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ABSTRACT 

Fiber-reinforced polymer composite (FRP) laminates have found increasing 

use in advanced industrial applications. However, the limited knowledge and 

validated material models of the failure processes of the laminated composites 

continue to pose challenges in ensuring reliability and integrity of the structures. This 

research aims at establishing a validated simulation methodology for fracture 

assessment of FRP composite laminates. The approach accounts for the failure 

processes and the associated damage mechanisms through finite element (FE) 

simulations. The FE model development considers the existence of the physical 

interfaces between the laminas due to the manufacturing processes. A hybrid 

experimental-computational approach is developed for systematic implementation of 

the simulation methodology. Different combinations of the failure modes were 

observed, including matrix cracking-crushing, fiber/matrix interface debonding, 

interface multi-delamination, and fiber fracture-buckling. Local material failure is 

modeled by a damage initiation event followed by the evolution of the damage to 

fracture. Two types of damage-based models are investigated; the continuum damage 

model encompassing the multi-damage criteria for the FRP composite lamina and the 

cohesive zone model for interface delamination. A full derivation of the continuum 

damage model for the anisotropic material is given and employed for prediction of 

the damage evolution in the lamina. A series of experiments on CFRP and GFRP 

composite laminate specimens are conducted to establish the flexural and fracture 

behaviors of the materials. Complementary 3D FE models of the specimens and test 

setups are developed. Two different FE-based models, namely the conventional and 

Prepreg model, are developed and examined for GFRP and CFRP composites.  

Results show that accurate prediction of elastic-damage behavior and the progressive 

damage process in FRP composites depend on the chosen FE-based model of the 

FRP composite laminates and the damage-based material model used. The flexural 

test of a 12-ply antisymmetric CFRP composite beam specimen under four-point 

bending displayed the occurrence of multiple failure events.  These include matrix 

cracking at lamina No. 9 (90
o
), and delamination at interfaces No. 8 (-45

o
/90

o
) and 

No. 9 (90
o
/45

o
). In addition, intralaminar multi-failure events are predicted in lamina 

No. 1 (-45
o
) due to matrix shear and fiber buckling failures. FE simulation of the test 

predicted an accurate flexural response with less than 4% average error when 

compared with measured data, along with similar multiple failure zones in the 

specimen. Damage dissipation energy is used to illustrate the quantity of the overall 

progressive damage in FRP laminas, interfaces and the laminated composite. The 

simultaneous use of lamina and interface damage models in the FE simulation of the 

FRP composite laminate is recommended in view of the occurrence of multiple 

intralaminar-interlaminar failure modes and fractures under general loading 

conditions. 
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ABSTRAK 

Penggunaan laminat komposit polimer bertetulang gentian (FRP) dalam 

industri termaju didapati telah meningkat. Walau bagaimanapun, pengetahuan yang 

terhad dan model bahan tervalidasi untuk proses kegagalan laminat komposit 

tersebut terus memberi cabaran dalam memastikan kebolehharapan dan integriti 

sesuatu struktur. Kajian ini bertujuan untuk menghasilkan suatu metodologi simulasi 

