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ABSTRACT

Semiconductor materials have become the fundamental building block in the
design of gas sensor. Previous researchers work on gas sensor that recognized its
limitations such as low binding energy, low sensitivity and poor selectivity. As
an alternative, considerable interests have generated in carbon based material like
graphene to improve the sensing device performance. The purpose of this study
is to investigate the sensing behaviour of deformed armchair graphene nanoribbon
(AGNR) through warping using Extended-Huckel Theory (EHT) coupled with Non-
Equilibrium Green Function (NEGF). The AGNR are warped upward and inward at
angles of 180o, 270o and 360o. The sensing properties are measured for oxygen
(O2) and ammonia (NH3) molecules, particularly on their binding energy, charge
transfer and sensitivity. Generally, inward warped AGNR shows better performance
compared to upward deformation. Three AGNR configurations have been investigated;
3m, 3m+1 and 3m+2, where m known as an integer. Performance of each AGNR
configuration behaves differently with the applied warping. Simulation results
have indicated that for upward 3m configuration, the warping AGNR exhibit 98%
enhancement in binding energy when warped at 360o for NH3 molecule. While for
3m+1 and 3m+2 the binding energy exhibit 72% and 64% improvement respectively.
The same trend of observation is achieved for O2 molecules. The results obtained
also discovered a chemisorption in 3m, 3m+1 and 3m+2 configuration for both O2

and NH3. For 3m and 3m+1 configurations, the sensitivity has been observed at two-
order of magnitude for higher warping angles, which most previous studies have not
achieved. Meanwhile, negative sensitivity is observed in 3m+2 configuration. The
marked improvement of the warped AGNR sensing properties is attributed from the
combination of strain and curvature effect. The warping can also be an alternative
method to minimize drawbacks in traditional gas sensors. The sensitivity of gas sensor
could be enhanced by introducing the warped AGNR.
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ABSTRAK

Bahan semikonduktor telah menjadi asas pembangunan dalam reka bentuk
sensor gas. Penyelidikan sebelum ini ke atas sensor gas mendapati kelemahan
seperti tenaga ikatan yang lemah, kurang sensitif dan kepilihan. Sebagai alternatif,
bahan berasaskan karbon seperti grafin digunakan untuk meningkatkan prestasi peranti
penderiaan. Tujuan kajian ini adalah untuk mengkaji tingkah laku penderiaan dengan
mengunakan armchair graphene nanoribbon (AGNR) yang telah diubah bentuk
dengan penggunaan Extended-Huckel Theory (EHT) serta Non-Equilibrium Green

Function (NEGF). AGNR diledingkan ke atas and ke bawah dengan sudut 180o,
270o dan 360o. Sifat-sifat penderiaan diukur untuk mengkaji gas oksigen (O2)
dan ammonia (NH3) kursusnya pada tenaga ikatan, pemindahan cas dan sensitiviti.
Umumnya, AGNR yang meleding ke bawah menunjukkan prestasi penderiaan yang
lebih baik berbanding dengan meleding ke atas. Tiga AGNR konfigurasi telah
disiasat; 3m, 3m+1 dan 3m+2, di mana m adalah integer. Prestasi setiap AGNR
konfigurasi bertindak berbeza dengan ledingan. Keputusan, simulasi menunjukkan
bahawa konfigurasi 3m meleding ke atas, mempamerkan peningkatan 98% dalam
tenaga ikatan ketika leding pada sudut 360o untuk molekul NH3. Sementara, 3m+1
dan 3m+2 menunjukkan peningkatan tenaga ikatan masing-masing 72% dan 64%.
Trend yang sama dicapai untuk molekul O2. Hasil yang diperoleh juga menemui
pengkimierapan bagi konfigurasi 3m, 3m+1 dan 3m+2 untuk kedua-dua O2 and
NH3. Untuk konfigurasi 3m dan 3m+1, sensitiviti telah diperhatikan pada dua tertib
magnitud untuk sudut meleding yang lebih tinggi, di mana tidak dicapai dalam
kebanyakan kajian sebelum ini. Sementara itu, sensitiviti negatif diperhatikan dalam
konfigurasi 3m+2 untuk molekul O2. Penambahbaikan yang ketara diperolehi dalam
prestasi penderian daripada AGNR yang meleding dan ini adalah kesan daripada
gabungan antara ketegangan dan keledingan. Keledingan ini juga boleh menjadi salah
satu kaedah untuk meminimumkan kelemahan dalam sensor gas tradisional. Sensitiviti
sensor gas dapat ditingkatkan dengan memperkenalkan ledingan pada AGNR
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CHAPTER 1

