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ABSTRACT 

Conventional extraction methods such as liquid-liquid extraction for 

organophosphorus pesticides (OPPs) are tedious, time consuming, environmental 

unfriendly, hazardous to the operator, and use large volumes of organic solvents.  

These problems are addressed by the synthesis and development of two extraction 

methods based on two new in-house sol-gel nanosorbents for use in solid phase-

based extraction. The two new nanomaterials, namely cyanopropyltriethoxysilane 

(CNPrTEOS) and silica nanoparticles functionalized with CNPrTEOS (SiO2-NPs-

CNPrTEOS) were prepared via a sol-gel process. Synthesized sorbents were 

characterized by using Fourier transform infrared spectroscopy, field emission 

scanning electron microscopy, thermogravimetric and nitrogen adsorption analysis.  

The particle sizes of both nanomaterials were between 20 to 500 nm with high 

surface areas of 379 m2 g-1 and 570 m2 g-1 for CNPrTEOS and SiO2-NPs-

CNPrTEOS, respectively. The effects of several sol-gel synthesis parameters were 

evaluated to optimize sorbent extraction efficiency and increase the extraction of 

polar and non-polar OPPs simultaneously. The selected OPPs were analysed using 

high performance liquid chromatography with ultraviolet detector. The synthesized 

CNPrTEOS was successfully applied as a solid phase extraction (SPE) sorbent to 

extract three selected OPPs, namely dicrotophos, diazinon and chlorpyrifos. The 

synthesised SiO2-NPs-CNPrTEOS material was used as new sorbent in SPE and 

dispersive micro solid phase extraction (D-µ-SPE). Several effective extraction 

parameters in SPE and D-µ-SPE were optimized. The proposed SPE method based 

on CNPrTEOS and SiO2-NPs-CNPrTEOS exhibited good linearity between 0.3-100 

µg L−1, high enrichment factor (833-1666) and low (0.088-0.214 µg L−1) limits of 

detection (LODs = 3 × SD/m). Finally, the proposed D-µ-SPE method based on the 

SiO2-NPs-CNPrTEOS successfully determined the selected polar and non polar 

OPPs in water samples with excellent recoveries (101.21-109.12%). LODs at ultra-

trace level (0.047-0.059 µg L-1) were obtained with 10 min of extraction time, small 

amount of sorbent (50 mg) and low organic solvent volume (150 µL). The LODs 

obtained using the proposed SPE and D-µ-SPE methods were well below the 

maximum residue limit (MRL) set by the European Union and LODs of commercial 

CN-SPE cartridges. The developed environmentally friendly methods using SPE-

CNPrTEOS, SPE-SiO2-NPs-CNPrTEOS and D-µ-SPE-SiO2-NPs-CNPrTEOS 

provided precise, accurate and excellent recoveries of OPPs from water samples.  

These new sol-gel materials showed high potential for use as sorbent in solid phase-

based extraction of pesticides of variety polarity. 
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ABSTRAK 

Kaedah pengekstrakan konvensional seperti pengekstrakan cecair-cecair 

untuk pestisid organofosforus (OPPs) adalah membosankan, memakan masa, tidak 

mesra alam, berbahaya kepada pengguna, dan menggunakan pelarut organik yang 

banyak. Masalah ini boleh ditangani dengan mensintesis dan membangunkan dua 

kaedah pengekstrakan berasaskan dua pengerap sol-gel baharu dalaman untuk 

digunakan dalam pengekstrakan berasaskan fasa pepejal. Kedua-dua bahan nano ini 

iaitu sianopropiltrietoksisilana (CNPrTEOS) dan nanozarah silika terfungsi 

CNPrTEOS (SiO2-NPs-CNPrTEOS) telah disediakan melalui proses sol-gel. 

Pengerap yang disintesis telah dicirikan menggunakan analisis spektroskopi infra-

merah transformasi Fourier, mikroskopi imbasan elektron pancaran medan, 

termogravimetri dan analisis penjerapan nitrogen. Saiz zarah kedua-dua bahan nano 

adalah antara 20 hingga  500 nm dengan luas permukaan yang tinggi, iaitu 379 m2 g-1 

