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ABSTRACT

Optical Character Recognition (OCR) plays an important role in the retrieval of

information from pixel-based images to searchable and machine-editable text formats.

For instance, OCR is typically used in many computer vision applications such as

in automatic signboard recognition, language translation as well as in the process of

digitizing scanned documents. However, compared to old documents or poorly printed

documents, printed characters are typically broken and blurred, which makes the

character recognition in potentially far more complicated. Although there are several

OCR applications which utilizes techniques such as feature extraction and template

matching for recognition, these methods are still not accurate enough for recognition.

In this work, deep learning network (transfer learning with Inception V3 model) is used

to train and perform OCR. Deep learning network is implemented and trained using

Tensorflow Python API that supports Python 3.5+ (GPU version) which is available

under the Apache 2.0 open source license. The Inception V3 network is trained with

53,342 character images consisting of noises which are collected from receipts and

newspapers. From the experiment results, the system achieved significantly better

recognition accuracy on poor quality of text character level and resulted in an overall

21.5% reduction in error rate as compared to existing OCRs. Besides, there is another

experiment conducted to further analyze the root causes of text recognition failure and

a solution to overcome the problem is also proposed. Analysis and discussion were

also made on how the different layer’s properties of neural network affects the OCR’s

performance and training time. The proposed deep learning based OCR has shown

better accuracy than conventional methods of OCR and has the potential to overcome

recognition issue on poor quality of text character.
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ABSTRAK

Pengecaman aksara optik (OCR) memainkan peranan penting dalam

mendapatkan maklumat daripada imej ke dalam format teks yang boleh disunting

oleh mesin. Contohnya, OCR biasanya digunakan dalam banyak aplikasi penglihatan

komputer seperti pengenalan papan tanda automatik, terjemahan bahasa dan lain-

lain. Walau bagaimanapun, pengecaman aksara telah menjadi semakin rumit ke

atas dokumen lama yang terdiri daripada aksara-aksara cetak yang pecah dan

kabur. Walaupun terdapat beberapa aplikasi OCR yang menggunakan teknik

seperti pengekstrakan ciri dan padanan corak, tetapi kaedah ini masih tidak tepat

untuk pengecaman. Dalam kerja ini, rangkaian pembelajaran mendalam (deep

learning network) telah digunakan untuk melatih dan melaksanakan OCR dengan

model Inception V3. Python Tensorflow API (versi GPU) telah digunakan untuk

melatih rangkaian pembelajaran mendalam dan boleh didapati dengan lesen sumber

terbuka Apache 2.0. Jaringan Inception V3 dilatih dengan 53,342 imej aksara

yang dikumpulkan dari resit dan akhbar. Dari hasil percubaan, sistem mencapai

ketepatan pengecaman yang lebih baik semasa menguna kualiti teks yang lebih

rendah berbanding dengan OCR lain. Di samping itu, terdapat satu lagi eksperimen

yang dijalankan untuk mengkaji punca-punca kegagalan pengecaman teks dan

mencadangkan penyelesaian untuk mengatasi masalah ini. Analisis dan perbincangan

juga dibuat tentang bagaimana sifat lapisan rangkaian neural mempengaruhi prestasi

OCR dan masa latihan. OCR yang dicadangkan telah menunjukkan ketepatan yang

lebih baik daripada OCR lain dan mempunyai potensi untuk mengatasi masalah

mengenali kualiti teks yang tidak berkualiti.
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CHAPTER 1

INTRODUCTION

1.1 Project Background

The ability to perform human functions such as reading machines is an ancient

dream. However, over the last few years, reading by a machine is no longer a dream

and has grown to become a truth. Text character recognition commonly deals with the

recognition of optically processed characters which is also called as optical character

recognition (OCR). The basic idea of OCR is to convert any hand written or printed text

into data files that are able to be edited and read by machine. With OCR, any article or

book can be scanned directly and the editable text format can then be easily converted

from a computer. The OCR system has two major advantages which are the ability to

increase productivity by reducing staff involvement and storing text efficiently. More

generally, the areas where this system can be applied are postal departments, banks,

publication industry, government agencies, education, finance, health care [7].