INTRODUCTION

1.1 Background Study

Gas sensor is a device which detects the presence of various gases in a
particular area. It has received much attention recently in both domestic and
industrial application [1]. Sensing devices have wide application in various fields
such as industrial, medical diagnosis, agricultural, chemical process and environmental
monitoring safety. Based on studies done, the suitable competitor for the development
of gas sensor for this wide range of application is solid state gas sensor [1, 2]. This
solid state gas sensor owns its popularity based on its small size, high sensitivity for
low concentration range of parts-per-million (ppm), low power consumption and cost.
Besides that, it is also shown that solid state gas sensor has reversible interaction of
gas with solid state material used [3]. These advantages have captured great interest
of scientists and industries. In addition, this type of gas sensor has been used widely
for chemical sensor. However, it suffers from stability for long term and measurement
accuracy [1].

Capone et al. [1] discussed that semiconductor gas sensor is usually based on
metal oxide semiconductor (MOS) such as tin dioxide (SnO2), titanium dioxide (TiO2),
tungsten trioxide (WO3) and nickel oxide (NiO). The MOS gas sensor has advantages
in cost due to the simplicity in the architecture. This is desirable for the manufacturer to
build MOS sensor. However, the disadvantages are that this MOS sensor has issue in
power consumption and sensitivity to react with gas molecules. Using conventional
material silicon has finally reached its limits and hence researchers are actively
exploring other advanced material to replace silicon for better performance[4, 5]. By
employing nanotechnology it provides enhanced solid state gas sensor performance,
for example ultra-high sensitivity, fast response time and recovery and high specificity
[6, 7].
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Today’s main focus in gas sensing aims to obtain high selectivity, sensitivity
and low recovery time. Numerous studies have been established using carbon
nanotubes (CNT) [8, 9], graphene [10, 11], graphene nanoribon (GNR) [12, 13] which
allow detection of various types of gases. Low-dimensional carbon structures have
been the focus of extensive research since the discovery of fullerenes and (CNTs) [14].
These novel forms of carbon present unique opportunities to study low-dimensional
physical phenomena. Depending on their chirality and diameter, CNT can behave as
semiconducting or metallic. They are also known to have high chemical reactivity
due to the strain present in their curved lattice. However, it has been found that the
presence of chirality in CNT causes difficulty in the fabrication process. This is due
to the fact that CNT is highly reactive, which easily reacts with other unintentionally
contaminant that causes difficulty in the fabrication process.

Graphene is a planar allotrope of carbon where all of the carbon atoms form a
covalent bond in a single plane. Its two-dimensional (2D) crystal with a large surface
to volume ratio maximizes the effect of sensing [6, 15]. Any detection method is to
accomplish a level of sensitivity that individual quanta of a measured entity can be
resolved. In the case of chemical sensors, the quantum is one atom or molecule. Such
resolution is beyond the reach of any detection technique, including solid-state gas
sensors. Nano sensors that is made from graphene is competent of detecting individual
events when a gas molecule binds or unbinds from the graphene’s surface. The changes
in current conductivity is due to the bind molecules that change the conductance
in graphene one by one with electron. The achieved sensitivity is due to the fact
that graphene is an exceptionally low-noise material electronically, which makes it
a promising candidate for chemical sensor [8].