dan 570 m2 g-1 masing-masing untuk CNPrTEOS dan SiO2-NPs-CNPrTEOS. Kesan 

beberapa parameter sintesis sol-gel telah dinilai untuk mengoptimumkan kecekapan 

pengekstrakan optimum pengerap dan meningkatkan pengekstrakan OPPs berkutub 

dan tak berkutub secara serentak. Analit OPPs terpilih ini telah dianalisis 

menggunakan kromatografi cecair berprestasi tinggi dengan pengesan 

ultralembayung. CNPrTEOS yang disintesis telah digunakan dengan jayanya sebagai 

pengerap pengekstrakan fasa pepejal (SPE) untuk mengekstrak tiga OPPs terpilih, 

iaitu dikrotofos, diazinon dan klorpirifos. Bahan SiO2-NPs-CNPrTEOS yang 

disintesis telah digunakan sebagai pengerap baharu dalam SPE dan pengekstrakan 

serakan mikro fasa pepejal (D-µ-SPE). Beberapa parameter pengekstrakan yang 

berkesan dalam SPE dan D-µ-SPE telah dioptimumkan. Kaedah SPE yang 

dicadangkan berasaskan CNPrTEOS dan SiO2-NPs-CNPrTEOS menunjukkan 

kelinearan yang baik antara 0.3-100 µg L−1, faktor pengayaan yang tinggi (833-

1666) dan had pengesanan (LODs = 3×SD/m) yang rendah (0.088-0.214 µg L−1). 

Akhir sekali, kaedah D-µ-SPE yang dicadangkan berasaskan SiO2-NPs-CNPrTEOS 

telah berjaya menentukan OPPs berkutub dan tak berkutub dalam sampel air dengan 

pengembalian semula yang cemerlang (101.21-109.12%). LODs pada tahap ultra 

surihan (0.047-0.059 µg L-1) telah diperoleh dengan masa pengekstrakan 10 min, 

jumlah pengerap yang kecil (50 mg) dan isipadu pelarut organik yang rendah (150 

µL).  LODs yang diperoleh  menggunakan kaedah SPE dan D-µ-SPE yang 

dicadangkan adalah di bawah had residu maksimum (MRL) yang ditetapkan oleh 

Kesatuan Eropah dan LODs bagi kartrij komersial CN-SPE.  Kaedah mesra alam 

yang dibangunkan ini menggunakan SPE-CNPrTEOS, SPE-SiO2-NPs-CNPrTEOS 

dan D-µ-SPE-SiO2-NPs-CNPrTEOS memberikan pengembalian semula OPPs yang 

presis, tepat dan cemerlang daripada sampel air. Bahan sol-gel baharu ini 

menunjukkan potensi  tinggi  untuk kegunaan sebagai bahan pengerap dalam 

pengekstrakan berasaskan fasa pepejal bagi pestisid pelbagai kekutuban. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background Information 

Pesticides are large group of toxic synthesis organic compounds used in 

agriculture. Pesticides are used on farms as herbicides, fungicides and insecticides 

(Gou et al. 2000). Insecticides known as organophosphorus pesticides (OPPs) and 

organochlorine pesticides (OCPs) are commonly used against insects. OCPs (e.g., 

DDT) have been banned since 1972 in the US and 1983 in China (Qiu et al. 2004), 

but they are still used for crop protection.  

OPPs are one of the most common highly toxic classes because of their 

inhibition of acetyl-cholinesterase. Due to the widespread use of OPPs in agriculture 

to protect product quality, they are commonly found in surface waters, foods and 

even honey (Amendola et al. 2011). Food produced for humans can contain 

pesticides, either from direct application to the food or bio-magnification up the food 

chain.  

The presence of OPPs contamination in food commodities has become a 

growing source of concern for mammals (Shimelis et al. 2007). OPPs toxicity is 

harmful to human health. According to drinking water guidelines, the maximum 

acceptable concentrations established by the European Union (EU) are 0.1 µg Lˉ1 

and 0.5 µg Lˉ1 for single and total OPPs, respectively (Community 1998). Due to the 

high toxicity of OPPs at trace levels, monitoring and detection of residues in water 

sources is essential for human protection. Pre-treatment and sampling are most 

important in analytical work because these steps typically account for over 60% of 
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the total analysis time and their quality largely determines the success of analysis in 

complex matrices (Chen and Wu 2005). Different types of techniques have been 

successfully developed for sample preparation and extraction of OPPs from various 

media: liquid-liquid extraction (LLE) (Barcelo 1993), supercritical fluid extraction 

(SFE) (Rissato et al. 2005) and stir-bar sorptive extraction (SBSE) (Baltussen et al. 

1999, Bicchi et al. 2002). However, LLE is time consuming and labor-intensive, and 

choosing an appropriate solvent can be complicated. Moreover, it is difficult to polar 

and ionic compounds from water, and these methods require relatively large volumes 

of organic solvents and harmful chemicals that are costly to dispose of. 

