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ABSTRACT 

 

 

Researchers proposed numerous solutions to plastic pollution, with the hope 

to tackle the intractable problems brought by plastic especially to mankind and 

environment.  One of the proposed methods of solving the problem is the conversion 

of plastic waste to chemicals and fuels through pyrolysis and cracking.  However, 

previous studies focused on polymer cracking in a batch process, which resulted in 

the wide distribution of the products.  Thus, there is a need to develop polymer 

cracking process in continuous mode and improve the product quality by using a 

suitable catalyst.  The aim of this research is to investigate on catalytic cracking of 

low density polyethylene (LDPE) in a fixed bed reactor into liquid fuel.  LDPE was 

dissolved in different solvents with similar solubility parameter and the most suitable 

solvent was selected.  The catalytic cracking was then carried out on the LDPE 

solution using a fixed bed reactor at atmospheric pressure.  Parent zeolites and 

nickel-impregnated zeolites were screened as catalysts for the cracking of LDPE.  

The change in product composition at different reaction conditions was also studied, 

and a plausible reaction mechanism was proposed.  This was followed by parametric 

study of the process involving five factors, namely temperature (A), catalyst mass 

(B), feed flow rate (C), N2 flow rate (D), as well as concentration of LDPE solution 

(E), and the two responses were LDPE conversion (Y1) and liquid yield (Y2).  Two 

level full factorial design was used to evaluate the factors.  It was found that benzene 

is the most suitable solvent for LDPE dissolution.  Catalytic cracking of the LDPE 

solution produced C1-C8 hydrocarbons in all runs.  During the catalyst screening, 

zeolite Z2 (ZSM-5 zeolite, Si/Al: 1000) was found to be the most promising catalyst, 

as it was able to obtain high LDPE conversion (99.93%), high liquid yield (92.28%) 

and low coke formation (0.02%).  The parametric analysis showed that four out of 

five factors (A, B, C and D) produced significant effects on Y1 and Y2.  On the other 

hand, factor E was statistically insignificant on the responses.  Analysis on products 

composition showed that cracking of LDPE over zeolite Z2 produced a high amount 

of aliphatic branched-chain compounds, together with the moderate amount of cyclic 

compounds (C7-C12).  The reaction conditions also led to alkylation of benzene by 

the cracking products from LDPE.  It is suggested that the catalytic cracking of 

LDPE is dominated by free radical mechanism, while the influence of carbenium ion 

mechanism is less pronounced due to low acidity of the catalyst.  Hence, it is 

concluded that catalytic cracking of dissolved LDPE in fixed bed reactor with zeolite 

Z2 is able to convert LDPE into liquid fuel in gasoline range and has the potential to 

tackle the plastic pollution. 
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ABSTRAK 

 

 

Para penyelidik mencadangkan pelbagai penyelesaian kepada pencemaran 

plastik, dengan harapan untuk menangani masalah yang dibawa oleh plastik 

terutamanya kepada manusia dan persekitaran. Salah satu penyelesaian yang 

dicadangkan adalah penukaran sisa plastik kepada bahan kimia dan bahan api 

melalui pirolisis dan perengkahan. Walau bagaimanapun, kajian-kajian sebelum ini 

lebih tertumpu kepada perengkahan polimer dalam proses berkelompok yang 

menghasilkan taburan produk yang luas.  Maka, adalah perlu untuk mengkaji 

perengkahan polimer dalam mod berterusan, serta meningkatan kualiti produk 

dengan pemangkin yang sesuai. Tujuan kajian ini adalah untuk mengkaji 

perengkahan berpemangkin polietilena berketumpatan rendah (LDPE) dalam reaktor 

lapisan tetap kepada bahan api cecair. LDPE dilarutkan dalam pelarut yang berbeza 

dengan parameter kelarutan yang hampir sama, dan pelarut yang paling sesuai dipilih. 

