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ABSTRACT 

With the increasing demands of higher living standard accompanied by ever 

growing of world population and industrial process, the consumption of organic 

chemicals has been increasing. Most of organic compounds are difficult to be 

degraded by means of biological and chemical decompositions, making serious 

damages to the environment. Sodium dodecylbenzenesulfonate (SDBS) is one of the 

most common surfactants widely used in manufacturing of cleaning products. It can 

be decomposed through photocatalysis. Among the reported photocatalysts, ZnO is 

considered as cheap, environmentally friendly and biocompatible material with band 

gap energy of 3.37 eV. However, the ZnO has low photocatalytic activity due to the 

formation of aggregates. In this research, a new photocatalyst of zinc oxide 

immobilized in mesoporous hollow silica spheres (ZnO-MHSSs) have been 

synthesized for photocatalytic degradation of SDBS under ultraviolet irradiation. 

ZnO-MHSSs were synthesized via impregnation method applying different 

temperatures (50 and 85ºC) and ZnO loadings. Zinc acetate dihydrate and tetraethyl 

orthosilicate were used as precursors of zinc oxide and silica, respectively. In the 

first attempt, the MHSS was loaded with ZnO (Zn:Si = 1:15, 1:30 and 1:50) at 85ºC. 

X-ray diffraction (XRD) analysis results confirmed the attainment of mesoporous

structure for the obtained composite materials. Nitrogen adsorption-desorption

analysis also depicted the formation of mesoporous structure and high surface area

for the ZnO-MHSSs compared to bare ZnO. Field emission scanning electron

microscopy showed uniform spheres for all samples. The photocatalysis testing was

carried out for ZnO-MHSS, ZnO and MHSS by using aqueous solutions of SDBS.

The photocatalytic efficiency was determined through tracing the maximum

absorption difference of SDBS at fixed time intervals of reaction by using an

ultraviolet spectrophotometer. The photocatalysis results demonstrated 14.2-21%

efficiency improvement of SDBS decomposition. Applying higher molar ratio of

Zn/Si, resulted in formation of zinc silicate (willemite) phase which is not

favourable. Therefore, a second procedure was employed in investigating the effect

of the higher molar ratio. In the second attempt, ZnO-MHSSs (Zn/Si: 1:1, 1:2, and

2:1) were synthesized at a lower temperature of 50ºC without applying calcination.

The XRD analysis confirmed the successful formation of zinc oxide which is not

accompanied with the existence of zinc silicate, willemite. Study of the

photocatalysis performance was carried out over the prepared samples. The results

showed the successful decomposition of SDBS with the highest photocatalytic

efficiency improvement (26.7%) for Zn/Si: 1:1 as the best photocatalyst.
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ABSTRAK 

Dengan pertambahan permintaan terhadap taraf hidup lebih tinggi yang diiringi 

dengan pertumbuhan penduduk dunia dan proses perindustrian, penggunaan bahan 

kimia organik juga turut meningkat. Kebanyakan sebatian organik sukar untuk 

didegradasikan melalui penguraian kimia dan biologi, menyebabkan kerosakan yang 

serius kepada alam sekitar. Natrium dodesilbenzenasulfonat (SDBS) adalah salah 

satu surfaktan yang paling biasa digunakan secara meluas dalam penghasilan produk 

pembersihan. Ia boleh diuraikan melalui fotopemangkinan. Di antara fotomangkin 

yang telah dilaporkan, ZnO dianggap sebagai bahan yang murah, mesra alam dan 

bioserasi dengan tenaga luang jalur 3.37 eV. Walau bagaimanapun, ZnO mempunyai 

aktiviti fotopemangkinan yang rendah akibat pembentukan agregat. Dalam 

penyelidikan ini, fotomangkin baru zink oksida terpegun dalam sfera silika berongga 

mesoliang (ZnO-MHSSs) telah disintesis untuk fotopemangkinan SDBS di bawah 

penyinaran ultralembayung. ZnO-MHSSs telah disintesis melalui kaedah 

pengisitepuan dengan mengenakan suhu yang berbeza (50 dan 85ºC) dan muatan 

ZnO. Zink asetat dihidrat dan tetraetil ortosilikat telah digunakan sebagai pelopor 

