FABRICATION OF THREE-DIMENSIONAL PRINTED FLOW CELL FOR ELECTROMEMBRANE EXTRACTION OF PARAQUAT AND DIQUAT

SITI NUR AIN FATIHAH BINTI ABDILLAH

UNIVERSITI TEKNOLOGI MALAYSIA

FABRICATION OF THREE-DIMENSIONAL PRINTED FLOW CELL FOR ELECTROMEMBRANE EXTRACTION OF PARAQUAT AND DIQUAT

SITI NUR AIN FATIHAH BINTI ABDILLAH

A dissertation submitted in partial fulfilment of the requirements for the award of the degree of Master of Science in Chemistry

> Faculty of Science Universiti Teknologi Malaysia

> > FEBRUARY 2017

To my beloved family & friends

To my beloved family especially my parents and siblings and also my friends that always give support. I would like to share this happiness with all of you and I just want you to know that every one of you will be remembered for the rest of my life.

ACKNOWLEDGEMENT

In the name of ALLAH, Most Gracious, and Most Merciful who shower me with His bless, helpful supervisor, and supportive family and friends to complete this final year project. This dissertation is the result of not only my effort, but also with the contribution of others who assist me in this project.

It is always a pleasure to thank the kind people in Universiti Teknologi Malaysia, especially, my supervisor, Dr. See Hong Heng who never failed to give priceless opinion and support to complete this project. Also thanks to my laboratory colleagues also the member of Analytical Science Laboratory (ASL) that always helps me to complete this thesis. Your kind hearted will be stay in my heart forever. Without the contribution of them, this project will not complete successfully.

I would like to express my sincere thanks to my family and colleagues for their kind cooperation and encouragement which help me in completion of this thesis. Finally, I would like to apologize to all other unnamed person who helped me in various ways to give a quality outcome of this project.

ABSTRACT

In this study, electro-membrane extraction (EME) across a hollow polymer inclusion membrane (HPIM) was performed using a new three-dimensional printed flow-cell equipped with a bubbleless electrode. The sample solutions were introduced continuously into the flow cell during extraction, while the acceptor solution remained stagnant. The HPIM consisted of cellulose acetate (CTA) as the base polymer, tri-(2-ethylhexyl)-phosphate (TEHP) acting as the plasticiser and di-(2ethylhexyl)-phosphoric acid (D2EHPA) as the carrier. The use of a proposed bubbleless electrode in the experimental setup allowed the use of ultra-high voltage in EME (up to 3000 V) without any interruption due to bubble formation; this cannot be performed with a conventional EME setup. Operation parameters, such as the sample flow rate and sample volume, were comprehensively investigated. Two cationic herbicides were selected as model analytes: paraquat and diquat. These analytes were extracted selectively from the flowing sample stream across the HPIM, and then enriched in 20 μ L of the acceptor solution inside the lumen of the hollow membrane. The extracted solutions were then collected using a micro-syringe and subsequently injected into a capillary electrophoresis coupled with UV spectrophotometric detector (CE-UV) for separation and quantification. Under the optimised conditions, the recovery of both paraquat and diquat was in the range of 96.31–104.96% when spiked into the river water sample. The limits of detection of the method for both herbicides were in the range of 0.2–0.3 μ g/L with relative standards deviation below 8.3%. The proposed approach was successfully applied to monitor the herbicide content present in the river water sample at sub-ppb level.

ABSTRAK

Dalam kajian ini, pengekstrakan elektro-membran (EME) merentasi rongga kemasukan membran polimer (HPIM) telah dilakukan dengan menggunakan sel aliran yang telah dicetak secara tiga-dimensi yang dilengkapi dengan elektrod tanpa buih. Semasa pengekstrakan, larutan sampel telah diperkenalkan secara berterusan ke dalam sel aliran, manakala larutan penerima kekal bertakung. HPIM terdiri daripada selulosa asetat (CTA) sebagai asas polimer, Tri-(2-ethylhexyl)-phosphate (TEHP) yang bertindak sebagai pemplastik dan di-(2-ethylhexyl) phosphoric asid (D2EHPA) sebagai pengangkut. Penggunaan elektrod tanpa buih dalam proses eksperimen membenarkan penggunaan voltan yang tinggi dalam EME (sehingga 3000 V) tanpa apa-apa gangguan disebabkan oleh pembentukan buih; ini tidak boleh dilakukan dalam proses EME konvensional. Parameter operasi, seperti kadar aliran sampel dan isipadu sampel, telah disiasat secara komprehensif. Dua racun herba kationik telah dipilih sebagai analite contoh iaitu: paraquat dan diquat. Kedua-dua analite ini diekstrak daripada aliran sampel yang mengalir di seluruh HPIM, dan kemudian dikumpulkan di dalam larutan penerima 20 µL yang berada di dalam lumen membran berongga. Larutan yang telah diekstrak kemudiannya, diambil menggunakan jarum mikro dan di masukkan didalam vial untuk dianalisis ke dalam kapilari elektroforesis ditambah dengan pengesan spektrofotometri UV (CE-UV) untuk pemisahan dan kuantifikasi. Dengan menggunakan nilai yang telah dioptimumkan, kadar pemulihan kedua-dua paraquat dan diquat adalah di dalam lingkungan 96.31-104.96% apabila menggunakan sampel air sungai yang telah ditambah kedua-dua analite. Had pengesanan bagi kaedah ini untuk kedua-dua racun herba adalah dalam lingkungan 0.2-0.3 µg/L dengan standard relatif sisihan bawah (RSD) 8.3%. Pendekatan yang disyorkan telah berjaya digunakan untuk memantau kandungan racun herba yang terdapat di dalam sampel air sungai di peringkat sub-ppb.