tervalidasi bagi penilaian patah laminat komposit FRP. Pendekatan ini mengambil 

kira proses kegagalan dan mekanisme kerosakan yang berkaitan melalui simulasi 

unsur terhingga (FE).  Pembangunan model FE mengambil kira kewujudan lapisan 

fizikal di antara lamina-lamina yang terhasil dari proses pembuatan. Suatu 

pendekatan eksperimen-komputeraan hibrid dibangunkan untuk pelaksanaan 

metodologi simulasi yang sistematik. Gabungan mod kegagalan yang berbeza telah 

diperhatikan termasuk retak-hancur matrik, lekangan gentian/matrik, berbilang 

lekangan antara-muka dan ledingann-patah gentian. Kegagalan setempat bahan 

dimodel oleh kejadian kerosakan permulaan dan diikuti oleh evolusi kerosakan 

sehingga patah. Dua jenis model berasaskan kerosakan telah disiasat; model 

kerosakan kontinum yang merangkumi kriteria pelbagai kerosakan untuk lamina 

komposit FRP dan model zon kohesif untuk lekangan antara-muka. Suatu terbitan 

penuh model kerosakan kontinum untuk bahan anisotropik telah disediakan dan 

diguna pakai untuk ramalan evolusi kerosakan dalam lamina. Suatu siri eksperimen 

ke atas spesimen laminat komposit CFRP dan GFRP telah dijalankan untuk 

mewujudkan gaya laku lenturan dan patah bahan. Model pelengkap FE 3D untuk 

spesimen dan tentuatur ujian telah dibangunkan. Dua model FE yang berbeza; iaitu 

model conventional dan prepreg telah dibangunkan dan diteliti untuk komposit 

GFRP dan CFRP. Keputusannya menunjukkan bahawa ramalan tepat kelakuan anjal-

rosak dan proses kerosakan yang progresif dalam komposit FRP bergantung kepada 

model FE yang dipilih untuk laminat komposit FRP tersebut dan model berasaskan 

kerosakan yang diguna pakai. Ujian lenturan ke atas specimen rasuk komposit CFRP 

12-lapis yang antisimetri di bawah beban titik-empat lenturan menunjukkan 

berlakunya kejadian pelbagai kegagalan. Ini termasuk keretakan matrik pada lamina 

No. 9 (90
o
), dan lekangan pada antara-muka No. 8 (-45

o
/90

o
) dan No. 9 (90

o
/45

o
). 

Tambahan lagi,  kejadian pelbagai kegagalan dalam-lamina diramal berlaku dalam 

lamina No.1 (-45
o
) disebabkan oleh ricih matrik dan kegagalan ledingan gentian. 

Simulasi FE ujian tersebut meramalkan respon lenturan yang tepat dengan ralat 

purata kurang daripada 4% berbanding dengan data yang diukur, berserta zon 

kegagalan yang serupa di dalam specimen. Tenaga pelesapan rosak boleh digunakan 

untuk menggambarkan kuantiti keseluruhan proses kerosakan yang progresif dalam 

lamina-lamina FRP, antara-muka dan laminat komposit. Penggunaan serentak model 

kerosakan lamina dan antara-muka dalam simulasi FE bagi laminat komposit FRP 

adalah disyorkan memandangkan boleh berlakunya pelbagai mod kegagalan dalam-

lamina/antara-lamina dan keretakan di bawah keadaan pembebanan umum. 
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CHAPTER 1 

INTRODUCTION 

1.1       Introduction  

Fiber-reinforced polymer (FRP) composite laminate materials are 

increasingly replaced by metal materials in advanced structural application in 

defense, transport and etc. industries. Therefore, a correct comprehension about 

failure phenomena in FRP composite is necessary for the design and analysis of such 

structures. The knowledge of failure in composites normally obtained using 

numerical and experimental approaches. The experimental procedures normally are 

expensive and time consuming for complex loading condition which rarely can be 

used for design stages of composite structures. The numerical methods involve the 

mathematical derivation of structural behavior, failure phenomena and energy 

absorption of composites, which normally provide a deeper insight on structural 

failure for the design phase, however it is incomplete to define a response map of the 

three-dimensional (3D) structures. In the past three decades, development of 

Simulation Methodologies has been considered as one of the most effective method 

in bridging the mathematical models and experiments for realistic design and 

analysis of advanced industrial structures. Simulation procedures are benefit 

scientists to characterize the mechanical properties, to define the response map, and 

to enhance the final design of the composite structures using the lowest number of 

expensive samples and tests.  
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At the current state of development, an extensive analytical models have been 

introduced for numerical investigation of failure in composites, however the 

simulation methodology in prediction of complex multiple failure is still considered 

as an open topic for investigation. The present study uses the finite element method 

(FEM) as the most used approach, to develop a simulation methodology for 

prediction of multiple failure in multidirectional FRP composite laminates. The 

theory of continuum damage mechanics is used to develop the constitutive models 

for prediction of elastic-damage and fracture behaviors. Simulation of several tests 

on unidirectional/multidirectional FRP composites with and without pre-cracks are 

performed to examine the considered models and the methodology procedure. 