Though the potential of graphene as gas sensor has been demonstrated,
additional modification still needs to be done in order to fully utilize this material.
Graphene is known as zero band gap [16]. Therefore, graphene sensing properties are
currently significantly lower than CNT and this has been shown to be directly linked
to the low sensitivity [2]. Despite the fact, GNR has a finite band gap depending
on the types of edge. There are two types of GNR which are called armchair GNR
(AGNR) and zigzag GNR (ZGNR) as illustrated in Figure 1.1. AGNR has zigzag
cross section at the edges of width, while ZGNR has armchair cross section. There
are three types of dimer lines for AGNR know as 3m, 3m+1 and 3m+2, where m is a
positive integer. Earlier theoretical studies based on tight-binding (TB) approximation
[17], found that GNRs are a relatively new class of nanomaterials that can behave as
metallic or semiconducting character. ZGNR are all known as metallic regardless of
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their widths. Meanwhile, for AGNR 3m+2 is metallic otherwise it is semiconducting
[17, 18]. Thus, it is expected that gas molecule binding will have a higher effect on
modifying the electronic properties of GNRs then graphene. They are currently being
investigated to outstanding electrical, mechanical, thermal, optical, and quantum-
mechanical properties [19].

Periodic direction

Width

Width

Armchair graphene nanoribbon

Zigzag graphene nanoribbon

Z

Y

N=1
N=2

N=3

N=5

N=4

N=6
N=7

N=8

N=1

N=2

N=3

N=4

N=5

Figure 1.1: A illustration of GNR with AGNR (top) and ZGNR (bottom)

Recently, another promising approach has been introduced by using
mechanical strain that has a substantial effect on the electronic band structure of
AGNR [20, 21]. Due to the low reactivity of graphene, it requires harsh chemical
treatment to allow functionalization to occur. Using conventional mechanical stress
applied under uniaxial strain to the AGNR, the lattice becomes distorted and Dirac
points relative to the allowed wavevector line in k-lines leading to the modulation
of the electronic properties of AGNR [22]. Moreover, if the carbons are located in
plane of graphene are generally expected to be relatively chemically inert due to the
conjugation. Therefore, another technique such as non-planar deformation of graphene
is initiated. This deformation includes scrolling, twisting, warping and buckling
[23, 24]. This kind of deformation changes the AGNR to cylindrically geometry and
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bond stretch is introduced by its own motion [25]. Although AGNR with various
architectures and geometries have largely been successful, additional work is needed
to address the deformation effects like warping on AGNR, which has been shown in
Figure 1.2.

Figure 1.2: A Schematic Representation of Warping Graphene

The interesting combination of graphene and CNT behaviour in warping can
give a rise to peculiar electronic properties [23]. This technique has been predicted
to enhance the chemical reactivity as the carbon atoms are residing on the highly
curved surface due to the diminished electronic delocalization [26]. It predicts that
higher internal strain energy results in the formation of curvature in the device. In
addition, warping deformation has more stable energy than planar structure and an
extremely large surface to volume ratio, which favours the binding of gases on the
structure and can probably further improve a sensor performance in sensitivity because
the interaction between the gas molecule and material is higher [27]. This in turn can
greatly manipulate its chemical reactivity allowing the tuning of sensing properties as
needed. The effect of chemical functionalization on the mechanical properties of GNR
still remain unexplored, although it is especially important for gas sensor application.
It is a great interest to see the performance of warping AGNR as a gas sensor. The
enhancement in gas sensing performance using warping is promising and its demand
further studies. Therefore, it is important for future studies to understand the sensing
performance of warping AGNR. It is worth studying since warping is a combination
of graphene and CNT, which have originated from the same carbon material.
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1.2 Problem Statement

Significant efforts have been made in using conventional material in gas sensor
devices. Low selectivity, less sensitivity and high power consumption was observed in
conventional material. Therefore, advanced carbon material is introduced such as CNT
and graphene. A number of studies have demonstrated that low power consumption
and high selectivity can be observed using this carbon material [5]. However, the
sensitivity of graphene is less significant as compared to the sensitivity of CNT.
Therefore, it has limited graphene application in sensing application.

