. SHRE-SubProject 

1. Modular Floating Pontoon System (MFLOPS) - 

2. Hydrokinetic Turbine Energy Transmission System (HTETS)- 

3. Hydrokinetic Energy Transformation System (HETS)- 

4. Hydrokinetic Turbine Anchoring System (HTAS) 

5. Solid Material Diverter (SOLMAD) 

6. Intelligent Hydrokinetic Control & Monitoring System (iHCMS) 

7. Hydrokinetic Turbine Operational Control System (HTOCS) 

8. Integrated Green Energy Profiler  Enviromental Logger (iGEPEL) 

9. Hydrokinetic Crude Energy Stabilizer (HCES) 

10. Hydrokinetic Power and Control Protection System (HPCPS) 

11. Hydrokinetic Green Energy Converter (HGEC) 
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Figure 1.2  The floaters (UPVC pipe) were slot in through the frame structure to 

create buoyancy to SOLMAD 

 

The characteristic of a large solid material poses a much greater risk to the 

structure, turbine blade, and platform fitness since the impact momentum is quite 

high. Large debris most commonly enters the flow either during a flood event or 

because of bank erosion (Bradley et al., 2005).The magnitude of the forces can be 

large enough to cause substantial or even catastrophic damage to the structure 

(Haehnel & Daly, 2002a). The probability of the platform that supports the turbine 

system to be misaligned due to an impact will significantly reduce the efficiency of 

the blade in harnessing kinetic energy from the river current. In the river, it is 

impossible to avoid any contact between the turbine system structure and solid debris 

that flows along the river. Hence, the best solution to this problem is to minimise the 

impact stress induced during the collision by using a structure to divert the debris 

away from the blade turbine. During the divert process, a structure will experience 

the collision impact between the solid material and the diverter itself, where the 

surface of the contacted structure will tend to have an increase in deformation and 

stress induced. This event could be critical if the selection of optimum angle 

diversion and stress analysis study are not taken into consideration cautiously as they 

would make the structure functions at its optimum stage. Impact orientation could be 

in the range of 1° to 90° according to the position of impact wall and logs alignment 

during collision. The behaviour of the impact could induce certain stress at the 

impacted wall, which will reduce the lifespan of the SOLMAD system that was 

Floaters 
(UPVC Pipe) 

Deck 

River Flow 
Direction 

Frame Structure 
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initially designed to be sustainable with effective life cycle cost. The impact wall is 

the structure that has direct contact with the solid material. It must be able to perform 

its diverting function with a permissible stress occurrence. The selection of the angle 

of impact from 1° to 90° in variation is crucial to ensure that the turbine could sustain 

for a longer period of time in the river. 

1.3 Research Problem   

The diverting event would certainly induce stress during the impact between 

the debris and the wall of the diverter. Therefore, management of stress is necessary 

to minimise the amount of stress induced. For that reason, by changing the angle of 

the wall, the impact orientation will be changed as it reduces the stress induced, 

because the stress will increase the durability of the SOLMAD structure. Wooden log 

position varies when it is streaming in the river. The stress amount of log impact 

could vary due to the orientation (angle) of the log that is moving through the water. 

Stress analysis on the impact wall is one of the imperative elements to particularly 

study the stress by the angle of impact.  Since the angle orientation of the log is 

practically impossible to control, the angle of diverter could be changed to lower the 

amount of stress by the angle of impact of the wall structure. By using experimental 

laboratory impact test and STAADPro design analysis software, the study of 

impacted wall can be done comparatively. In this study, the most optimum angle of 

the structure wall to receive the impact stress was determined, hence, the system was 

able to improve its stiffness during the diverting event. 

1.4 Research Objectives   

The objectives of this study are as follows: 

 

a) To investigate the effect of angle variations to the design of SOLMAD 

through finite element modeling. 



 

 

5 

 

b) To conduct economic comparisons in terms of savings steel weight for 

SOLMAD at different angles. 