Perengkahan berpemangkin kemudian dijalankan ke atas larutan LDPE 

menggunakan reaktor lapisan tetap mikro pada tekanan atmosfera. Zeolit asal dan 

zeolit yang mengandungi nikel telah digunakan sebagai pemangkin. Perubahan 

dalam komposisi produk pada keadaan tindak balas yang berbeza juga telah dikaji, 

dan mekanisma tindak balas yang munasabah telah dicadangkan. Ini diikuti dengan 

kajian parametrik proses melibatkan lima faktor, iaitu suhu (A), jisim pemangkin (B), 

kadar aliran suapan (C),  kadar aliran N2 (D), serta kepekatan larutan LDPE (E), dan 

dua respon yang dilihat adalah penukaran LDPE (Y1) dan hasil cecair (Y2). Reka 

bentuk penuh faktorial dua peringkat telah digunakan. Benzena merupakan pelarut 

yang paling sesuai untuk pelarutan LDPE. Perengkahan berpemangkin LDPE 

menghasilkan hidrokarbon C1-C8 dalam semua eksperimen. Dalam saringan 

pemangkin, zeolit Z2 (zeolit ZSM-5, Si/Al: 1000) didapati sebagai pemangkin yang 

sesuai, kerana ia menghasilkan penukaran LDPE yang tinggi (99.93%), hasil cecair 

yang tinggi (92.28%) dan pembentukan kok yang rendah (0.02%). Kajian parametrik 

menunjukkan bahawa empat daripada lima faktor (A, B, C dan D) menghasilkan 

kesan yang ketara ke atas Y1 dan Y2. Sebaliknya, faktor E adalah tidak penting 

secara statistik ke atas respon-respon yang dikaji. Analisis ke atas komposisi 

menunjukkan bahawa perengkahan LDPE dengan zeolite Z2 menghasilkan amaun 

sebatian rantai bercabang alifatik yang tinggi, bersama dengan amaun sebatian siklik 

(C7-C12) yang sederhana. Keadaan tindak balas juga membawa kepada alkilasi 

benzena oleh produk perengkahan dari LDPE. Adalah dicadangkan bahawa 

perengkahan berpemangkin LDPE dikuasai oleh mekanisma radikal bebas, manakala 

pengaruh mekanisma ion karbenium adalah kurang ketara akibat keasidan 

pemangkin yang rendah. Secara kesimpulannya, perengkahan berpemangkin LDPE 

dalam benzena dalam reaktor lapisan tetap dengan zeolite Z2 boleh menukar LDPE 

kepada bahan api cecair dalam lingkungan petrol dan mempunyai potensi untuk 

menangani pencemaran plastik. 
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CHAPTER 1  
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

Since their first synthesis in early 1900s, plastics have substituted many types 

of materials in production of consumer products, as they possessed superior qualities 

compared to traditional materials such wood, metal and ceramics.  Among different 

types of plastics, polyethylene (PE) is widely used for numerous purposes, including 

the production of wrapping papers and plastic bags due to its light weight, strength, 

durability and low cost.  As a result, the global demand of polyethylene is increasing.  

In 2012, annual LDPE production of 21 million tonnes was reported, following a 

steady growth of over 700,000 tonnes over a year [1].   

 

 

Despite the advantages brought by plastic-made materials, their disposal 

causes a lot of problems to the environment, as they do not degrade in landfill, and 

remain buried in the soil for hundreds or even thousands of years thereby constituting 

an environmental pollution.  It is estimated that plastic waste accounted for 8-12% of 

total municipal solid waste (MSW) around the globe, and is estimated to reach 9-13% 

by 2025 [2].  In order to solve the problem brought by the plastic waste, researchers 

have proposed many solutions, however, none of the proposed solutions can 

effectively solve the plastic pollution with positive reception from the public.  

Researchers are currently focusing on the potential of polymer cracking, which 

involves the depolymerization of plastic to small hydrocarbon molecules, which can 

be then utilized as fuels.  Recently, a lot of effort was made by researchers in this 

area.   
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However, as most studies in polymer pyrolysis and cracking process were 

carried out in batch reactors, there are some difficulties to apply the process in 

polymer recycling industry.  In order to achieve such development, polymer cracking 

has to be carried out in continuous process mode.  Nonetheless, polymer waste in its 

solid waste is difficult to be fed into reactor continuously.  Thus, there is a need to 

develop a method that enables smooth continuous feeding of polymer waste into the 

reactor for catalytic cracking, as there are many advantages associated with this 

process.  Studies by several researchers [3-5] may serves as a possible solution to the 

mentioned problem.  In their studies, the polymer is dissolved in compatible solvents 

to form solutions with reasonable viscosity.  The polymer solution was then feed into 

the cracking reactor to produce liquids comparable to fuels.  However, such studies 

are very scarce in literature, and only limited to small scale.  Hence, it is necessary to 

investigate on catalytic cracking of polymer in larger scale. 