1.2       Problem Background and Rationale 

In the past few decades, advanced industries demand for materials with both 

light and strong features has been the main force to develop composite materials 

(Dempster D., 2003; Taylor, 2008). Advanced composite materials are constructed of 

two or more separate phases, mainly consisted of matrix phase, reinforcement phases 

and matrix/reinforcement interface that is known as interphase region. Fiber 

Reinforced Polymer (FRP) composites as one of the important advanced composites 

are created using polymeric matrix phase (thermoplastic, thermoset and etc.) which 

typically reinforced with fibrous (glass, carbon, aramid and etc.) materials. The 

design flexibility of FRP laminate composites through variation of 

matrix/reinforcement phase types, adjustment of reinforcement volume fraction in 

micro-scale and modification of laminas orientation in meso-scale, highlighted the 

capability of these materials for creation of superstructures with preferable solidity in 

various directions. The great advantages of FRP composites including high stiffness-

strength combined with low weight bring a steady increase of investment in 

transport, aerospace and green industries on continuous replacement of metallic 

structures to composites. For this reason, the development of reliable and well-

validated mathematical-physical models to describe the linear and nonlinear behavior 

of composites, become essential.  Therefore, development of continuum damage 
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model (CDM) for anisotropic material is important (Baker et al., 2004; Kaw, 1997; 

S. Murakami, 2012).  

Mechanics of FRP composite materials is classified based on the level of the 

analysis in micro-, meso- or macro-scales. Therefore, damage and failure analyses of 

composite structures are practiced in different scales too. In this respect, the 

influences of mechanical features and properties in the microstructure of lamina have 

to be considered in the constitutive elastic-damage model parameters when it viewed 

in meso-macro scales too. Therefore, bridging between micro-to-macro mechanics is 

always one of the factors that is used prediction of mechanical behavior in composite 

materials (Baker, et al., 2004; R. Talreja and Singh, 2012). 

In constructional view, FRP composites are created with a soft polymeric 

phase that is reinforced with stiff fibrous phase with almost 30-95% (e.g. Typical 

glass fiber reinforced polymer (GFRP), carbon fiber reinforced polymer (CFRP)) 

elastic-stiffness properties differences. Likewise, the anisotropic strength of the FRP 

composites normally shows up to 90% difference in the fiber direction compared 

with transverse to the fiber direction. Such big differences in elastic-strength 

properties accelerate early failure in weaker phases while structural performance is 

considered to be in the safe zone.  In a FRP composite structure, fibers are assumed 

to be responsible for load bearing due to high stiffness, but in the other hand 

consideration of Poisson's ratio influences as a part of anisotropic continuum 

behavior is undeniable. Therefore, occurrence of matrix failure in high strength FRP 

composites such as CFRP is likely, which has to be considered as one the factors in 

design FRP composite structures. Therefore, understanding of yielding phenomena in 

composite lamina in meso-scale and laminate in macro-scale and also the related 

criteria with respect to yield surface is important. The present study, is attempting to 

introduce an overall yielding point in FRP lamina and laminate, using damage 

mechanics concept by considering a certain value of accumulated irrecoverable 

energy in the structure over total damage dissipation energy (Dempster D., 2003; R. 