1.5 Research Scope 

The scopes of this research covered analytical, parametric, and laboratory 

experiment studies. The parametric and analytical studies emphasised on the analysis 

of impact by finite element method and the analytical of results, while the 

experimental study validated and justified the simulation of finite element method as 

follows: 

i. The paper covered the study of stress analysis that occurred by impact 

collision between the SOLMAD structure with the solid material (woody 

debris). 

ii. The angle of wall will be varies to several angle (15°,30°,45°,60°,75°). The 5 

angles of orientation which has been selected which is assume to be adequate. 

For further study, the exact optimum wall impact can be done in the future. 

iii. The ability of the SOLMAD to float on the river was made possible by the 

introduction of floaters. The SHRE Project decided to use 300 mm diameter 

UPVC pipes with end capped as floaters.  

iv. The stability of SOLMAD was determined by the metacentre determination 

and stability test. The consideration of metacentre was applied during the 

regular river current flow since hydrodynamic effects such as wave was 

covered in this study. The stability test consisted of five scale models with 

variations of impact angle (15°,30°,45°,60°,75°) tested in a laboratory flume 

at the National Hydraulic Research Institute of Malaysia (NAHRIM) located 

in Serdang. 
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v. Since the profile of the river varied due to the bed condition, which 

determined the vorticity of the flow and movement of the log, the research 

considered the condition where the log moved straight by following the river 

current. 

vi. The types of debris included in the study were solid wood trees due to their 

solid mass debris and most frequent flow in the river. This research assumed 

the study of diverting large wooden logs to be the biggest challenge in 

handling debris in the specific river and all small solid materials were also 

considered to be diverted by this structure. 

vii. The testing simulation neglected the hydro dynamics effect on the wall even 

though it can reduce the amount of stress. The study only considered the 

genuine impact regardless of the hydrodynamic effect and movement ability 

of the actual structure in the river because the effect of water was secondary 

compared to the "pure" structural impact, thus, it can likely be neglected for 

the design. 

viii. The study also covered structure element of the impacted collision that 

occurred first. The determination at the hit point considered the highest in 

stress but the overall structural integrity was also considered by the analysis. 

ix. Laboratory test was conducted to verify the selection of the impact forces' 

equations. The test was conducted in a flume since the scale model was 

acceptable by assuming it as a simplified dynamic model and it was used to 

provide an accurate estimation of the impact demands (Piran et al. 2014). 

Since impact collision force was considered greater than water viscosity, 

which was 0.001 Pa.s (Pascal-second), kg/m/s, the backwater condition can 

be neglected. 

x. The finite element method associated by using STAADPro software that 

applied the maximum impact force calculated before was used in this study. 
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xi. The self-weight determination of the five models with the variations of angle 

was based on the weight of the SOLMAD structure designed using the 

STAADPro software. 

1.6   Significance of Research 

Optimum design of the SOLMAD system should be economical, light, and 

good in mobility during installation on site later. The research application could help 

designers of any floating structures on rivers, especially in the remote areas of 

Sarawak because data acquisition for this study was done in a remote area in Kapit, 

Sarawak, Malaysia. 

1.7  Structure of Thesis 

This thesis consists of five chapters. Chapter 1 explains the background, 

objectives, and scope of the study. Chapter 2 reviews the previous studies on diverter, 

preliminary design concept of SOLMAD, material and component selection, stability 

of a floating structure, impact test, and wooden debris. Chapter 3 will explain the 

research methodology. This chapter covered the detail frame design of SOLMAD, 

theoretical part of the metacentre and determination of the centre of buoyancy, and 

theoretical stability test and impact done in the laboratory. Chapter 3 will also cover 

the methodology of the SOLMAD structure including stability, buoyancy, impact 

force analysis, design section, and data collection. On the other hand, Chapter 4 

covers the stability of the SOLMAD which included the stability test and 

determination of metacentre calculations, a collection of river velocity and profile, a 

collection of log data, and theoretical prediction of maximum impact force. The 

laboratory impact test was executed in a flume while the validation of the theoretical 

impact forces was made based on the laboratory impact force data. The log data and 

river profile collection on site were also elaborated in this chapter. Other than that, 

this chapter will also present the analysis of the SOLMAD structure, design section 

properties, and overall weight of the structure with a comparison to the proposed 
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angle models. The selection of the SOLMAD impact forces was explained in the 

final topic of this chapter. Last but not least, Chapter 5 will determine the conclusion 

and recommendation for further studies. 
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