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ABSTRACT 

 

 

 

 

In this study, electro-membrane extraction (EME) across a hollow polymer inclusion 

membrane (HPIM) was performed using a new three-dimensional printed flow-cell 

equipped with a bubbleless electrode. The sample solutions were introduced 

continuously into the flow cell during extraction, while the acceptor solution 

remained stagnant. The HPIM consisted of cellulose acetate (CTA) as the base 

polymer, tri-(2-ethylhexyl)-phosphate (TEHP) acting as the plasticiser and di-(2-

ethylhexyl)-phosphoric acid (D2EHPA) as the carrier. The use of a proposed 

bubbleless electrode in the experimental setup allowed the use of ultra-high voltage 

in EME (up to 3000 V) without any interruption due to bubble formation; this cannot 

be performed with a conventional EME setup. Operation parameters, such as the 

sample flow rate and sample volume, were comprehensively investigated. Two 

cationic herbicides were selected as model analytes: paraquat and diquat. These 

analytes were extracted selectively from the flowing sample stream across the HPIM, 

and then enriched in 20 µL of the acceptor solution inside the lumen of the hollow 

membrane. The extracted solutions were then collected using a micro-syringe and 

subsequently injected into a capillary electrophoresis coupled with UV 

spectrophotometric detector (CE-UV) for separation and quantification. Under the 

optimised conditions, the recovery of both paraquat and diquat was in the range of 

96.31–104.96% when spiked into the river water sample. The limits of detection of 

the method for both herbicides were in the range of 0.2–0.3 µg/L with relative 

standards deviation below 8.3%. The proposed approach was successfully applied to 

monitor the herbicide content present in the river water sample at sub-ppb level. 
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ABSTRAK 

 

 

 

 

Dalam kajian ini, pengekstrakan elektro-membran (EME) merentasi rongga 

kemasukan membran polimer (HPIM) telah dilakukan dengan menggunakan sel 

aliran yang telah dicetak secara tiga-dimensi yang dilengkapi dengan elektrod tanpa 

buih. Semasa pengekstrakan, larutan sampel telah diperkenalkan secara berterusan ke 

dalam sel aliran, manakala larutan penerima kekal bertakung. HPIM terdiri daripada 

selulosa asetat (CTA) sebagai asas polimer, Tri-(2-ethylhexyl)-phosphate (TEHP) 

yang bertindak sebagai pemplastik dan di-(2-ethylhexyl) phosphoric asid (D2EHPA) 

sebagai pengangkut. Penggunaan elektrod tanpa buih dalam proses eksperimen 

membenarkan penggunaan voltan yang tinggi dalam EME (sehingga 3000 V) tanpa 

apa-apa gangguan disebabkan oleh pembentukan buih; ini tidak boleh dilakukan 

dalam proses EME konvensional. Parameter operasi, seperti kadar aliran sampel dan 

isipadu sampel, telah disiasat secara komprehensif. Dua racun herba kationik telah 

dipilih sebagai analite contoh iaitu: paraquat dan diquat. Kedua-dua analite ini 

diekstrak daripada aliran sampel yang mengalir di seluruh HPIM, dan kemudian 

dikumpulkan di dalam larutan penerima 20 µL yang berada di dalam lumen membran 

berongga. Larutan yang telah diekstrak kemudiannya, diambil menggunakan jarum 

mikro dan di masukkan didalam vial untuk dianalisis ke dalam kapilari elektroforesis 

ditambah dengan pengesan spektrofotometri UV (CE-UV) untuk pemisahan dan 

kuantifikasi. Dengan menggunakan nilai yang telah dioptimumkan, kadar pemulihan 

kedua-dua paraquat dan diquat adalah di dalam lingkungan 96.31-104.96% apabila 

menggunakan sampel air sungai yang telah ditambah kedua-dua analite. Had 

pengesanan bagi kaedah ini untuk kedua-dua racun herba adalah dalam lingkungan 

0.2-0.3 µg/L dengan standard relatif sisihan bawah (RSD) 8.3%. Pendekatan yang 

disyorkan telah berjaya digunakan untuk memantau kandungan racun herba yang 

terdapat di dalam sampel air sungai di peringkat sub-ppb. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background  

 
 

The development of three-dimensional (3D) technology has become popular 

over the past decade, and even though the first 3D printing was actually introduced in 

1983 by Charles W. Hull, this technology is still being used today (Gross et al., 

2014). 3D market values are expected to rise each year and reach $16.2 billion by 

2018; thus, many scientists are competing to use this technology. So nowadays, 

additive manufacturing technology, also known as 3D technology, has been applied 

in several fields including medical, manufacturing, and aerospace industries, and 

even food printing (Mardani et al., 2016; Oskui et al., 2016).  