zink oksida dan silika, masing-masing. Dalam percubaan pertama, MHSS telah 

dimuatkan dengan ZnO (Zn:Si = 1:15, 1:30 dan 1:50) pada 85ºC. Keputusan analisis 

pembelauan sinar-X (XRD) mengesahkan pencapaian struktur mesoliang untuk 

bahan komposit yang diperoleh. Analisis penjerapan-penyahjerapan nitrogen juga 

memaparkan pembentukan struktur mesoliang dan luas permukaan yang tinggi untuk 

ZnO-MHSSs berbanding dengan ZnO. Mikroskopi pengimbasan elektron pelepasan 

medan menunjukkan sfera yang seragam untuk semua sampel. Ujian 

fotopemangkinan telah dijalankan ke atas ZnO-MHSS, ZnO dan MHSS dengan 

menggunakan larutan akueus SDBS. Kecekapan pemfotomangkinan telah ditentukan 

melalui pencarian perbezaan penyerapan maksimum SDBS pada selang masa tindak 

balas yang ditetapkan dengan menggunakan spektrofotometer ultralembayung. 

Keputusan fotopemangkinan menunjukkan peningkatan kecekapan 14.2-21% bagi 

penguraian SDBS. Penggunaan nisbah molar Zn/Si yang lebih tinggi, mengakibatkan 

pembentukan fasa zink silikat (willemit) yang tidak diingini. Oleh itu, prosedur 

kedua telah diaplikasikan untuk mengkaji kesan nisbah molar yang lebih tinggi. 

Dalam percubaan kedua tersebut, ZnO-MHSSs (Zn/Si: 1:1, 1:2 dan 2:1) telah 

disintesis pada suhu lebih rendah iaitu 50ºC tanpa pengkalsinan. Analisis XRD 

mengesahkan kejayaan pembentukan zink oksida yang tidak disertai dengan 

kewujudan zink silikat, willemit. Kajian prestasi fotopemangkinan telah dijalankan 

terhadap sampel yang disediakan. Keputusan menunjukkan kejayaan penguraian 

SDBS dengan peningkatan kecekapan fotopemangkinan tertinggi (26.7%) untuk 

Zn/Si: 1:1 sebagai fotomangkin terbaik. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background of Study 

With the increasing demands of higher living standard accompanied by ever 

growing of world population and industrial process, the consumption of organic 

chemicals such as cleaning products, cosmetics, stabilizers, artificial fertilizers, fuel, 

polymers, paints, dyes, pesticides and herbicides is being increased. These 

compounds are usually resistant to environmental degradation through chemical and 

biological processes, thus remain in the environment and tend to enter the plants or 

animals tissue. Besides, organic compounds, preferentially stored in fatty tissue can 

accumulate in food chain due to slow metabolism [1, 2]. Furthermore, water is a 

necessary element for all forms of life, pollution from both the atmosphere and soil 

will eventually enter the aqueous phase through deposition and penetration 

respectively. Thus, our main concern has to focus on our water reserves [3]. 

Surfactants are considered as one principal source of pollution due to their 

widely presence in different commercial products such as emulsifiers, industrial and 

domestic cleaning products. Surfactants are amphiphilic organic compounds, as they 

possess both hydrophobic groups and hydrophilic groups. Therefore, a surfactant 

molecule contains both water insoluble and water soluble component.  Due to their 

characteristics, surfactants have the tendency to form micelles in water, followed by 

increasing the solubility and making the removal of organic compounds more 

difficult from waste waters [4]. Usually the surfactants have the ability of easy 

accumulation on surface waters, reducing surface tension and quality of water. They 

also can be adsorbed onto and penetrate the cell membrane of aquatic organisms [5]. 

http://en.wikipedia.org/wiki/Environmental_degradation
http://en.wikipedia.org/wiki/Chemical_decomposition
http://en.wikipedia.org/wiki/Biodegradation
http://en.wikipedia.org/wiki/Amphiphilic
http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Hydrophobic
http://en.wikipedia.org/wiki/Hydrophilic
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Although they are biodegradable to some extent, some of the products obtained from 

biodegradation such as alkyl phenols are much more problematic than the original 

compounds. Therefore, efficient methods are strongly needed for omitting persistent 

organic compound. Sodium dodecylbenzenesulfonate (SDBS) is one of the most 

common surfactants widely used in manufacturing of cleaning products. Plenty of 

SDBS is produced all over the world to be consumed as industrial detergents and 

household cleaning products. Therefore, huge amounts of SDBS effluent are released 

into the environment, as wastewater, causing serious pollution problems. There are a 

lot of attempts made by different researchers for removal of SDBS such as 

adsorption and various techniques of advanced oxidation process. Taffarel and Rubio 

[6] investigated the adsorption efficiency for the removal of SDBS from aqueous 

solution by applying cetyl trimethylamunium bromide (CTAB) modified zeolite as 

an adsorbent. However, through applying the adsorption process, the contaminants 

are only transferred to the adsorbent without any molecular destruction, consequently 

secondary pollution occurs. 