TABLE OF CONTENTS

CHAPTER

1

2

TITLE

PAGE

DEC	CLARATION	ii
DEI	DICATION	iii
ACH	KNOWLEDGEMENT	iv
ABS	STRACT	V
ABS	STRAK	vi
TAE	BLE OF CONTENTS	vii
LIS	T OF TABLES	Х
LIS	T OF FIGURES	xi
LIS	T OF ABBREVIATIONS	xiii
LIS	T OF APPENDICES	xvi
INT	RODUCTION	1
1.1	Background	1
1.2	Problem Statement	3
1.3	Objective of the Research	4
1.4	Scope of the Research	5
1.5	Significance of Research	5
LIT	ERATURE REVIEW	7
2.1	Rapid Prototyping	7
	2.1.1 Type of 3D Printing	8
	Technologies	
	2.1.1.1 Stereolithography	8
	2.1.1.2 Fused Deposition	10
	Modelling	
	2.1.1.3 Selective Laser	11

		Melting		
	2.1.1.4	Selective	Laser	12
		Sintering		
	2.1.1.5	Digital	Light	13
		Processing		
	2.1.1.6	Electronic	Beam	14
		Melting		
	2.1.1.7	Laminated	Object	14
		Manufacturi	ng	
	2.1.2 3D Prin	ter Filament		15
	2.1.3 3D Des	ign Software		16
2.2	Capillary Elect	rophoresis		17
2.3	Electromembra	ane Extraction		19
2.4	Polymer Inclus	ion Membrane		21
2.5	Bubbleless Ele	ctrode		23
2.6	Herbicides			24
2.7	Targeted Herbi	cides		25
	2.7.1 Paraqu	ıat		25
	2.7.2 Diqua	t		26
RES	EARCH METH	IODOLOGY		28
3.1	Introduction			28
3.2	Chemical and	Reagents		28
3.3	Instrumentation	n		29
3.4	Preparing of	Sample and	Buffer	29
	Solution			
3.5	Fabrication of	3D Printed Flov	w Cell	30
3.6	Study on the F	low Cell Design	ns	30
3.7	Synthesis of B	ubbleless Electr	rode	31
3.8	Preparation	of Hollow	Polymer	31
	Inclusion Mem	lbrane		
3.9	EME across H	IPIM using 3I) Printed	32
	Flow Cell			
3.10	Method Valida	tion		32

3

	3.11	Overall Flow Chart of Study	34
4	RES	ULTS AND DISCUSSION	35
	4.1	Separation of Paraquat and Diquat	35
		using CE	
	4.2	Flow Cell Design	36
		4.2.1 Process of Designing the	36
		Flow Cell	
	4.3	Operating System Setup	41
	4.4	Study of the Flow Cell Design	42
	4.5	Optimization of Extraction Parameters	47
		4.5.1 Effect of Sample Flow Rate	47
		4.5.2 Effect of Sample Volume	48
	4.6	Method Validation	50
5	CON	CLUSIONS AND SUGGESTIONS	53
	5.1	Conclusion	53
	5.2	Future Work	54
REFERENCES			55
APPENDICES			63

LIST OF TABLES

TABLE	TITLE	PAGE
NO.		

2.1	Structure and chemical properties of targeted herbicides	27
4.1	The peak area of paraquat and diquat obtained from CE-UV using different models (1 and 2)	44
4.2	The peak area of paraquat and diquat obtained from CE-UV using different models (3 and 4)	45
4.3	The peak area of paraquat and diquat obtained from CE-UV using different quantity of bubbleless electrode	47
4.4	Method Validation Data	50
4.5	Recoveries of PQ and DQ in spiked river water samples	51

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

2.1	A) The process of producing layer by layer in	10
	SLA. B) Curing process using UV beam	
2.2	The FDM printing process	11
2.3	The process of SLM	12
2.4	The process of SLS	13
2.5	The process of LOM	15
2.6	Instrumental setup of capillary	18
	electrophoresis	
2.7	Illustration of EME system	20
3.1	The flow chart of overall experiment	34
	procedure	
4.1	CE-UV electropherogram of the standard	36
	mixture of herbicides at 50 mg/L	
	concentration, hydrodynamic injection for 18	
	s at 100 mbar, UV detector wavelength; 205	
	nm.	
4.2	The base design of flow cell	37
4.3	The 3D view of the object after "extrude"	37
	command.	
4.4	The small rectangle inside the base rectangle	38
4.5	The inlet and outlet channel inside the	38
	rectangle base	
4.6	The cone shape channel for inserting the	39
	pipette tip	
4.7	The realistic view of the sketched objects	39

	with support on top	
4.8	The final sketched of the flow cell after unites	40
	all shape	
4.9	Miicraft+ 3D printer	40
4.10	Experimental setup for EME-HPIM. a) real	41
	experiment setup, b) schematic diagram of	
	EME-HPIM with 3D printed flow cell	
4.11	The model drawing from AutoCAD software;	43
	a) model 1 and b) model 2	
4.12	The model drawing in AutoCAD software. (a)	44-45
	and (b) right side view of model 3, (c) and (d)	
	right view of model 4	
4.13	Effect of sample flow rate against analyte	48
	peak area detected in acceptor solution.	
	Extraction condition: acceptor volume, 20µL;	
	sample volume, 2mL; Voltage, 3000 V;	
	sample concentration 200 ng/mL. CE	
	conditions as in the text	
4.14	Effect of sample volume against analyte peak	49
	area detected in acceptor solution. Extraction	
	condition: acceptor volume, 20µL; sample	
	volume, 2mL; Voltage, 3000 V; sample	
	concentration 200 ng/mL. CE conditions as in	
	the text	
4.15	Calibration curve of standards herbicides (a)	50-51
	PQ and (b) DQ in river water	
4.16	Electropherogram of the acceptor solution	52
	after EME-HPIM of spiked river water.	
	Extraction condition: acceptor volume, 20µL;	
	flow rate, 0.5 mL/min; sample volume, 15	
	mL; voltage, 3000 V; Sample concentration,	
	500 ppb. CE conditions as in the text	