 

 

This technology claims to be simple and with a low cost, and the structure can 

be easily designed and reproduced. The advantage of this technology is that it allows 

the designer to design devices with precision, including complex geometries and 

dimensions. Unfortunately, in chemical research and development, only a few 

applications of 3D devices are reported (Mardani et al., 2016) for example printed-in 

catalysts and components in electrochemical and spectroscopy analysis (Symes et al., 

2012), designing a 3D continuous-flow for organic synthesis (Dragone et al., 2013) 

and designing 3D reactionware for chemical synthesis (Kitson et al., 2016).  

 

 

Electromembrane extraction (EME) based on the use of a polymer inclusion 

membrane (PIM) has been developed in order to overcome the limitations of 

supported liquid membranes (SLM), which are rather unstable upon the extraction 

process (Mamat & See, 2015). The membranes consist of a base polymer such as 
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cellulose acetate (CTA) and poly(vinyl chloride) (PVC), plasticiser, and carriers that 

form a thin, flexible and strong film. This results in a self-supporting membrane that 

can be used to separate the analyte of interest with better stability when compared to 

SLMs (Annane et al., 2015). 

 

 

Developments in EME-PIM continue to be made by various researchers. 

Until recently, most of the operation conditions were quite similar, using a static 

extraction condition; there was one paper about using a continuous flow-through of 

EME-PIM. The sample solution containing the analyte was continuously introduced 

into the system whiles the acceptor, which was inside the PIM, remained static. The 

continuous flow of EME-PIM claimed to give higher enrichment factors and save 

more time, as reported by See and associates in  2013. However, the setup of the 

experiment required many steps that were both complicated to follow and costly 

which need to proper handling of electrodes and also to make sure the flow of the 

process were in the correct order to avoid any accident happened when voltage was 

applied (H. H. See, Stratz, & Hauser, 2013) 

 

 

 EME basically uses electric forces to drive movement of the analyte ions, 

thus a stable voltage must be applied during the extraction process. However, the 

usage of voltage can cause some bubble formation when used in a high range. To 

overcome this problem, the bubbleless electrode invented by Gu Congying and 

colleagues was used. The polyacrylamide gel inside the capillary will prevent the 

migration of bubbles that form from the electrolysis process due to the fluidic 

system. Hence, the extraction system will be more stable throughout the process (Gu 

et al., 2012) . 

 

 

Herbicides used in the agricultural sector to kill unwanted weeds have 

damaged the ecosystem of agricultural fields. Herbicides eventually can increase the 

production of food as weed control boosts plant productivity. Herbicides can be 

absorbed into the environment in various ways such as washing and leaching into the 

surface and ground waters, which slowly accumulate and lead to a higher toxic level 

in the environment. From this, awareness about this has spread and has led to the 

development of methods to monitor the herbicides in the environment as well as to 
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establish a permissible limit for any individual herbicides (Chang et al., 2016). For 

this study, paraquat and diquat have been chosen as the model analytes. Both of them 

have the same dangerous effects which are toxic to human, animal and also 

environment.  

 

 

In this research, capillary electrophoresis (CE) has been chosen with its 

advantages of higher separation, a lower solvent used, smaller sample size, shorter 

analysis time and lower cost. Several other methods such as HPLC-UV and UPLC-

MS/MS have also been reported but when compared with CE, they are more 

expensive and have a complicated procedure to follow which need steps to stabilize 

the systems (Pizzutti et al., 2016). The purpose of using bubbleless electrodes in the 

EME system was to avoid the formation of bubbles during the extraction process due 

to the high voltage used.  