The universal OCR system consists of three main steps which are image

acquisition and preprocessing, feature extraction and classification [7]. Image

preprocessing phase cleans up and enhances the image by noise removal, correction,

binarization, dilation, color adjustment and text segmentation etc. Feature extraction

is a technique for extracting and capturing certain pieces of information from data. In

the classification phase, the portion of the divided text in the document image will be

mapped to the equivalent textual representation.

Nowadays, there are several existing OCR solutions which are commonly

used in machine learning research and pattern recognition. Unfortunately, there is
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still a challenging problem for recognizing broken or faded English characters. The

performance of OCR directly depends on the quality of input image or document, thus

making the character recognition in scene images is potentially far more complicated.

In addition, English characters with poor quality are typically obtained from old printed

documents that are usually caused by damaged print cartridges. Unfortunately, these

training samples are yet to be found in the existing solution. In order to recognize poor

quality English characters, an improved OCR with sufficient training data distribution

is needed.

In traditional machine learning research, many people think that the feature

vectors of test and training data are provided from the same source. However, this

may not be truth in some of the OCR research cases. In the concept of transfer

learning, training samples can be used to pre-train a network in the source domain,

and these well-trained learning characteristics can be delivered and benefit from the

training process in the target domain of the second network. In recent years, traditional

methods in the field of OCR research have been almost substituted by deep learning

methods such as Convolutional Neural Networks (CNN). An idea is proposed by

Oquab et al. that is using the CNN to learn image representations on a large annotation

dataset can adequately transfer this information to other visual recognition tasks with

a limited amount of training data [17]. Yejun Tang et al. proposed another idea is to

add an adaptation layer in CNN using transfer learning, which achieves performance

improvement in historical Chinese character recognition tasks [10]. Inspired by these

works, the proposed method in this project is going to apply a deep neural network

with transfer learning method for broken English character recognition problems.

1.2 Challenges

From previous section, the problem statement is simply explained. The existing

conventional OCR with machine learning is trained based on hand-written text and

good quality printed text. There is still a challenge for poor quality (broken, blurred

and incomplete) English text character recognition. In addition, due to insufficient

labeled training samples of poor quality English character, neural network used for
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OCR will suffer from imbalanced training data distribution issue. However, the data-

labeling process requires new train data which is very costly to train up a new network

to recognize poor quality text characters. The process will also consume a huge amount

of training time as well.

Furthermore, there is also another challenge where the performance of deep

neural network will potentially be affected by the new training data distributions. For

example, a neural network is pre-trained to recognize good quality of "O" character,

and then if the network trained again with different "broken" pattern of poor quality of

"O" character, the weights adjusted in the network will actually negatively be affected

by the new training data. Philippe Henniges et al. explained that if training with over-

represented class distributions, this will cause the performance of neural network to

degrade [16]. From the challenges stated above, the classification and training data

distribution is the most crucial stage and a challenge in this project. The aim of this

work is to improve an OCR method with deep learning network that will apply transfer

learning concept and achieve the high accuracy performance while keeping the training

time short.

1.3 Objectives and Scope

The first objective is to collect training materials with a set of blur, incomplete

English text characters in images. Next is to develop an OCR method by using deep

learning neural network approach. Moreover, investigate the method that will achieve

high accuracy while reducing the training time. Lastly to benchmark the performance

of the proposed OCR with existing OCR methods.

Scope of this project is mainly focused on the classification part such as

network structure adjustment and training data distribution. However, some existing

solutions such as OpenCV will be used and applied for the image processing part

(segmentation and filtering). While going through preprocessing, each image will

segment out the text character instead of word, so as similar to the input for

classification.
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Besides that, dataset will be prepared in png or jpg format. The text language

is English only, where the font size and type of the text dataset are typically depend on

the data-set’s resources. In addition, the dataset will be colleted from old newspapers

and receipts. Tensorflow will be used as the framework in this project on Windows

with NVIDIA GPU using Python and C++ programming language.

1.4 Project Report Organization

Chapter 2 presents the literature review on Convolutional Neural Network,

Transfer Learning and related works. In Chapter 3, the design model, methodology,

training data collection, testing data distribution plan, and fine-tuning methods are

explained. In Chapter 4, experiments results are presented with a summary of the

network behavior and benchmark of this work. In Chapter 5, this work is concluded

with recommendations for future works.
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