Advanced Oxidation Processes (AOPs) are defined as near ambient 

temperature and pressure for contaminants removal processes. It includes different 

methods of oxidation such as H2O2, ozone, ultra-sonication, Fenton oxidation 

reaction and semiconductor-based photocatalysis. In all AOP methods, the process of 

contaminant removal is conducted by using energy to produce highly reactive species 

with high reducing or oxidizing potential, which then attack and destroy the targeted 

compounds [7]. The main advantages of AOP methods are high rates of pollutant 

oxidation while, the most important disadvantages are relatively high costs of 

treatment as well as the special safety needed for  using highly reactive chemicals 

and high-energy sources [8]. 

Among all methods of AOPs, semiconductor photocatalysis, a kind of 

heterogeneous catalysis has attracted more attention than the others. The advantages 

of this method are milder operating condition of temperature and pressure, lower cost 

of photocatalysts and possibility of using solar energy to drive the process. The 

catalyst itself is unchanged during the process and no consumable chemicals are 

required. This can benefit to considerable savings and a simpler operation of the 
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equipment involved. Furthermore, compared to the other methods, heterogeneous 

photocatalysis is considered as a green treatment approach. Since is no chemical 

reagent applied and the only requirement to drive the process is photocatalyst under 

light irradiation [8]. 

Semiconductor photocatalysis is a surface-related application. The reaction 

takes place on the surface of catalyst in which the organic compounds are adsorbed 

on the surface of photocatalyst during the process. Therefore, surface properties of 

catalyst are key point to achieve a better performance. Properties such as porosity, 

total surface area, pore volume as well as structural uniformity and stability of 

catalyst are crucial to achieve a better performance of photocatalyst [9-11]. It was 

reported that by decreasing particle size of nanoparticles, surface to volume ratio of 

the particles increased, lead to enormously increase of surface free energy and 

subsequently change in phase stability. The more smaller of particle size, the surface 

role to the total energy grows significantly due to highly increased free energy [12, 

13]. This property induces nanoparticles to stick to each other, forming aggregates of 

nanoparticles and disqualifying their performance. 

 Zinc oxide nanoparticles have become very well established as good 

semiconductor in the photocatalytic approaches because of their high photosentivity 

and stability in degrading various toxic substances [14] . However, due to the as-

mentioned phenomenon, ZnO nanoparticles tend to aggregate forming irregular 

shapes of the morphology and disqualify nanoparticles properties [15]. In order to 

resolve the problem, distribution of them over a high surface area support appears to 

be an effective approach [16] . Different supports have been employed in this regard 

[17, 18]. Among them, silica spheres have applied as supports due to the easy 

preparation, compatibility with other materials and good environmental stability [19-

22]. Mesoporous Hollow silica Spheres (MHSS) are considered to be more efficient 

supports than solid and Mesoporous spheres due to lower density and toxicity, larger 

surface area and more stability. Different methods have been applied to synthesize 

mesoporous hollow silica spheres. Deposition of silica layer on latex or colloid 

templates and subsequent removal of the hard templates by calcination or corrosion 

has been known to be the conventional approach for preparation of MHSSs [23, 24]. 
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However, the use of hard templates in the synthesis process has always introduced 

impurity in the resulted materials. In order to prepare MHSS, sol–gel emulsion 

method, in which stable and uniform emulsion droplets act as templates, has been 

applied as an alternative method [25-28]. 

This study aimed to synthesize mesoporous hollow silica spheres (MHSS) as 

supporting material for nano zinc oxide photocatalyst. However, there is no 

information in the modification of mesoporoos hollow silica spheres with zinc oxide. 

Therefore, the focus of study is on simple production of modified MHSS for 

photodegradation of sodium dodecylbemzene sulfonate (SDBS). Two procedures 

were applied for modification of MHSSs. The characterizations based on phase 

determination, surface analysis and electron microscope imaging were carried out. 

1.2 Problem Statement 

Due to the growing consumption of laundry detergents, there is a necessity 

for a quick and effective degradation of SDBS. Photocatalytic degradation by using 

semiconductor nanoparticles such as TiO2 and ZnO has attracted a lot of attention for 

decomposition of organic compounds. However, by decreasing size, particles tend to 

stick and form irregular shape of aggregates which can affect their performance. 