Talreja and Singh, 2012; Taylor, 2008). 
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Most of the existing knowledge of damage and failure in FRP composites 

obtained through experimental and numerical methods. Normally, experimental data 

are limited due to the high value of cost for tests implementation and less diversity of 

data which rarely can be utilized in earlier design methods. In the other hand, internal 

analysis of structures in terms of deformation and damage zone is hardly possible, 

which most of the time considered as important knowledge that have to be obtained 

for design and analysis of composite superstructures. Numerical methods are 

normally cost saving in comparison with the experimental method, which is enabling 

a huge amount of data on mechanical parameters that lead to a deep insight into the 

design and failure analysis of composite structure. In the other hand, once a model is 

established, it could be used for various analyses, including different types of loads 

and boundary conditions. These results can be used in defining the responses map of 

the material as a support for enhancing the final design of the structure at low cost 

(Baker, et al., 2004; R. Talreja and Singh, 2012). However, at the current state, 

numerical models are not developed fully to cover the failure behavior of composite 

materials under complex loading condition. Several constitutive elastic-damage 

models based on continuum mechanics approach are derived to overcome this 

challenge, including a series of studies called the worldwide failure exercises 

(WWFE) that is made to describe the foremost theories for FRP composites (Chamis 

et al., 2013; Hinton, Kaddour and Soden, 2004; Kaddour et al., 2013; Labeas et al., 

2011; Varna, 2013). In this exercise, a huge number of comparisons have been made 

on the capability of different mathematical models in order to predict the evolution of 

damage and failure events under various types of loading consist of biaxial, bending, 

thermal loadings and loading-unloading condition (Hinton, et al., 2004; Kaddour, et 

al., 2013). Several approaches including multi-scale hybrid damage and failure 

(Laurin et al., 2013), micromechanics based model (Chamis, et al., 2013), shear lag 

and equivalent constraint model (Kashtalyan and Soutis, 2013), enhanced damage 

meso-model (Daghia and Ladeveze, 2013), energy methodology (McCartney, 2013a, 

2013b), constitutive damage model (Schuecker and Pettermann, 2013), plasticity-

based theory (S. Pinho, Vyas and Robinson, 2013), classical damage model 

(Sapozhnikov and Cheremnykh, 2013), synergistic damage mechanics (Singh and 

Talreja, 2013), global-local cracking approach (Varna, 2013), structural damage 

modeling framework (Forghani et al., 2013) and its, are used to make comparison 

between the models and the experimental data. The conclusion of this research was 
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that, out of 12 leading theories and 13 challenging tests for prediction of failure 

evolution, "Only three groups solved all the 13 challenging problems and 

approximately 30% of the test cases were not solved" (Kaddour, et al., 2013). It is 

noted that in general, the lack of consensus appears regarding the effects of ply 

thickness and lay-up sequences, influences of unloading-reloading behavior, and 

interaction in multiple crack locations and matrix crack-delamination (Kaddour, et 

al., 2013). Miscomprehension of the complex physics of FRP composite failure also 

commented as one of the reasons for low accuracy in prediction of failure (Silvestre 

Taveira Pinho, 2005). Most of the mathematical models are stress-based models 

computed at local material point through damage criteria to address the local failure 

process. Variation of effective stresses in FRP composites depend on assumed 

construction based on FEM and also the theoretical basis. One of the aspects, which 

have not been paid enough attention, is the influences of manufacturing processes in 

micro-meso construction of FRP composites through computational method. The 

present work investigated on the finite element (FE)-based model construction that 

could represent the actual construction of the composite created through different 

fabrication processes. This point is recommended for further investigation in 

previous works as multi-layer modeling methodology for failure analysis of FRP 

laminate composites (Kaddour, et al., 2013; Siromani, 2013). In other study, 

investigation on the physical properties reduction of composite structure due to 

damage and multiple failure is recommended for future work (Lasn, 2015). Full set 

of CDMs is reviewed and applied to address the progressive damage processes of 

FRP composites. FEM as an affective approximate method is used for predicting the 

complex response of composite structures. Implementation procedure of FEM is 

described extensively through a hybrid experimental-computational approach in 

order to combine the FE and test data for a comprehensive understanding of the 

failure process. Emphasis is placed on engineering aspects, such as the analytical 

descriptions, effective analysis tools, modeling of physical features and evaluation of 

approaches used to formulate and predict the actual response of composite structures 

(Ochoa and Reddy, 1992). 
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1.3       Statement of the Research Problem 

How to identify and characterize the fracture processes of FRP laminate 

composites using damage-based models and finite element method under quasi-static 

monotonic loads?  