LIST OF ABBREVIATIONS

3D	-	Three Dimesional
μL	-	Microliter
μm	-	Micrometer
ABC	-	Acrylonitrile Butadiene Styrene
Am	-	Additive Manufacturing
APS	-	Ammonium Persulfate
BLM	-	Bulk Liquid Membrane
BE	-	Bubbleless Electrode
CAD	-	Computer Aided Design
CE	-	Capillary Electrophoresis
CEC	-	Capillary Electrochromatography
CGE	-	Capillary Gel Electrophoresis
CIEF	-	Capillary Isoelectric Focusing
CITP	-	Capillary Isotachophoresis
СТА	-	Cellulose Acetate
CZE	-	Capillary Zone Electrophoresis
D2EHPA	-	di-(2-ethylhexyl)phosphoric acid
DBP	-	dibutyl Phosphate
DC	-	Direct current
DCM	-	Dichloromethane
DEHA	-	Bis(2-ethylhexyl)adipate
DI	-	Deionized
DLP	-	Digital Light Processing
DMT	-	DMT Corporation
DQ	-	Diquat
EBM	-	Electronic Beam Melting
EE	-	Electroextraction
ELMs	-	Emulsion Liquid Membrane

EME	-	Electromembrane Extraction		
EPA	-	Environment Protection Agency		
EOF	-	Electroosmotic Flow		
FDM	-	Fused Deposition Modelling		
HF	-	Hollow Fibre		
HIPS	-	High Impact Polystyrene		
HPIM	-	Hollow Polymer Inclusion Membrane		
HPLC	-	High Performance Liquid Chromatography		
i.d	-	internal diameter		
KCl	-	Potassium Chloride		
LLE	-	Liquid-Liquid Extraction		
LPME	-	Liquid Phase Microextraction		
LOD	-	Limit of Detection		
LOM	-	Laminated Object Manufacturing		
LOQ	-	Limit of Quantification		
MAPS	-	Methacryloxy propyl trimethoxysilane		
mbar	-	Milibar		
МЕКС	-	Micellar Electrokinetic capillary		
MEKC	-	Micellar Electrokinetic capillary Chromatography		
MEKC MIT	-	MicellarElectrokineticcapillaryChromatographyVassachusetts of TechnogyMassachusettsVassachusetts		
MEKC MIT mL	-	MicellarElectrokineticcapillaryChromatographyImage: ChromatographyImage: ChromatographyMassachusettsImage: ChromatographyImage: ChromatographymiliLitreImage: ChromatographyImage: Chromatography		
MEKC MIT mL mL/min	-	MicellarElectrokineticcapillaryChromatographyImage: ChromatographyImage: ChromatographyMassachusetts Institutes of TechnologyImage: ChromatographyImage: ChromatographymiliLitreImage: ChromatographyImage: ChromatographymiliLitre per Image: ChromatographyImage: ChromatographyImage: Chromatography		
MEKC MIT mL mL/min mm		MicellarElectrokineticcapillaryChromatograv		
MEKC MIT mL mL/min mm mM	-	MicellarElectrokineticcapillaryChromatogravMassachusetrstitutes of TechnogymiliLitremiliLitre per vertemiliMolar		
MEKC MIT mL mL/min mm mM MRL		MicellarElectrokineticcapillaryChromatogravMassachusetristitutes of TechnogymiliLitremiliLitre per untermiliMolarMaximum Limit		
MEKC MIT mL mL/min mm mM MRL NaCl	-	Micellar Electrokinetic capillary Chromatographic $ -$ <		
MEKC MIT mL mL/min mm mM MRL NaCl NaOH		Micellar Electrokinetic capillary Chromatographic $ -$ <		
MEKC MIT mL mL/min mm mM MRL NaCl NaOH ng/mL		Micellar Electrokinetic capillary Chromatograv Status of Technology Status of Technology Massachuset Sodium element Status of Technology miliLitre Status of Technology Status of Technology miliLitre Status of Technology Status of Technology miliLitre Status of Technology Status of Technology Sodium Chlory Status of Technology Status of Technology nanogram per utiliLitre Status of Technology Status of Technology		
MEKC MIT mL mL/min mm mM MRL MRL NaCl NaOH ng/mL NPPE	-	Micellar Electrokinetic capillary Chromatograv Sadauset Sadauset		
MEKC MIT mL mL/min mm mM MRL MRL NaCl NaOH ng/mL NPPE NPOE	-	MicellarElectrokineticcapillaryChromatogram $ -$ Massachuset $ -$ Massachuset $ -$ militire $ -$ milimeter $ -$ miliMolar $ -$ Maximum $ -$ Sodium Ch $ -$ Sodium Hy $ -$ </td		
MEKC MIT mL mL ml mm mM MRL MRL NaCl NaOH ng/mL NPPE NPOE PC	-	MicellarElectrokineticcapillaryChromatogram<		
MEKC MIT mL mL ml/min mm mM MRL MRL NaCl NaOH ng/mL NPPE NPOE PC PET	-	MicellarElectrokineticcapillaryChromatogramSodium ChierSodium Chi		
MEKC MIT mL mL ml/min mm mM MRL MRL NaCl NaOH ng/mL NPPE NPOE PC PET PIM	-	MicellarElectrokineticcapillaryChromatogramSodium ChieSodium ChieSodi		