Method simplification and miniaturization are modern trends in analytical 

chemistry (Blasco 2004). Solid-phase extraction (SPE) is a convenient sampling 

method compared to LLE because of its simplicity and economic benefits in terms of 

time and solvent needs (Cacho et al. 2003, Lal et al. 2008). SPE has been 

successfully used to preconcentrate and clean up pesticides from different samples 

(Sabik et al. 2000, Wells and Yu 2000) and has many advantages, such as wide 

availability of selective sorbents, less consumption of organic solvent, low cost, short 

analysis time, simple equipment, simple operation, rapid sample loading and high 

breakthrough volume (Sabik et al. 2000).  

SPE based on commercial sorbents, such as C18 and CN, provides higher 

affinity for nonpolar and polar pesticides, respectively. In recent years, SPE has been 

developed with novel in-house sorbents with promising analytical performances: 

cross-linked copolymers suitable for nonpolar pesticides and reversed-phase 

mechanisms and interactions (Masque et al. 2001, Bielicka Daszkiewicz et al. 2006) 

and molecular imprinted polymers (MIPs) (Berton et al. 2006). Commercial sorbents 

and reported in-house adsorbents provide potential benefits, but they also have 

several drawbacks, such as low recovery, less precision, low enrichment factor, less 

sensitivity and low reusability. 

Recently, to overcome the aforementioned limitations with polar and 

nonpolar OPPs, environmental friendly hybrid sol-gel based sorbents with many 

advantages were developed as SPE sorbents: polydimethylsiloxane-2-
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hydroxymethyl-18-crown-6-coated (PDMS-20HMe18C) (Wan Ibrahim et al. 2010), 

methyltrimethoxysilane–tetraethoxysilane (MTMOS-TEOS) (Wan Ibrahim et al. 

2012), methyltrimethoxysilane–cyanopropyltriethoxysilane MTMOS-CNPrTEOS , 

(Wan Ibrahim et al. 2013).  

Dispersive micro solid phase extraction (D-µ-SPE) has been widely used to 

isolate pesticides (Jiménez-Soto et al. 2012). Dispersive micro-solid phase extraction 

is a quick, easy, cheap, effective, rugged and safe (QuEChERS) method for sample 

preparation, isolation and preconcentration for a wide range of samples(Han et al. 

2014). D-µ-SPE is another mode of d-SPE that consumes small amounts of 

adsorbent and elution solvent, provides higher adsorption capacity, avoids 

channeling or blocking and is simple and less time consuming than conventional SPE 

(Fu et al. 2012, Chung et al. 2013, Yahaya et al. 2014). D-µ-SPE traps analytes on 

the sorbent from liquid samples followed by desorption or elution by organic 

solvents. D-µ-SPE exhibits high breakthrough volumes because a large volume of 

sample can be processed with small amounts of sorbent and solvent. 

In the present study, sol-gel technology was used to prepare sorbents for SPE 

and D-µ-SPE because new sorbents with different properties and conditions can be 

developed. First, novel nanosized sorbents based on cyanopropyltriethoxysilane 

(CNPrTEOS) with high surface areas were synthesized using the sol-gel method and 

applied as SPE sorbents to preconcentrate polar and nonpolar OPPs. Second, silica 

nanoparticles were synthesized and functionalized with CNPrTEOS (SiO2-NPs-

CNPrTEOS) followed by application as SPE and D-µ-SPE sorbents for OPP 

preconcentration. These proposed methods exhibited low limit of detections (LODs) 

with excellent enrichment factors for OPPs extraction from water samples. Polar 

(dicrotophos) and nonpolar (diazinon and chlorpyrifos) OPPs were successfully 

recovered from environmental water samples (tap, river, mineral and drinking water) 

with high extraction recoveries and little matrix effects observed. 