Despite reports on preparation of supported zinc oxide nanoparticles, there is 

still lack of simple and affordable method for immobilization of zinc oxide 

nanoparticles onto a support with high surface area, porosity and stability as well as 

low toxicity. Mesoporous hollow silica spheres (MHSS) have been attracted lots of 

attention as support for immobilization of nanoparticles, drugs and enzymes owing to 

having all these requirements. However, zinc oxide supported on MHSS has not been 

reported. 

It is well-known that in order to prepare highly crystalline zinc oxide, 

calcination at high temperatures is commonly applied [29, 30] . However, calcination 

results in increase of crystal sizes and decrease of surface areas due to aggregation of 
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nanoparticles at higher synthesis temperatures [29, 31, 32]. Furthermore, by applying 

high amount of ZnO precursor followed by calcination, a reaction between silica 

phase and zinc oxide occurred which led to formation of binary oxide of zinc silicate, 

willemite [33, 34]. Therefore, procedure to prepare zinc oxide immobilized MHSS 

without applying heat treatment at elevated temperatures is highly desired. 

1.3 Research Objectives 

The research objectives of this study were: 

1. To synthesize nanosized zinc oxide immoblized mesoporous 

hollow silica Spheres (ZnO-MHSS) 

2. To characterize ZnO/MHSS by X-ray powder diffraction (XRD), 

Fourier transform infrared spectroscopy (FTIR), field emission 

scanning electron microscopy (FESEM), transmission electron 

microscopy (TEM) and nitrogen adsorption-desorption analysis. 

3. To evaluate the photocatalytic performance and kinetic behaviour 

of the materials. 

1.4 Scope of Study 

Mesoporous hollow silica spheres were synthesized by using sol-

gel/emulsion method followed by immobilization with zinc oxide in two attempts 

through impregnation method using zinc acetate dihydrate as ZnO precursor. In the 

first attempt, lower molar ratios of Zn/Si precursors (1:15, 1:30 and 1:50) were 

applied with heat treatment at high temperature, whereas, in the second attempt high 

molar ratios of Zn/Si precursors (1:2, 1:1 and 2:1) were employed without heat 

treatment at high temperature. 
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In order to obtain physicochemical properties of all photocatalysts, 

characterizations were carried out comparing with zinc oxide nanoparticles and 

MHSS. The characterization methods included X-ray Diffraction (XRD) for phase 

determination, Fourier transform infrared spectroscopy (FTIR), Nitrogen adsorption-

desorption analysis for textural properties study, Transmission electron microscopy 

(TEM) and Field Emission Scanning Electron Microscopy (FESEM) for 

morphological properties, Energy-dispersive X-ray spectroscopy (EDX) and  

inductively coupled plasma optical emission spectrometry (ICP-OES) for elemental 

analysis. In the last part, the photocatalytic activity of materials was tested through 

the photocatalytic degradation of SDBS under UV irradiation. Photodegradation 

reaction was traced through determination of the concentration at proper intervals of 

time applying UV-Vis absorbance considering maximum wavelength of SDBS at 

224 nm. The kinetic study was carried out to ascertain the order of reaction. 

1.5 Significance of Study 

The importance of this study is due to successful preparation of ZnO-MHSS 

by two simple, quick and affordable procedures. In the first attempt, low zinc oxide 

loadings allowed to obtain well-distribution of ZnO nanoparticles over MHSS with 

high monodispersity and uniformity and no aggregation, while, high loadings of zinc 

oxide were applied for clear observation of crystalinity of ZnO nanoparticles in the 

second attempt. 

Possibility of using solar light suggests a green inexpensive approach for 

degradation of waste water treatment. This work presents two procedures for 

preparation of ZnO immobilized MHSS support. Through employing the best 

photocatalyst in the first procedure, nearly 80% photodegradation was achieved 

within two hours of irradiation using a 16 W Uvc lamp and 0.1 g catalyst in 500 mL 

of SDBS solution. Meanwhile, in the case of second attempt, by applying the best 

photocatalyst, 85% photodegradation was obtained in two hours with the same 

reaction condition as the first attempt. The small amount of the catalyst used in these 

experiments proposed an economic approach for degradation of organic compounds. 
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The reusability was tested for five cycles and showed no significant drop in the 

efficiency of catalyst. 
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