1.4      Research Questions 

The relevant research questions to the problem statement of the present study 

can be sorted out as follow: 

1. What are the dominant damage mechanisms of FRP composites? 

2. What models are suitable for simulating the observed linear-nonlinear 

deformation and fracture of FRP composites?  

3. How does damage, initiate and propagate in matrix, interface and fiber of 

FRP composites? 

4. How to evaluate the mechanics and mechanism of multiple damage 

processes (matrix cracking/crushing, multi-delamination and fiber 

breakage/buckling) in FRP composite materials under quasi-static 

monotonic loading condition? 

5. How would the damage models and failure process be validated? 

1.5       Objectives of Study 

The aims of the present study are to develop a validated simulation 

methodology for failure processes of the FRP laminate composite under quasi-static 

monotonic loads. In this respect, the objectives of the study are defined in the main 
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fields of mathematical-physical modeling, FE simulation and experimental works to 

solve the problem, which are develop and completed in the next chapters. The 

objectives are linked and highlighted throughout the research in the result and 

discussion chapters, which a short summery of them is listed in the conclusion 

remarks (Chapter 8).  

The specific objectives of this study are: 

1. To develop and derive bilinear physically-based damage model for FRP 

lamina.  

2. To establish FE-based model constructions of FRP composite based on 

different manufacturing processes. 

3. To identify the mechanics and mechanism of failure of FRP laminate 

composites under quasi-static loading. 

4. To investigate on the effect of different constructions on the progressive 

damage processes of FRP laminate composites   

5. To predict the elastic-plastic behavior and mechanism of multiple failure 

in FRP composite beams under flexural loading. 

6. To represent the FE implementation of damage and failure in FRP 

composite using a hybrid experimental-computational approach. 

7. To validate the damage-based FE model using experimental results. 

1.6       Scope of Study  

The present study is concentrating on the simulation methodology to identify 

and characterize the mechanics and mechanisms of failure in FRP laminate 

composites under monotonic loading condition. The scope of this research is 

restricted to unidirectional FRP laminate composites as:  
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1. Only, the two manufacturing processes of Prepreg/Autoclave method and 

vacuum infusion process (VIP) are considered, to fabricate multidirectional 

FRP composite laminates. 

2. To prepare CFRP composite manufactured using Prepreg/Autoclave 

method, with uni/multi-directional ply sequences, and with/without pre-

crack. 

3. To manufacture anti-symmetric GFRP composites using VIP method, and 

machining into beam samples for mechanical test. 

4. To perform mechanical tests on the FRP composite beams, to obtain the 

structural response and mechanical properties as follow:  

a. Three and four-point bending tests on anti-symmetric CFRP and GFRP 

composite laminates. 

b. Double cantilever beam (DCB)  and end-notched flexure (ENF)  tests 

on CFRP composite to obtain the critical fracture energy of interface in 

modes I & II loading condition. 

c. To perform critical ENF test on a specially designed specimen to 

capture unstable crack-jump.  

5. To identify the various types of intralaminar and interlaminar fracture 

events in FRP composite laminates, using fractographic investigation on the 

tests performed in the above cases (No. 3). 

6. To develop and describe the theories as bilinear CDMs for FRP lamina and 

interface. 

7. To create FE models using ABAQUS 6.9EF software, in order to simulate 

the following cases: 

a. To develop FE model-based constructions that represent the 

construction of FRP composite laminates, which are manufactured 

using VIP and Prepreg/Autoclave methods. 

b. To develop individual FE models of FRP composite laminate, to 

simulate laminas failure using CDM, and also interface delamination 

using cohesive zone model (CZM). 

c. To develop a FE model that comprises both CDM and CZM models to 

simulate multiple fracture in CFRP composite laminates manufactures 

using Prepreg/Autoclave methods. 
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8. To validate the damage theories and FE models (above cases, No. 6) using 

experimental data, in both aspects of mechanics and mechanism of damage. 