The proposed SPE and D-µ-SPE methods based on different types of in-

house and commercial sorbents co-extracted many matrix species, resulting in a dirty 

extraction. As a result, selective chelating sorbent has become an active area of 
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research. SPE and D-µ-SPE methods can overcome these limitations by using new 

sol-gel materials that can extract polar and non-polar compounds via the sol-gel 

process. Because of its potential benefits, CNPrTEOS was used as the new material 

to extract polar and non-polar OPPs from environmental water samples. The cyano 

functional group in CNPrTEOS is very polar and impacts the extraction of polar 

analytes from aqueous matrices. CNPrTEOS exhibits both polar and polarizable 

characteristics and is among the most useful stationary phases with respect to 

polarity at both low and high temperatures. The cyano group attached to the siloxane 

backbone via a three-methylene (CH2) spacer is polar and strongly electron 

attracting, displaying dipole-dipole, dipole-induced dipole and charge-transfer 

interactions. The unshared electron pair in the nitrile nitrogen may form 

intermolecular hydrogen-bonds with suitable hydrogen donor sample molecules like 

phenols. These characteristics of cyano stationary phases are responsible for their 

increased affinity for ketones, esters and analytes bearing electrons (Kulkarni et al. 

2006). 

Methods based on CNPrTEOS have been used as sol components to 

synthesize inorganic-organic hybrid polydimethylsiloxane-

cyanopropyltriethoxysilane (PDMS-CNPrTEOS)  as extraction sorbents to analyze 

non-steroidal anti-inflammatory drugs (NSAIDs) by SBSE (Wan Ibrahim et al. 

2011a). The cyano moiety in the PDMS-CNPrTEOS hybrid may improve the 

extraction of more polar NSAIDs through hydrogen bonding, electrostatic and π-π 

interactions with analytes. The structure of CNPrTEOS is shown in Figure 1.1. 

 

 

 

 

Figure 1.1 The chemical structure of CNPrTEOS  
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1.2 Problem Statement 

In recent years, the development of fast, accurate, sensitive, simple and 

inexpensive methodologies has become an important research focus. Sample 

preparation is generally required to determine trace levels of organic compounds in 

sample matrices. Liquid-liquid extraction is a versatile and multipurpose sample-

preparation technique and recommended in many standard analytical methods 

(Tahboub et al. 2005). However, it is tedious, expensive, laborious, time consuming, 

and unable to extract polar compounds, requires multistage operation, is likely to 

form emulsions, uses large volumes of organic solvents and requires disposal of toxic 

or flammable chemicals (Pico et al. 2007). Solid phase extraction and solid micro 

phase extraction can overcome these drawbacks because they can reduce the use of 

organic solvents, the mass of sorbent needed and the extraction time, as well as 

increase the sample capacity. 

Commercial SPE and D-µ-SPE sorbents are typically suitable for non-polar 

or polar compounds, but not for both. Non-polar sorbents show low retention of polar 

compounds, and the reverse is true for polar sorbents (Chan  and Tsang 2007). 

Therefore, to overcome these limitations, new nanomaterials were synthesized using 

a sol-gel method that can extract polar and nonpolar compound simultaneously. 

These new nanosorbents have higher capacity in comparison with commercial and 

previous sorbents for extraction and concentration of polar and nonpolar OPPs. 

These new nanosorbents were sol-gel nanomaterials based on CNPrTEOS and silica 

nanoparticles functionalized with CNPrTEOS (SiO2-NPs-CNPrTEOS), which were 

used in SPE and D-µ-SPE to extract three selected OPPs with different polarities.  

1.3 Aims and Objectives of Study  

The aim of this study is to synthesize new sol-gel sorbents for SPE and D-µ-

SPE to extract polar and non-polar OPPs simultaneously. The objectives are to 
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1. Synthesize new nanosorbents based on CNPrTEOS and SiO2-NPs-

CNPrTEOS as extraction sorbents, and optimization of effective sol-

gel synthesis parameters, namely water volume, solvent type, base 

catalyst pH value and precursor content. 

2. Characteriz the synthesized nanosorbents using Fourier transform 

infrared spectroscopy (FTIR), field scanning electron microscopy 

(FESEM), nitrogen adsorption, elemental analysis (EDX) and 

thermogravimetric analysis (TGA). 

3. Evaluate the synthesized CNPrTEOS as SPE sorbent and SiO2-NPs-

CNPrTEOS as D-µ-SPE and SPE sorbents for OPPs preconcentration, 

and optimization and validation of effective SPE and D-µ-SPE 

parameters.  

4. Evaluate the optimum SPE and D-µ-SPE conditions for method 

validation to determine the linearity range, LOD, LOQ and precision 

of SPE and D-µ-SPE method followed by analysis of environmental 

samples (Tap, bottled mineral, bottled drinking and river water). 