PQ	-	Paraquat
PTFE	-	Polytetrafluoroethylene
PVA	-	Polyvinyl Alcohol
PVC	-	Poly(vinylchloride)
RSD	-	Relative Standard Deviation
SFF	-	Solid freeform technology
SLA	-	Sterelithography
SLM	-	Supported Liquid Membrane
SLS	-	Selective Laser Sintering
STL	-	Standard Tessellation Language
TEHP	-	Tris(2ethylhexyl)phosphate
TEMED	-	Trimethyl-ethylenediamine
UV	-	Ultra Violet

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
1	Data Optimization of Different Flow Rate (A and B)	63
2	Data Optimization of Different sample Volume (A and B)	64

CHAPTER 1

INTRODUCTION

1.1 Research Background

The development of three-dimensional (3D) technology has become popular over the past decade, and even though the first 3D printing was actually introduced in 1983 by Charles W. Hull, this technology is still being used today (Gross *et al.*, 2014). 3D market values are expected to rise each year and reach \$16.2 billion by 2018; thus, many scientists are competing to use this technology. So nowadays, additive manufacturing technology, also known as 3D technology, has been applied in several fields including medical, manufacturing, and aerospace industries, and even food printing (Mardani *et al.*, 2016; Oskui *et al.*, 2016).

This technology claims to be simple and with a low cost, and the structure can be easily designed and reproduced. The advantage of this technology is that it allows the designer to design devices with precision, including complex geometries and dimensions. Unfortunately, in chemical research and development, only a few applications of 3D devices are reported (Mardani *et al.*, 2016) for example printed-in catalysts and components in electrochemical and spectroscopy analysis (Symes *et al.*, 2012), designing a 3D continuous-flow for organic synthesis (Dragone *et al.*, 2013) and designing 3D reactionware for chemical synthesis (Kitson *et al.*, 2016).

Electromembrane extraction (EME) based on the use of a polymer inclusion membrane (PIM) has been developed in order to overcome the limitations of supported liquid membranes (SLM), which are rather unstable upon the extraction process (Mamat & See, 2015). The membranes consist of a base polymer such as cellulose acetate (CTA) and poly(vinyl chloride) (PVC), plasticiser, and carriers that form a thin, flexible and strong film. This results in a self-supporting membrane that can be used to separate the analyte of interest with better stability when compared to SLMs (Annane *et al.*, 2015).

Developments in EME-PIM continue to be made by various researchers. Until recently, most of the operation conditions were quite similar, using a static extraction condition; there was one paper about using a continuous flow-through of EME-PIM. The sample solution containing the analyte was continuously introduced into the system whiles the acceptor, which was inside the PIM, remained static. The continuous flow of EME-PIM claimed to give higher enrichment factors and save more time, as reported by See and associates in 2013. However, the setup of the experiment required many steps that were both complicated to follow and costly which need to proper handling of electrodes and also to make sure the flow of the process were in the correct order to avoid any accident happened when voltage was applied (H. H. See, Stratz, & Hauser, 2013)

EME basically uses electric forces to drive movement of the analyte ions, thus a stable voltage must be applied during the extraction process. However, the usage of voltage can cause some bubble formation when used in a high range. To overcome this problem, the bubbleless electrode invented by Gu Congying and colleagues was used. The polyacrylamide gel inside the capillary will prevent the migration of bubbles that form from the electrolysis process due to the fluidic system. Hence, the extraction system will be more stable throughout the process (Gu *et al.*, 2012).

Herbicides used in the agricultural sector to kill unwanted weeds have damaged the ecosystem of agricultural fields. Herbicides eventually can increase the production of food as weed control boosts plant productivity. Herbicides can be absorbed into the environment in various ways such as washing and leaching into the surface and ground waters, which slowly accumulate and lead to a higher toxic level in the environment. From this, awareness about this has spread and has led to the development of methods to monitor the herbicides in the environment as well as to establish a permissible limit for any individual herbicides (Chang *et al.*, 2016). For this study, paraquat and diquat have been chosen as the model analytes. Both of them have the same dangerous effects which are toxic to human, animal and also environment.

In this research, capillary electrophoresis (CE) has been chosen with its advantages of higher separation, a lower solvent used, smaller sample size, shorter analysis time and lower cost. Several other methods such as HPLC-UV and UPLC-MS/MS have also been reported but when compared with CE, they are more expensive and have a complicated procedure to follow which need steps to stabilize the systems (Pizzutti *et al.*, 2016). The purpose of using bubbleless electrodes in the EME system was to avoid the formation of bubbles during the extraction process due to the high voltage used.

Further investigations have been done regarding the parameters of the operation conditions of flow rate and volume of sample used. By the end of the study, a validation of the methods was carried out by applying optimized conditions to river water. The linearity, recovery, limit of detection and limit of quantification have also been investigated. Thus, the combination of 3D printing technology together with EME-HPIM equipped with a bubbleless electrode can be as a new approach in micro-extraction methods.

1.2 Problem Statement

An overflowing growth of weeds forces crops to compete for sunlight and nutrients and leads to significant decreases in crop production. Hence, the agricultural sector in many countries depends mostly on the application of herbicides to easily control weed growth. However, in large-scale applications in the agricultural sector, this may lead to the contamination of the atmosphere, food, soil and water systems. Herbicide contamination may present an important risk factor as a result of the toxicity or carcinogenic nature of some of these compounds. Normally, herbicides that are present in environmental waters are at sub-ppb levels and not at a significant level for detection by a common sample preparation and analytical instrumentation. Therefore, there is a need for an effective detection method for these compounds followed by an improvement in the sensitivity for these herbicides. In conjunction with that, there is a need for a new analytical approach that can both clean up and enrich the trace amount of analytes present in the water to detectable levels and at the same time be one of the solutions.