9. To establish the simulation methodology for fracture processes of FRP 

composites using hybrid experimental-computational approach throughout 

of the present study.   

1.7       Layout of the Thesis   

In this thesis, chapters are arranged to address the FE simulation 

methodology for prediction of the mechanics and mechanism failure in FRP laminate 

composites. Assessment of progressive multiple damage processes through laminas 

and the interface of the composite are the main interest. In this respect, the content of 

the chapters is classified to explain the objectives and scope of the research as 

follow.   

Chapter 1 gives an overview on the background of laminate composites and 

the challenges in simulation and analysis for real applications. Then the problem 

statement, objectives and the scope of the research are described. The limits of what 

this study is restricted to, are notified. 

Chapter 2 provides a summary of the literature and previous researches about 

FRP composite specification, properties and manufacturing methods. The 

applications of FRP composites in advanced industries are investigated. The use of 

FEM in simulation of mechanical cases is studied. A brief description of the 

mechanics deformation and mechanism of failure in FRP composite laminates is 

provided. Continuum damage mechanics of composite materials are explained to 

represent a physical view of the damage phenomena. The various modes of failure in 

FRP composite are studied, and the related damage models, available numerical tools 

and FE procedures to estimate and predict damage modes are described. Multiple 
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failure phenomena in FRP composite are demonstrated using fractographic image of 

a CFRP beam sample under tension loading condition. The missing points and the 

gaps to previous researches are highlighted. 

Chapter 3 discusses about research methodology of the present work. The 

research framework of the study is provided based on the three activities of 

modeling, computation and experiment. Types of the specimen, test procedure and 

the related material properties are provided. The steps for FE simulation of a 

composite system are described. The manufacturing issues of FRP composite 

laminates and the related FE model-based constructions are discussed. A hybrid 

experimental-computational approach is introduced, which is used entirely through 

the research investigation. The basis of FE implementation of the damage and 

fracture analyses on different FE constructions of FRP composite is described.  

In chapter 4, the physically-based continuum models for prediction of 

multiple failures of FRP laminate composites are described. The phenomena of CDM 

of lamina and its physical interpretation is discussed. The physical influences of 

interlaminar region are described for the modeling of FRP composites in the 

conditions, where perfect laminas bonding or interface debonding are targeted. FE 

implementation of the model is illustrated through FE simulation by describing the 

evolution of effective stresses and variation of damage parameters. 

Chapter 5 illustrates the FE simulation methodology of FRP composite 

lamina by introducing specific FE based-model construction for different 

manufacturing processes. The influences of different constructions in the 

computation of progressive intralaminar damage process are described. The validated 

FE models are used to describe the mechanics of system response and mechanisms of 

multi-damage processes in FRP composite laminates. 

Chapter 6 works on the mechanics of interface delamination in CFRP 

composite in the presence of initial crack. Experimental investigation on CFRP 
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composite under mode-I test is provided (DCB Test) to discuss about delamination 

phenomenon. FE simulation and experiment of CFRP composite under mode-II 

loading is provided (ENF test) to study on the mechanism of interface delamination 

using CZM theory. The capability of the governing law in prediction of the crack 

growth and crack-jump phenomena are examined. The concept of stable and unstable 

crack-jump is developed.  

Chapter 7 demonstrates the FE simulation methodology for prediction of 

multiple failure events in FRP composites by applying CDM and CZM theories in 

intralaminar/interlaminar parts. The predictive capability of these models in the 

simultaneous prediction of various failure modes in the lamina and interface of anti-

symmetric multidirectional CFRP specimen is examined under four-point bending 

load condition. Validation of the damage mechanics and mechanism of failure is the 

main concern. 

Chapter 8 explains the conclusion related to the FE simulation methodology 

and failure mechanism of FRP composites in the present study. The future work on 

the development of the failure models for fatigue mechanics and etc. of FRP 

composites are recommended.  
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