1.4 Scope of Study 

This study focused on the preparation of sol-gel CNPrTEOS and SiO2-NPs-

CNPrTEOS as sorbents for the simultaneous extraction and preconcentration of three 

selected OPPs dicrotophos, diazinon and chlorpyrifos, via SPE and D-µ-SPE. The 

functional groups, surface morphologies and thermal stabilities of the prepared sol-

gel sorbents were characterized using FTIR, FESEM and TGA. Physical 

characteristics such as pore size, surface area, pore volume and pore size distribution 

were measured using N2 adsorption (BET). To obtain appropriate sorbents for OPPs 

preconcentration, the CNPrTEOS content, pH of the base catalyst, water volume and 

solvent type during sol preparation were evaluated. The extraction efficiencies of the 

SPE and D-µ-SPE methods were successfully applied to OPPs preconcentration prior 

to high performance liquid chromatography equipped with UV analysis. 

Optimization of the proposed methods (SPE and D-µ-SPE) was carried out for 

sample volumes, desorption or elution solvent types, desorption or elution solvent 



7 

 

volumes, extraction time, desorption time and adsorbent mass. The SPE and D-µ-

SPE methods were validated in terms of linearity, limit of detection and limit of 

quantification. The extraction recoveries of the SPE and D-µ-SPE methods based on 

the new nanosorbents were examined in the extraction of OPPs from environmental 

samples. Finally, extraction efficiencies of the newly synthesized sol-gel sorbents 

were compared with commercial cyanopropyl (CNPr) for polar and nonpolar OPPs 

that had been isolated under the optimized extraction conditions. 

1.5 Significance of Study 

Commercial SPE sorbents (non-polar C18 and polar CNPr) have limitations in 

the extraction of polar and nonpolar analytes from different types of samples. The 

newly developed sol-gel sorbents based on CNPrTEOS and SiO2-NPs-CNPrTEOS 

with different polarities improved the extraction performance of polar dicrotophos, 

and nonpolar chlorpyrifos and diazinon. As extraction sorbents, the new in-house 

sol-gel CNPrTEOS and SiO2-NPs-CNPrTEOS materials enhanced the extraction 

capability of polar and nonpolar OPPs simultaneously, thereby reducing extraction 

time. The D-µ-SPE method using the new sol-gel sorbent is also simple, inexpensive 

and environmental friendly. 

1.6 Summary 

Chapter 1 explains the background of the study concerning toxic pesticides, 

sampling methods, sorbent variety and sol-gel materials. The statement of problem, 

objectives, scopes and significance of this study are also covered. 

Chapter 2 focuses on the published literature concerning pesticides, sol-gel 

technology, solid-phase extraction, dispersive micro solid-phase extraction and 

commercial and in-house sorbent materials. 
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Chapter 3 focuses on the methodology, followed by a description of 

materials, instruments, synthesis procedures for sol-gels based on CNPrTEOS and 

silica nanoparticles functionalized with CNPrTEOS precursors, chromatography 

peak identification and SPE and D-µ-SPE methods. 

Chapter 4 focuses on the preparation of the new nanosized sol-gel sorbents 

based on CNPrTEOS as an SPE adsorbent, characterized using FTIR, BET, FESEM, 

and EDX. The sorbent synthesized in-house was successfully applied to the 

simultaneous extraction of polar (dicrotophos) and non-polar (diazinon and 

chlorpyrifos) OPPs from various water samples (tap, river, mineral and drinking 

water). The CNPrTEOS-based sorbent was sensitive to polar and nonpolar OPPs 

through electrostatic interactions, H-bonding and porosity. SPE based on CNPrTEOS 

showed good affinity for the isolation of polar and non-polar OPPs simultaneously. 

The preconcentrated OPPs were determined by HPLC-UV. 

In chapter 5, the SiO2-NPs-CNPrTEOS nanoparticles were synthesized using 

sol-gel technology. Briefly, SiO2 nanoparticles were prepared and functionalized 

using the CNPrTEOS precursor. The combined sol-gel sorbent was characterized by 

FTIR, BET, FESEM, EDX and TGA. The synthesized nanomaterial was used as an 

SPE and D-µ-SPE sorbent to extract three polar and nonpolar OPPs from 

environmental water samples (tap, river, mineral and drinking water). A high 

enrichment factor and lower LOD are the some benefits of D-µ-SPE compared with 

conventional SPE. The isolated OPPs were determined by HPLC-UV. 

Chapter 6 is the final chapter and focuses on the conclusion and future works 

of the current study. This chapter summarizes the obtained analytical results, such as 

the optimization parameters and validation of the SPE and D-µ-SPE methods based 

on the novel sol-gel sorbents (CNPrTEOS and SiO2-NPs-CNPrTEOS). 
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