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Abstract

In the light of the importance of the bedside patient monitoring system, 
a miniaturized, flexible, versatile, disposable and cost effective bedside patient 
continuous monitoring system is essential. Therefore, this research addresses the 
development of a cost effective and miniaturize continuous monitoring system. 
For electrochemical analysis, three potentiostats were used: EmStat, CheapStat 
and in house UTMStat. For lab-on-chip system, two models were proposed and 
their electrochemistry and pumping characteristics were studied. The 2 layers 
detection zone was developed through fused filament technology and replication 
moulding technique with a screen printed electrode attached together. It achieved 
the maximum flow rate of 0.30405 ml/min with resonance frequency of 20 Hz in 
micropump reverse direction. With the maximum frequency, the highest oxidation 
peak current of 15.86176 |iA in cyclic voltammetry measurement was achieved by 
10 mM ferrocyanide ions at potential 0.25 V. The monolithic microfluidic device 
was developed through sticker masks fabrication and replication moulding technique 
with two screen printed electrodes attached beneath the inlets and the outlets of the 
micropump. It achieved the maximum flow rate of 0.19693 ml/min with resonance 
frequency of 10 Hz in micropump forward direction. With the maximum frequency, 
the highest oxidation peak current of 28.32518 |xA in cyclic voltammetry measurement 
was achieved by 10 mM ferrocyanide ions at potential 0.32 V. Additionally, the 
electrochemical investigation was extended by measuring the cyclic voltammetry 
measurements of chloride ions from a mixture by using EmStat and CheapStat. The 
highest oxidation peak was observed at 61.26875 |jA and 1.04400 |±A by using 
EmStat and CheapStat respectively at potential 0.13 V. Specifically, the monolithic 
microfluidic device is well integrated in lab-on-chip system with the advantage 
of miniaturize with the dimensions of 41 mm x 26 mm, cost effective by using 
sticker masks fabrication and replication moulding technique, disposability since it 
is inexpensive and meant for biomedical analysis, flexibility where it can be used for 
other ions detection just by changing the screen printed electrode and can measure 
the data during pumping. This research successfully provides an alternative approach 
for continuous monitoring of ferrocyanide and chloride ions detection via cyclic 
voltammetry and amperometry measurements.
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ABSTRAK

Mengambil kira kepentingan sistem pemantauan sisi katil pesakit, sistem 
pemantauan pesakit secara berterusan yang bersaiz kecil, fleksibel, serba boleh, boleh 
guna dan kos efektif adalah penting. Oleh itu, kajian ini menunjukkan pembangunan 
sistem pemantauan secara berterusan yang murah dan bersaiz kecil. Untuk analisis 
elektrokimia, tiga potentiostats telah digunakan: EmStat, CheapStat dan “in house” 
UTMStat. Untuk sistem “makmal dalam cip”, dua model telah dicadangkan dan 
ciri-ciri elektrokimia dan mengepam telah dikaji. 2 lapisan zon pengesanan telah 
dibangunkan melalui teknologi “fused filament” dan teknik acuan replikasi dengan 
satu elektrod skrin bercetak yang disertakan. Peranti ini mencapai kadar aliran 
tahap maksimum pada 0.30405 ml/min dengan frekuensi resonans 20 Hz dalam arah 
berlawanan. Menggunakan frekuensi maximum, pengoksidaan puncak arus yang 
tertinggi sebanyak 15.86176 |iA dalam pengukuran voltammetri berkitar dicapai oleh 
10 mM ion “ferrocyanide” pada potensi 0.25 V. Peranti “microfluidic” monolitik 
dibangunkan melalui fabrikasi “sticker mask” dan teknik acuan replikasi dengan 
dua elektrod skrin bercetak yang disertakan di bawah salur masuk dan salur keluar 
micropump itu. Peranti ini mencapai kadar aliran tahap maksimum pada 0.19693 
ml/min dengan frekuensi resonans 10 Hz dalam arah ke hadapan. Menggunakan 
frekuensi maximum, pengoksidaan puncak arus yang tertinggi sebanyak 28.32518 
|jA dalam pengukuran voltammetri berkitar dicapai oleh 10 mM ion “ferrocyanide” 
pada potensi 0.32 V. Selain itu, siasatan elektrokimia dilanjutkan dengan pengukuran 
voltammetri berkitar ion klorida daripada campuran dengan menggunakan EmStat dan 
CheapStat. Pengoksidaan puncak arus yang tertinggi diperhatikan di 61.26875 jiA 
dan 1.04400 |jA dengan menggunakan EmStat dan CheapStat masing-masing pada 
potensi 0.13 V. Secara khusus, peranti “microfluidic” monolitik yang dibentangkan 
adalah disepadukan dalam sistem “makmal dalam cip” dengan kelebihan bersaiz kecil 
dengan dimensi 41 mm x 26 mm, kos efektif dengan menggunakan fabrikasi “sticker 
mask” dan teknik acuan replikasi, “pakai buang” kerana ia adalah murah dan bertujuan 
untuk analisis bioperubatan, fleksibiliti di mana ia boleh digunakan untuk pengesanan 
ion-ion lain hanya dengan menukar elektrod skrin bercetak dan dapat mengukur data 
semasa mengepam. Kajian ini telah berjaya menyediakan satu pendekatan altematif 
untuk pemantauan ion “ferrocyanide” dan klorida secara berterusan melalui ukuran 
voltammetri berkitar dan amperometri.
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Chapter 1