The feasibility of using graphene deformation in the enhancement of graphene
sensing behaviour is promising and demanding for further study as it is still in its early
stage as compared to dopant and defect [12, 28, 29]. Although introducing dopant and
defect improves the sensing performance, this technique deteriorates the crystallization
and intrinsic of the graphene. There are many ways to deform graphene where one of
the method is by warping [24, 30]. Most theoretical work on deformation graphene
focuses on the electronic properties such as band structure, density of states, and
thermal conductivity behaviour [30, 31]. There have been a few reports on the sensing
capabilities such as binding energy, charge transfer and sensitivity. It is necessary to
determine the binding energy because it determines how strongly the molecules bind
with the material which later its affect charge transfer and sensitivity.

Motivated by these, this study aims to extend the idea to study the deformed
AGNR on sensing properties through warping. As the warping will indirectly stretch
the layers to form curvature which is almost similar in CNT. It is believed that the
presence of curvature and bond stretch on the graphene layer will enhance its chemical
reactivity. Therefore, the merit of using warping technique to form curvature and
stretch on AGNR by varying warping angle is studied and is aimed to enhance the
sensing properties. These fundamental properties deserve a closer look to fully exploit
deformed graphene in electronic devices. Thus, this will be looked upon by means of
computational study in this study.

1.3 Research Objective

This study focuses on the analysis of sensing behaviour of warping AGNR by
computational study using Atomistic ToolKit (ATK) version of 2015.1. The objectives
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are as follow:

1. To form deformed AGNR through warping method and to determine the sensing
properties in term of binding energy, charge transfer and sensitivity.

2. To analyze and evaluate the sensing performance of inward and upward warping
AGNR by the combination of curvature and strain effect

3. To investigate the gate biasing effect at highest warping angle between inward
and upward warped AGNR.

1.4 Research Scope

1. This study will be conducted using ATK software version 2015.1 with three
AGNR configurations which are 3m, 3m+1 and 3m+2.

2. Properties evaluation include:

(a) Sensing properties :

i. Binding Energy, to obtain the binding capacity between analyte and
substrate.

ii. Charge Transfer, to determine whether the analyte acts as donor or
acceptor.

iii. Sensitivity, to measure how fast the material detect molecules.

(b) Electronic properties :

i. Band Structure, to obtain the energy gap of device either it behaves as
semiconducting or metallic behavior even after warping is applied.

ii. Density of State (DOS), to determine whether the characteristic of
unwarped device is sustained.

iii. Total Energy, to be used to calculate binding energy.

(c) Transport properties :

i. Current-voltage (I-V) characteristic, to observe the current conductiv-
ity is increase or decrease after warping applied and to use to obtain
sensitivity.

ii. Transmission Spectrum (TS), to observe the pathway of electron flow.
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3. AGNR deformation are limited to two types of warping which are inward and
upward warping. While the warping angle of 180o, 270o and 360o are used where
the curvature increase with the warping angle.

4. Two types of gas molecules are chosen such as

(a) Ammonia (NH3): Ammonia is a toxic gas. Therefore, ammonia sensor is
needed to prevent early possible leakage especially in industry.

(b) Oxygen (O2): Oxygen sensors are used in oxygen analysers which find a
lot of use in medical applications such as anaesthesia monitors, respirators
and oxygen concentration.

1.5 Research Contribution

The outcome of this study has two major contributions. The first contribution
is the study of deformed AGNR through warping which are inward and upward at
higher warping angle. This study investigate on three types of sensing properties
which are binding energy, charge transfer and sensitivity. The second contribution
is through simulation. It found that the sensing performance was enhanced in
term of binding energy and sensitivity especially using 3m+1 AGNR configuration.
The binding energy was improved by more than two fold while the sensitivity was
enhanced by ten fold. Besides that, this study has been performed using computational
simulation, which could help other experimental researcher to uncover critical areas in
the fabrication process as well as optimize their time on designing.

1.6 Thesis Organization

This thesis begins with the introduction of gas sensor using advanced materials
and background of the research study as outline in Chapter 1. Review study of gas
sensing properties and deformation of GNR’s electronic and mechanical properties
which provides the foundation of the thesis has been presented in Chapter 2. In
Chapter 3, computational details of the study have been presented. In addition details
of warping behaviour, electronic and transport properties of warping AGNR have been
also elaborated. The results achieved are shown in Chapter 4. Finally, a summary of
this study with few recommendations for future study are presented in Chapter 5.
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