From the previous study, the preconcentration of analytes had been successfully reported using electromembrane extraction across hollow polymer inclusion membrane. However, only limited sample volume can be treated at one time with the proposed setup and tend to unstable when high voltage was used. In addition, using continuous-flow of sample volume also had reported before to increase the usage of sample volume. Unfortunately, the setup was complicated and costly. Therefore, in the present work, the application of this 3D technology for EME using HPIM can be a new approach. Using a printed 3D flow cell can be simpler, save more time and have more cost-savings than the other approaches. The main focus is to develop a suitable 3D flow cell design for EME-PIM equipped with a bubbleless electrode to gain a better understanding of the extraction parameter and for its application to river water.

1.3 Objectives of the Study

The objectives of this study are:

- i. To design a new 3D printed flow cell equipped with bubbleless electrodes for the purpose of a continuous flow EME-HPIM approach.
- To study the operation parameters of the proposed continuous flow EME-HPIM approach using paraquat and diquat as model analytes.

iii. To apply the developed approach to monitoring the paraquat and diquat content present in river water samples at a trace level.

1.4 Scope of the Research

This study involves the development of a 3D flow cell for the determination of the herbicides paraquat and diquat through EME across HPIM incorporated with bubbleless electrodes. The use of a 3D printed flow cell in EME-HPIM is a new approach in micro-extraction methods. The process to produce the 3D printed flow cell is the stereolithography (SLA) which is one of the processes in 3D printing technology. A preliminary study has been done to the 3D design to find a suitable design to be used together with EME-HPIM methods. After obtaining a suitable design, further investigation for operation parameters flow rate of the sample and volume of sample was done. The optimum condition was then applied to river water to monitor the content of herbicides that were present. Throughout this study, CE with a UV detector was chosen as the separation analysis medium.

1.5 Significance of the Research

Herbicides, including paraquat and diquat, may dissipate from the soil through chemical degradation, microbial degradation, leaching, volatilisation, uptake by plants and decomposition. In addition, their physical and chemical decomposition, toxicity and herbicidal effects on the environment and health have been studied in detail. Therefore, an investigation into the new approach of EME-HPIM incorporated with a bubbleless electrode is required to determine and monitor the presence of these herbicides in the environment, especially in river water samples.

This study explores the combination of the modern 3D printing technology with an analytical study, which determines the paraquat and diquat in the environmental sample at sub-ppb level. Using the 3D printing approach, this study may become a new method of extraction in analytical methods. This new EME- HPIM approach is also expected to fulfill the requirement with respect to maximum residual limit (MRL) of herbicides present in the environmental waters which at 0.1μ g/L according to European Union.

REFERENCES

- Algardh, J. K., Horn, T., West, H., Aman, R., Snis, A., Engqvist, H., Harrysson, O. (2016). Thickness Dependency of Mechanical Properties for Thin-Walled Titanium Parts Manufactured by Electron Beam Melting (EBM)[®]. Additive Manufacturing, 12, 45–50.
- Almeida, M. I. G. S., Cattrall, R. W., & Kolev, S. D. (2012). Recent Trends in Extraction and Transport of Metal Ions Using Polymer Inclusion Membranes (PIMs). *Journal of Membrane Science*, 415–416, 9–23.
- Annane, K., Sahmoune, A., Montels, P., & Tingry, S. (2015). Polymer Inclusion Membrane Extraction of Cadmium(Ii) With Aliquat 336 in Micro-Channel Cell. *Chemical Engineering Research and Design*, 94(October), 605–610.
- Anssari Moin, D., Hassan, B., & Wismeijer, D. (2016). A Novel Approach for Custom Three-Dimensional Printing of a Zirconia Root Analogue Implant by Digital Light Processing. *Clinical Oral Implants Research*, 2015–2017.
- Badalà, F., Nouri-mahdavi, K., & Raoof, D. A. (2008). An Electroosmosis-Based Nanopipettor. *Computer*, 144(5), 724–732.
- Bak, D. (2003). Rapid Prototyping or Rapid Production 3D Printing Processes Move Industry Towards The Latter. Assembly Automation, 23(4), 340–345.
- Ballinas, M. D. L., Rodríguez De San Miguel, E., Rodríguez, M. T. D. J., Silva, O., Muñoz, M., & De Gyves, J. (2004). Arsenic(V) Removal with Polymer Inclusion Membranes from Sulfuric Acid Media Using DBBP as Carrier. *Environmental Science and Technology*, 38(3), 886–891.
- Baudana, G., Biamino, S., Klöden, B., Kirchner, A., Weißgärber, T., Kieback, B., Badini, C. (2016). Electron Beam Melting of Ti-48Al-2Nb-0.7Cr-0.3Si: Feasibility investigation. *Intermetallics*, 73, 43–49.
- Bellehumeur, C., Li, L., Sun, Q., & Gu, P. (2004). Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process. *Journal* of Manufacturing Processes, 6(2), 170–178.