 

 

1.2 Problem Statement 

 

 

Due to the increasing demand on plastic-made consumer products, there is an 

urgent need to propose proper alternatives to plastic waste disposal.  Among the 

proposed solutions, catalytic cracking seems to be an interesting option, since it 

converts plastic waste to liquid fuel.  However, most studies on catalytic cracking of 

polymer were done in batch process, which is difficult to be applied in polymer 

recycling industry.  There is a need to develop catalytic cracking of polymer in 

continuous mode, since such process is more scalable and suitable for industry 

requirements.  Nevertheless, development of catalytic cracking of polymer in 

continuous mode is challenging due to the lack of comprehensive studies.  In order to 

develop such process, the compatible solvent for the studied polymer has to be 

determined, since not all solvents can be used to satisfactorily dissolve the polymer.  

Another challenge faced by researchers in studying continuous catalytic cracking of 

polymer is the proper method to determine the polymer conversion during the 

process.  For polymer cracking in batch reactor, the polymer conversion can be easily 

determined based on the weight of unreacted polymer in the reactor after the 

cracking process.  Such method does not work on polymer cracking in continuous 
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mode, since the unconverted polymer is mixed with the liquid product after the 

cracking process.  Several strategies used in previous studies to overcome this 

problem, as explained in Section 2.5.2, are difficult to be replicated in most 

laboratories.  Therefore, there is a need to propose an easy method for quantification 

of polymer conversion in continuous cracking.   

 

 

In addition, the understanding on polymer cracking in continuous mode is 

still shallow, due to the limited works in literature.  The findings on polymer 

cracking in batch mode can only be partially generalized on the continuous cracking 

of polymer, due to the differences of these processes.  Thus, there is a need for a 

comprehensive study on continuous cracking of polymer, including the effects of 

different catalysts and reaction parameters towards the polymer conversion and 

liquid yield.  It is also necessary to find out how these factors influence the 

composition of products, especially liquid, since such property is of utmost important 

to determine its suitability to be used as fuel.   

 

 

 

 

1.3 Objectives of Research 

 

 

The main objective of this research is to study on catalytic cracking of low 

density polyethylene (LDPE) dissolved in solvent in a fixed bed reactor.  The 

specific objectives are listed in the following: 

 

a. To screen solvent  in dissolution of commercial LDPE. 

b. To investigate the effects of different catalysts on the composition and yield of 

liquid and gaseous products in catalytic cracking of LPDE dissolved in best 

solvent in the fixed bed reactor.   

c. To study the effects of different factors towards liquid product composition, and 

propose the reaction mechanism of the catalytic cracking of LDPE/benzene 

solution. 

d. To determine the significant reaction parameters in catalytic cracking of LDPE 

using two-level full factorial design. 
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1.4 Scope of Research 

 

 

In order to achieve the research objectives, the scope of this research is 

designed as follows: 

 

(a) Screening was carried out on five solvents (benzene, chlorobenzene, toluene, 

xylene and trichloroethylene) to determine the best solvent for dissolution of 

commercial low density polyethylene (LDPE).  Characterizations were also 

performed on LDPE in solid and solution state (using selected solvent), in term of 

elemental and proximate analysis, viscometry, Fourier-transformed Infra-red (FTIR) 

spectrometry, Thermogravimetric analysis (TGA), and bomb calorimetry. 

 

 

(b) Zeolite Z1 (ZSM-5 type, CBV 2314, Si/Al: 23) was selected as the catalyst as 

it is the one of the widely used ZSM-5 zeolites in cracking of hydrocarbons, polymer 

and biomass [6-9].  Zeolite Y (USY type, CBV 720, Si/Al: 30) is another typical 

USY zeolite used for the same purpose [10-12].  They are reported to have large 

surface area with high amount of acidic sites that enables effective contact of the 

reactants on its surface for reactions.  Thus, it is necessary to test their catalytic 

performance in the cracking of LDPE solution.  Comparison between the 

performances of the two catalysts revealed the difference between ZSM5 zeolite and 

USY zeolite.  Another aim of this research is to study the potential of a ZSM-5 

zeolite (named as Z2, Si/Al: 1000) in catalytic cracking of LDPE solution.  The use 

of such zeolite has not been reported in the literature, hence it is worthy to study its 

potential in LDPE cracking process.  Another aim of this study is to study the effect 

of Ni impregnation of the catalytic properties of zeolites, which is not yet reported in 

catalytic cracking of dissolved polymer.  Nickel is chosen due to its ability to 

improve products quality as explained in Section 2.7.3.  According to literature, 

metal loadings of 0.5% -15% is often used by researchers in this field [13-16].  