INTRODUCTION

1.1 Research Background

Monitoring chemicals and biomarkers is essential to predict patients’ critical 
conditions during surgical procedures and following these in intensive care units. 
Monitoring biomarkers provides information of any abnormalities occurring in 
metabolic pathways, and hence offer further understanding or can potentially be an 
early diagnosis for a number of illnesses. For example, hypoxia can be detected by a 
decrease in glucose and an increase in lactate, typically of a lack of oxygen during the 
biochemical pathways.

Biomarkers are typically detected in human fluids such as blood, serum, urine 
or cerebral spinal fluid and interstitial space. This brings a challenge when monitoring 
biomarkers through the conventional method by using an expensive and large piece 
of equipment. With this equipment, it is hard to provide health care for the rural 
population due to its low socio-economic income [5], transportation and distance 
challenges. In addition, current ions analyzer is normally located in the central 
laboratories which requires specialized technicians to operate on the machine, offers 
delayed diagnosis and not disposable. Besides, during the process, mix-ups sometimes 
occur when samples are sent to laboratories.

Therefore, there are numerous efforts in developing an affordable miniaturized 
bedside patient continuous monitoring system. One of the approaches is through lab 
on chip (LOC) device due to its unique ability in micro-scale sample handling, mixing, 
separation, detection, user friendly and inexpensive [6-9]

Many reported continuous monitoring system, nevertheless, utilizes external 
regulated pressure source or by syringe pumps or even through manual pipetting. This
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approach has constrained the purpose of portability of LOC. Consequently, to mitigate 
such drawbacks, the integration of the micropump and the reaction zone is crucial.

Potentiometric system has always been related to electrochemical detection 
method [10] in LOC. The combination of electrochemical cell and a potentiostat circuit 
forms a potentiostatic system. Potentiostat is a feedback control system [11] which 
adjusts the voltage across the WE (working electrode) - CE (counter electrode) pair 
to maintain the preset potential between the WE and RE (reference electrode) of an 
electrochemical cell [12],

Besides clinical diagnosis [13-22], continuous monitoring system has also 
been applied in water quality control [23-27], pharmaceutical product [28-32], 
corrosion quality control [33-37], environmental emission [38-42] and other fields 
[43—47].

1.2 Problem Statement

In view of the importance of the bedside patient monitoring system, a 
miniaturized continuous monitoring system with flexibility, versatility and disposable 
is much needed. An external pressure source is utilized in most of the applications 
of the current continuous monitoring system to deliver the sample to the detection 
zone [2,13,14]. But, there are few drawbacks in this approach which has restricted the 
system’s mobility due to the additional manual procedures or exterior components for 
measurement setup are needed. Moreover, the losses because of the friction and shear 
stress of the tubing wall might be introduced by the connection between the pressure 
source and the electrochemical detection zone [1].

In addition, as stated in [4], current method is expensive where commercially 
available laboratory potentiostats sold for more than a thousand dollars. Besides, 
current medical practice is still relying on the expensive and large piece of equipment 
which generally located in the central laboratories that require specialized technicians, 
offers delayed diagnosis and not disposable. In a lab on chip design, disposability is a 
main aspect that should be highlighted to confirm that the sample is unpolluted as the 
continuous patient monitoring system is meant for biomedical analysis. To eliminate 
the sterilizing procedure and to confirm the hygiene condition, the device needs to be 
disposed.
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1.3 Research Objectives and Scope of the Thesis

The primary objective of this project is to develop an in channel 
electrochemical detection for continuous flow lab on chip application. The specific 
goals can be farther expressed as:

1. To develop electrochemical detection system for continuous monitoring of ions.

2. To evaluate the performance of the developed device in a continuous monitoring 
system.

To accomplish these objectives, two different models are proposed and their 
electrochemistry and pumping characteristics are studied. The first model is to 
demonstrate the effect of pinching right above the electrochemical detection zone. 
The electrochemical detection zone is developed in two different thickness of poly 
(dimethylsiloxane) (PDMS) polymer layers with fused filament technology and 
replication moulding technique with a screen printed electrode attached together.

Structurally, the inlet and outlet of the micropump were modified based on the 
electrode surface where the screen printed electrodes were place beneath. To ease 
the fabrication technique and to have smoother mould surface, the electrochemical 
detection zone approaches sticker mask fabrication and as mentioned above replication 
moulding technique with two screens printed electrodes attached together. This new 
design of the electrochemical detection zone is introduced in the second model.

1.4 Thesis Outline

A review of the continuous monitoring system development is given in Chapter
2. Then in Chapter 3, the methods in developing of potentiostat, 2 layers detection 
zone and monolithic microfluidic are described. In Chapter 4, the examinations of 
potentiostat, continuous monitoring systems for 2 layers detection zone and monolithic 
microfluidic are discussed. Finally, an outlook on future project development is 
concluded in Chapter 5.
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