- Bose, S., Vahabzadeh, S., & Bandyopadhyay, A. (2013). Bone Tissue Engineering Using 3D Printing. *Materials Today*, *16*(12), 496–504.
- Bower, B., Kodama, K., Swanson, B., Fowler, T., Meerman, H., Collier, K., Ward, M. (1998). Introduction to Capillary Electrophoresi. *Carbohydrases from Trichoderma Reesei and Other Micro-Organisms*, 327–334.
- Bremen, S., Meiners, W., & Diatlov, A. (2012). Selective Laser Melting. A Manufacturing Technology for The Future. *Laser Technik Journal*, 9, 33–38.
- Bromberg, L., Levin, G., & Kedem, O. (1992). Transport of Metals Through Gelled Supported Liquid Membranes Containing Carrier. *Journal of Membrane Science*, 71(1–2), 41–50.
- Campbell, T., Williams, C., Ivanova, O., & Garret, B. (2012). Could 3D Printing Change the World? Technologies, Potential, and Implications of Additive Manufacturing. *Technologies, Potential, and Implications of Additive Manufacturing*, 16.
- Canada, H. (2015). Guidelines for Canadian Drinking Water Quality: Guideline Technical Document - Paraquat - February 1991. Retrieved from Healthy Canadian http://healthycanadians.gc.ca
- Carasek, E., & Merib, J. (2014). Membrane-Based Microextraction Techniques in Analytical Chemistry: A review. *Analytica Chimica Acta*, 880, 8–25.
- Chang, P.-L., Hsieh, M.-M., & Chiu, T.-C. (2016). Recent Advances in The Determination of Pesticides in Environmental Samples by Capillary Electrophoresis. *International Journal of Environmental Research and Public Health*, 13(4).
- Chasteen, T. G. (2005). Capillary Electrophoresis.
- Chen, A., Lynch, K. B., Wang, X., Lu, J. J., Gu, C., & Liu, S. (2014). Incorporating High-Pressure Electroosmotic Pump and a Nano-Flow Gradient Generator Into a Miniaturized Liquid Chromatographic System for Peptide Analysis. *Analytica Chimica Acta*, 844, 90–98.
- Cooke, M. N., Fisher, J. P., Dean, D., Rimnac, C., & Mikos, A. G. (2003). Use of Stereolithography To Manufacture Critical-Sized 3D Biodegradable Scaffolds for Bone Ingrowth. *Journal of Biomedical Materials Research. Part B, Applied Biomaterials*, 64(2), 65–69.

- Dewey, Steven A, Stephen D. Miller, F. D. M. (2007). *Weed Management Handbook*. Montana, Utah, Wyoming: Utah and Wyoming Cooperative Extension Services.
- Dhir, V., Itoi, T., Fockens, P., Perez-Miranda, M., Khashab, M. A., Seo, D. W., Maydeo, A. (2015). Novel Ex Vivo Model for Hands-On Teaching of and Training in EUS-Guided Biliary Drainage: Creation of "Mumbai EUS" Stereolithography 3D Printing Bile Duct Prototype (With Videos). *Gastrointestinal Endoscopy*, 81(2), 440–446.
- Domínguez, N. C., Gjelstad, A., Nadal, A. M., Jensen, H., Petersen, N. J., Hansen, S. H., Pedersen-Bjergaard, S. (2012). Selective Electromembrane Extraction At Low Voltages Based on Analyte Polarity and Charge. *Journal of Chromatography A*, 1248, 48–54.
- Dragone, V., Sans, V., Kitson, P. J., & Cronin, L. (2013). 3D-printed Devices for Continuous-Flow Organic Chemistry, 951–959.
- Dudek, P. (2013). FDM 3D Printing Technology in Manufacturing Composite Elements. Archives of Metallurgy and Materials, 58(4), 10–13.
- Eibak, L. E. E., Gjelstad, A., Rasmussen, K. E., & Pedersen-Bjergaard, S. (2010). Kinetic Electro Membrane Extraction Under Stagnant Conditions-Fast Isolation of Drugs from Untreated Human Plasma. *Journal of Chromatography A*, *1217*(31), 5050–5056.
- Flanagan, R. J., & Ruprah, M. (1989). HPLC Measurement of Chlorophenoxy Herbicides, Bromoxynil, and Ioxynil, in Biological Specimens To Aid Diagnosis of Acute Poisoning. *Clinical Chemistry*, 35(7), 1342–7.
- Galarraga, H., Lados, D. A., Dehoff, R. R., Kirka, M. M., & Nandwana, P. (2016). Effects of the Microstructure and Porosity on Properties Of Ti-6Al-4V ELI Alloy Fabricated by Electron Beam Melting (EBM). *Additive Manufacturing*, 10, 47–57.
- Goyanes, A., Buanz, A. B. M., Hatton, G. B., Gaisford, S., & Basit, A. W. (2015).
 3D Printing of Modified-Release Aminosalicylate (4-ASA and 5-ASA) Tablets. *European Journal of Pharmaceutics and Biopharmaceutics*, 89, 157–162.
- Gross, B. C., Erkal, J. L., Lockwood, S. Y., Chen, C., & Spence, D. M. (2014). Evaluation of 3D printing and Its Potential Impact on Biotechnology and The Chemical Sciences. *Analytical Chemistry*, 86(7), 3240–3253.