Therefore, a metal loading of 10wt% was chosen for this research.  Characterizations 

of the zeolites were carried out using Brunauer, Emmett and Teller (BET) analysis 
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method for surface area, Scanning electron Microscope (SEM), X-Ray diffraction 

(XRD), Temperature-programmed reduction (TPR), and Temperature–programmed 

desorption of ammonia (TPD-NH3).  Catalytic cracking of LDPE solution was then 

carried out in the fixed bed reactor using a total of six catalysts (Y, Ni-Y, Z1, Ni-Z1, 

Z2, Ni-Z2), and the liquid products from the cracking process were characterized 

using Gas chromatography coupled with mass selectivity detector (GC-MS), Fourier-

Transformed Infra-red (FTIR) spectroscopy, as well as bomb calorimetry.  The coke 

formation on catalyst was also studied using temperature-programmed oxidation in 

thermobalance (TGA-TPO).  The most promising catalyst was selected based on 

polymer conversion, liquid yield and coke yield.  

 

 

(c) By using the selected catalyst, a parametric study was carried out on catalytic 

cracking of LDPE solution in fixed bed reactor.  Two-level full factorial design was 

generated using Minitab for the purpose.  The factors studied were temperature (400-

600 ºC), mass of catalyst (0.1-0.2 g), flow rate of LDPE solution (1-3 ml/min), flow 

rate of carrier gas (20-80 ml/min), as well as concentration of LDPE solution (0.005-

0.2 g LDPE/ml benzene), while the responses studied were LDPE conversion and 

liquid yield.   

 

 

(d) Compositions of liquid products were determined after performing catalytic 

cracking at varying reaction conditions. The effects of significant factors determined 

from scope (c) towards the liquid products were then determined. The plausible 

mechanism was proposed for catalytic cracking of LDPE, based on the composition 

of products at varying reaction parameters. 

 

 

 

 

1.5 Significance of Research 

 

 

Following a great number of detailed studies in thermal and catalytic cracking 

of various polymers in batch reactors, there is a need to develop polymer cracking 

process in continuous mode.  Such conversion is important in commercialization of 

polymer cracking process, as it offers higher versatility compared to polymer 
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cracking in batch mode.  Compared to the latter, the former process is easier to be 

controlled, and thus leads to more stable products quality.  In addition, polymer 

cracking in continuous mode reduces the time solely for reactor heating (during start-

up) and cooling (before products discharge) when compared to batch units, which 

requires heating and cooling every batch.  These improvements ultimately results in 

higher efficiency of the process. 

 

 

In addition, development of polymer cracking in continuous mode also opens 

more possibilities for the process.  For instance, it is possible to selectively separate 

the plastic waste to different types of polymers by using different solvents and 

dissolution temperatures [17].  Such separation, termed as selective dissolution, may 

increase the efficiency for polymer cracking process [18], and more studies on this 

possibility are under way.  It is also interesting to investigate the possibility to 

carrying out the continuous polymer cracking in fluid catalytic cracking (FCC) unit 

in petroleum refinery.  Such process is feasible due to the similar structure of 

dissolved polymer and crude oil [19, 20]. 

 

 

In order to realize the mentioned potentials, comprehensive studies on 

continuous polymer cracking are necessary to enable in-depth understanding by the 

researchers.  To the best of our knowledge, no study is reported in the open literature 

using a continuous catalytic cracking of LDPE to generate liquid fuel.  Thus, the 

result from this research is expected to expand the frontier of knowledge in the field 

of plastic waste recycling. 

 

 

 

 

1.6 Thesis Outline 

 

 

This thesis consists of five chapters.  Each chapter provides information on 

specific research area: 

 

 

Chapter 1 contains the research background, research objectives and scopes, 

as well as significance of research. Chapter 2 discusses the literature review 
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including background knowledge on catalytic cracking of polymers, design of 

experiment (DOE), analysis techniques that are commonly used for characterization 

purpose in catalytic cracking etc.  Chapter 3 describes the experimental setup and the 

procedures followed during the research work.  These include characterization 

methods on polymer feed, catalysts and products design and fabrication of the fixed 

bed reactor, as well as study on effects of reaction parameters towards process 

performances and products compositions.  Chapter 4 deals with data processing and 

discussions on the results, followed by proposed mechanism on catalytic cracking of 

dissolved LDPE.  Chapter 5 presents the conclusions derived from this research and 

the recommendations for future studies. 
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