 

 

Further investigations have been done regarding the parameters of the 

operation conditions of flow rate and volume of sample used. By the end of the 

study, a validation of the methods was carried out by applying optimized conditions 

to river water. The linearity, recovery, limit of detection and limit of quantification 

have also been investigated. Thus, the combination of 3D printing technology 

together with EME-HPIM equipped with a bubbleless electrode can be as a new 

approach in micro-extraction methods. 

 

 

 

 

1.2 Problem Statement 

 

 

An overflowing growth of weeds forces crops to compete for sunlight and 

nutrients and leads to significant decreases in crop production. Hence, the 

agricultural sector in many countries depends mostly on the application of herbicides 

to easily control weed growth. However, in large-scale applications in the 

agricultural sector, this may lead to the contamination of the atmosphere, food, soil 

and water systems. 
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 Herbicide contamination may present an important risk factor as a result of 

the toxicity or carcinogenic nature of some of these compounds. Normally, 

herbicides that are present in environmental waters are at sub-ppb levels and not at a 

significant level for detection by a common sample preparation and analytical 

instrumentation. Therefore, there is a need for an effective detection method for these 

compounds followed by an improvement in the sensitivity for these herbicides. In 

conjunction with that, there is a need for a new analytical approach that can both 

clean up and enrich the trace amount of analytes present in the water to detectable 

levels and at the same time be one of the solutions. 

 

 

 From the previous study, the preconcentration of analytes had been 

successfully reported using electromembrane extraction across hollow polymer 

inclusion membrane. However, only limited sample volume can be treated at one 

time with the proposed setup and tend to unstable when high voltage was used. In 

addition, using continuous-flow of sample volume also had reported before to 

increase the usage of sample volume. Unfortunately, the setup was complicated and 

costly. Therefore, in the present work, the application of this 3D technology for EME 

using HPIM can be a new approach. Using a printed 3D flow cell can be simpler, 

save more time and have more cost-savings than the other approaches. The main 

focus is to develop a suitable 3D flow cell design for EME-PIM equipped with a 

bubbleless electrode to gain a better understanding of the extraction parameter and 

for its application to river water. 

 

 

 

 

1.3 Objectives of the Study 

 

 

The objectives of this study are: 

 

 

i. To design a new 3D printed flow cell equipped with bubbleless electrodes for 

the purpose of a continuous flow EME-HPIM approach. 

 

ii. To study the operation parameters of the proposed continuous flow EME-

HPIM approach using paraquat and diquat as model analytes.  
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iii. To apply the developed approach to monitoring the paraquat and diquat content 

present in river water samples at a trace level. 

 

 

 

 

1.4 Scope of the Research 

 

 

This study involves the development of a 3D flow cell for the determination 

of the herbicides paraquat and diquat through EME across HPIM incorporated with 

bubbleless electrodes. The use of a 3D printed flow cell in EME-HPIM is a new 

approach in micro-extraction methods. The process to produce the 3D printed flow 

cell is the stereolithography (SLA) which is one of the processes in 3D printing 

technology. A preliminary study has been done to the 3D design to find a suitable 

design to be used together with EME-HPIM methods. After obtaining a suitable 

design, further investigation for operation parameters flow rate of the sample and 

volume of sample was done. The optimum condition was then applied to river water 

to monitor the content of herbicides that were present. Throughout this study, CE 

with a UV detector was chosen as the separation analysis medium. 

 

 

 

 

1.5 Significance of the Research 

 

 

Herbicides, including paraquat and diquat, may dissipate from the soil 

through chemical degradation, microbial degradation, leaching, volatilisation, uptake 

by plants and decomposition. In addition, their physical and chemical decomposition, 

toxicity and herbicidal effects on the environment and health have been studied in 

detail. Therefore, an investigation into the new approach of EME-HPIM incorporated 

with a bubbleless electrode is required to determine and monitor the presence of 

these herbicides in the environment, especially in river water samples.  

 

 

 This study explores the combination of the modern 3D printing technology 

with an analytical study, which determines the paraquat and diquat in the 

environmental sample at sub-ppb level. Using the 3D printing approach, this study 

may become a new method of extraction in analytical methods. This new EME-
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HPIM approach is also expected to fulfill the requirement with respect to maximum 

residual limit (MRL) of herbicides present in the environmental waters which at 

0.1µg/L according to European Union. 
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