- Gu, C., Jia, Z., Zhu, Z., He, C., Wang, W., Morgan, A., Liu, S. (2012). Miniaturized Electroosmotic Pump Capable of Generating Pressures of More Than 1200 bar. *Analytical Chemistry*, 84(21), 9609–9614.
- He, Y., & Lee, H. K. (1997). Liquid-Phase Microextraction in a Single Drop of Organic Solvent by Using a Conventional Microsyringe. *Analytical Chemistry*, 69(22), 4634–4640.
- Hornbeck, L. J., Incorporated, T. I., & Box, P. O. (1997). Digital Light Processing 1M for High-Brightness, High-Resolution Applications. *Proc. SPIE 3013*, *Projection Displays III*, 3013, 27–40.
- Jemal, A., Clegg, L. X., Ward, E., Ries, L. A. G., Wu, X., Jamison, P. M., Edwards,
 B. K. (2004). Annual Report To The Nation on The Status of Cancer, 1975-2001, With a Special Feature Regarding Survival. *Cancer*, 101(1), 3–27.
- Jiang, C., & Zhao, G.-F. (2014). A Preliminary Study of 3D Printing on Rock Mechanics. *Rock Mechanics and Rock Engineering*, 48, 1041–1050.
- Jorgenson, J. W., & DeArman Lukacs, K. (1981). Zone Electrophoresis in Open Tubular Glass Capillaries: Preliminary Data on Performance. *Journal of High Resolution Chromatography*, 4(5), 230–231.
- Kitson, P. J., Glatzel, S., Chen, W., Lin, C.-G., Song, Y.-F., & Cronin, L. (2016). 3D Printing of Versatile Reactionware for Chemical Synthesis. *Nature Protocols*, 11(5), 920–936.
- Klosterman, D., Chartoff, R., Priore, B., Osborne, N., Graves, G., Lightman, A., Han, G., Pak, S. and Weaver, J. (1996). Structural Composites via Laminated Object Manufacturing LOM. *In Solid Freeform Fabrication Symposium Proceedings*, 105–115.
- Kozlowski, C. a, Apostoluk, W., Walkowiak, W., & Kita, A. (2002). Removal of Cr(Vi), Zn(Ii) And Cd(Ii) Ions by Transport Across Polymer Inclusion Membranes With Basic Ion Carriers. *Physicochemical Problems of Mineral Processing*, 36, 115–122.
- Kreiger, M. A., Mulder, M. L., Glover, A. G., & Pearce, J. M. (2014). Life Cycle Analysis of Distributed Recycling of Post-Consumer High Density Polyethylene for 3-D Printing Filament. *Journal of Cleaner Production*, 70, 90–96.
- Kruth, J. P., Froyen, L., Van Vaerenbergh, J., Mercelis, P., Rombouts, M., & Lauwers, B. (2004). Selective Laser Melting of Iron-Based Powder. *Journal of Materials Processing Technology*, 149(1–3), 616–622.

- Kumar, S. (2003). Selective Laser Sintering: A Qualitative and Objective Approach. *Jom*, 55(10), 43–47.
- Lee, C. S., Kim, S. G., Kim, H. J., & Ahn, S. H. (2007). Measurement of anisotropic Compressive Strength of Rapid Prototyping Parts. *Journal of Materials Processing Technology*, 187–188, 627–630.
- Lee, L. J., & Ngim, J. (2000). A First Report of Glyphosate-Resistant Goosegrass (Eleusine Indica (L) Gaertn) In Malaysia. *Pest Management Science*, 56(4), 336–339.
- Mamat, N. A., & See, H. H. (2015). Development and Evaluation of Electromembrane Extraction Across A Hollow Polymer Inclusion Membrane. *Journal of Chromatography A*, 1406, 34–39.
- Mardani, S., Ojala, L. S., Uusi-kyyny, P., & Alopaeus, V. (2016). Chemical Engineering and Processing: Process Intensi fi cation Development Of A Unique Modular Distillation Column Using 3D Printing. *Chemical Engineering* & Processing: Process Intensification, 109, 136–148.
- Matias, E., & Rao, B. (2015). 3D Printing: on its Historical Evolution and The Implications for Business. 2015 Portland International Conference on Management of Engineering and Technology (PICMET), 2015–Septe, 551–558.
- Miró, M., & Hansen, E. H. (2013). On-Line Sample Processing Involving Microextraction Techniques As A Front-End To Atomic Spectrometric Detection for Trace Metal Assays: A review. *Analytica Chimica Acta*, 782,1–11.
- Mueller, B., & Kochan, D. (1999). Laminated Object Manufacturing for Rapid Tooling and Patternmaking in Foundry Industry. *Computers in Industry*, 39(1), 47–53.
- Neplenbroek, A. M., & Bargeman, D Smolders, C. A. (1990). The Stability of Supported Liquid Membranes. *Desalination*, 79, 303–312.
- Nghiem, L. D., Mornane, P., Potter, I. D., Perera, J. M., Cattrall, R. W., & Kolev, S.
 D. (2006). Extraction and Transport of Metal Ions And Small Organic Compounds Using Polymer Inclusion Membranes (PIMs). *Journal of Membrane Science*, 281(1–2), 7–41.
- Nojavan, S., & Fakhari, A. R. (2010). Electro Membrane Extraction Combined With Capillary Electrophoresis for The Determination of Amlodipine Enantiomers in Biological Samples. *Journal of Separation Science*, 33(20), 3231–3238.

- Orton, F., Lutz, I., Kloas, W., & Routledge, E. J. (2009). Endocrine Disrupting Effects of Herbicides and Pentachlorophenol: in Vitro and in Vivo Evidence. *Environmental Science & Technology*, 43(6), 2144–50.
- Oskui, S. M., Diamante, G., Liao, C., Shi, W., Gan, J., Schlenk, D., & Grover, W. H. (2016). Assessing and Reducing the Toxicity of 3D-Printed Parts. *Environmental Science and Technology Letters*, 3(1), 1–6.
- Park, J., Tari, M. J., & Hahn, H. T. (2000). Characterization of the laminated Object Manufacturing (LOM) Process. *Rapid Prototyping Journal*, 6(1), 36–50.
- Paul, B. K., & Voorakarnam, V. (2001). Effect of Layer Thickness and Orientation Angle on Surface Roughness in Laminated Object Manufacturing. *Journal of Manufacturing Processes*, 3(2), 94–101.
- Pedersen-Bjergaard, S., & Rasmussen, K. E. (2006). Electrokinetic Migration Across Artificial Liquid Membranes: New Concept for Rapid Sample Preparation of Biological Fluids. *Journal of Chromatography A*, *1109*(2), 183–190.
- Pizzutti, I. R., Vela, G. M. E., De Kok, A., Scholten, J. M., Dias, J. V., Cardoso, C. D., Vivian, R. (2016). Determination of Paraquat and Diquat: LC-MS Method Optimization and Validation. *Food Chemistry*, 209, 248–255.
- Price, A. D. (2016). Photopolymerization of 3D conductive Polypyrrole Structures Via Digital Light Processing, *1*(1), 3–9.
- Schow, A. J., Peterson, R. T., & Lamb, J. D. (1996). Polymer Inclucion Membranes Containing Marocyclic Carriers for Use in Cation Separations. *Journal of Membrane Science*, 111, 291–295.
- See, H. H., & Hauser, P. C. (2011). Carrier-Mediated Polymer Inclusion Membrane. Analytical Chemistry, 7507–7513.
- See, H. H., Stratz, S., & Hauser, P. C. (2013). Electro-Driven Extraction Across A Polymer Inclusion Membrane in A Flow-Through Cell. *Journal of Chromatography A*, 1300, 79–84.
- See, H. H., & Hauser, P. C. (2014a). Electro-Driven Extraction of Low Levels of Lipophilic Organic Anions and Cations Across Plasticized Cellulose Triacetate Membranes: Effect of the Membrane Composition. *Journal of Membrane Science*, 450, 147–152.
- See, H. H., & Hauser, P. C. (2014b). Automated Electric-Field-Driven Membrane Extraction System Coupled to Liquid Chromatography–Mass Spectrometry. *Analytical Chemistry*.86, 8665-8670.

- Smith, C. J., Derguti, F., Hernandez Nava, E., Thomas, M., Tammas-Williams, S., Gulizia, S.,Todd, I. (2016). Dimensional Accuracy of Electron Beam Melting (EBM) Additive Manufacture With Regard To Weight Optimized Truss Structures. *Journal of Materials Processing Technology*, 229, 128–138.
- StClaire, R. L. (1996). Capillary Electrophoresis. Analytical Chemistry, 68(12), R569–R586.
- Symes, M. D., Kitson, P. J., Yan, J., Richmond, C. J., Cooper, G. J. T., Bowman, R. W., Cronin, L. (2012). Integrated 3D-Printed Reactionware for Chemical Synthesis and Analysis. *Nat Chem*, 4(5), 349–354.
- Thijs, L., Verhaeghe, F., Craeghs, T., Humbeeck, J. Van, & Kruth, J. P. (2010). A Study of the Microstructural Evolution During Selective Laser Melting of Ti-6Al-4V. Acta Materialia, 58(9), 3303–3312.
- Thurman, E. M., Goolsby, D. A., Meyer, M. T., & Kolpin, D. W. (1991). Herbicides in Surface Waters of the Midwestern United States - The Effect of Spring Flush. *Environmental Science & Technology*, 25, 1794–1796.
- Thurman, E. M., Goolsby, D. A., Meyer, M. T., Mills, M. S., Pomes, M. L., & Kolpin, D. W. (1992). A Reconnaissance Study of Herbicides and Their Metabolites in Surface Water of The Midwestern United States Using Immunoassay and Gas Chromatography Mass Spectrometry. *Environmental Science & Technology*, 26(12), 2440–2447.
- Ulewicz, M., & Radzyminska-Lenarcik, E. (2012). Application of supported and Polymer Membrane With 1 Decyl-2-Methylimidazole for Separation of Transition Metal Ions. *Physicochemical Problems of Mineral Processing*, 48(1), 91–102.
- V, E. S. P. B., Alhaique, F., Memoli, A., Santucci, E., & Olana, F. (1989). Carrier-Mediated Transport of Rare Earth Ions Through Cellulose Triacetate Membranes. *Journal of Membrane Science*, 45, 55–63.
- Van Der Vlis, E., Mazereeuw, M., Tjaden, U. R., Irth, H., & Van Der Greef, J. (1996). Development of A Needle Device for On-Line Electroextraction-Liquid Chromatography. *Journal of Chromatography A*, 741(1), 13–21.
- Vandenbroucke, B., & Kruth, J.-P. (2007). Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts. *Rapid Prototyping Journal*, 13(4), 196–203.

- Walkowiak, W., Bartsch, R. A., Kozlowski, C., Gega, J., Charewicz, W. A., & Amiri-Eliasi, B. (2000). Separation And Removal of Metal Ionic Species by Polymer Inclusion Membranes. *Journal of Radioanalytical and Nuclear Chemistry*, 246(3), 643–650.
- Wang, J., Goyanes, A., Gaisford, S., & Basit, A. W. (2016). Stereolithographic (SLA) 3D Printing of Oral Modified-Release Dosage Forms. *International Journal of Pharmaceutics*, 503(1–2), 207–212.
- Wang, T. M., Xi, J. T., & Jin, Y. (2007). A Model Research for Prototype Warp Deformation in The FDM Process. *International Journal of Advanced Manufacturing Technology*, 33(11–12), 1087–1096.
- Wang, W., Conley, J. G., Stoll, H. W.(1999) Rapid Tooling for Sand Casting Using Laminated Object Manufacturing Process. *Rapid Prototyping Journal*, 5(3) 134-141.
- Wang, X., Laoui, T., & Froyen, L. (2006). Lasers and Materials in Selective Laser Sintering. Assembly Automation 23(4) 357-371
- World Health Organization. (2004). Diquat in Drinking-water, 1–14. Retrieved from World Healt h organization http://www.who.int/water_sanitation_health
- Wu, C., Fan, W., Zhou, Y., Luo, Y., Gelinsky, M., Chang, J., & Xiao, Y. (2012). 3D-Printing of Highly Uniform Casio3 Ceramic Scaffolds: Preparation, Characterization and in Vivo Osteogenesis. *Journal of Materials Chemistry*, 22(24), 12288–12295.
- Yan, X., & Gu, P. (1996). A Review of Rapid Prototyping Technologies and Systems. CAD Computer Aided Design, 28(4), 307–318.