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ABSTRACT 

 

 

 

 

The diffraction potential theory is an efficient and accurate method to predict 

the hydrodynamic characteristic of a large floating structure.  However, this theory 

under-estimates the damping coefficient as the viscous effect is ignored.  This 

weakness causes the diffraction potential theory to be less accurate in predicting the 

motion of floating structure in damping dominant region. Therefore, this research 

aims to propose a method to improve the estimation of hydrodynamic characteristic 

of free floating round shape Floating Liquefied Natural Gas (FLNG) carrier when it 

is alone and when it is interacting with another structure which is arranged in parallel 

head-sea condition.  The proposed method was developed by modifying the 

diffraction potential theory and improving with the application of drag equation.  

The proposed method was also further developed by using motion’s energy 

dissipation concept and Huygens Principle to predict the influence of wave generated 

by the motion of nearby structure to the response amplitude operator (RAO) of the 

FLNG.  To validate the proposed method, motion experiments in regular wave were 

conducted in selected conditions.  Comparative study was also conducted by using 

FLNG’s RAO result predicted by ANSYS AQWA software.  Over-estimation of 

peak heave RAO of single FLNG case is reduced from 2.42 to 1.74 by the proposed 

method as the method considered the viscous damping in its calculation.  In 

interaction cases, the peak heave RAO is increased to 2.1 due to the effect of 

radiating waves.  Besides, the interaction effect also induces sway and roll motion. 

The peak sway RAO estimated by both proposed method and experiment is around 

0.22.  The interaction effects on heave RAO and roll RAO are stronger around the 

motions' natural period as the damping coefficients are reduced around motion 

natural period.  The research results showed that the proposed method improved the 

accuracy of the simulation by reducing the amount of over-prediction on the floating 

structure’s RAO in damping dominant region.   
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ABSTRAK 

 

 

 

 

Teori Keupayaan Belauan adalah cara yang cekap dan tepat untuk meramal 

ciri-ciri hidrodinamik bagi struktur terapung yang besar.  Tetapi, teori ini kurang 

menganggarkan pekali redaman kerana mengabaikan kesan likat.  Kekurangan ini 

menyebabkan teori Keupayaan Belauan tidak dapat meramal gerakan struktur 

terapung dengan tepat pada rantau dominan redaman.  Oleh itu,  kajian ini bertujuan 

untuk mencadangkan kaedah untuk menganggarkan ciri-ciri hidrodinamik FLNG 

berbentuk bulat dengan lebih tepat apabila ia bersendirian dan berinteraksi dengan 

struktur lain yang disusunkan secara selari dan berhadapan dengan ombak.  Kaedah 

yang dicadangkan mengubahsuai teori Keupayaan Belauan dan memperbaikinya 

dengan menggunakan persamaan seret.  Kaedah ini juga dimajukan dengan 

menggunakan konsep kehilangan tenaga disebabkan pengerakan struktur dan prinsip 

Huygens untuk meramalkan kesan daripada ombak yang dihasilkan oleh pergerakan 

struktur berdekatan dengan FLNG kepada RAO FLNG.  Untuk mengesahkan kaedah 

yang dicadangkan, eksperimen pengerakan struktur disebabkan oleh ombak tetap 

telah dijalankan dalam keadaan yang terpilih.  Perbandingan juga dilakukan dengan 

mengunakan hasil pengiraan RAO FLNG daripada ANSYS AQWA.  Lebihan 

anggaran pada puncak RAO arah heaving bagi kes FLNG bersendirian dikurangkan 

daripada 2.42 ke 1.74 dengan kaedah yang dicadangkan apabila mengambil kira 

kesan likat.  Pada kes interaksi, puncak RAO arah heaving meningkat kepada 2.1 

kerana kesan radiasi ombak.  Kesan interaksi juga menghasilkan pengerakan struktur 

pada arah swaying dan rolling.  Puncak RAO arah swaying yang dianggarkan oleh 

kaedah yang dicadangkan dan eksperimen ialah sekitar 0.22.  Pengaruh kesan 

interaksi pada RAO arah heaving dan RAO arah rolling adalah lebih besar di sekitar 

tempoh semula-jadi gerakan struktur kerana pekali redaman menjadi rendah.  

Keputusan kajian ini menunjukkan bahawa kaedah yang dicadangkan telah 

memperbaiki ketepatan simulasi dengan mengurangkan jumlah lebihan anggaran 

RAO struktur terapung pada rantau dominan redaman.    
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

This chapter discusses the background, objectives, problem statement, and 

the scope of the research.  Besides, the content of each chapter in this thesis is also 

briefly introduced at the end of this chapter.   

 

 

 

 

1.1 Background of Study 

 

 

Study on floating structure system is an important research topic in offshore 

industry.  The floating structures are often used to explore natural resources in deep 

water area because fixed structures such as jacket structure is not applicable in deep 

water.  The floating structures are allowed to move freely within the design limit 

when the motion of structures is induced by external force such as wave force, drift 

force, wind force and current force.  Besides, the motion characteristics of the 

floating structures are also easily influenced by the hulls design and the arrangement 

of structures on sea surface.  These motion characteristics would be affected when 

the floating structures interact with each other on sea surface.  

 

 

Interaction between floating structures becomes an important research topic 

especially on the study of the Floating Liquefied Natural Gas Storage (FLNG) 

offloading system design.  This is because the gap between the FLNG with tanker 

ship is one of the important criteria to determine workability of the offloading system 

and the success of fluid transfer.  To transfer liquefied natural gas (LNG), the 
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distance between the storage tank and shuttle tanker should be as close as possible in 

order to reduce the amount of LNG boil off when the LNG is transferring from 

FLNG to the tanker ship.  In recent development, it is suggested that the shuttle 

tanker has to be arranged side by side with the storage tank so that the pipe length 

can be minimised.  Due to the close distance between floating structures, accurate 

prediction on the Response Amplitude Operator (RAO) of each structure in a 

multiple floating structures system are important to ascertain the safety of the 

structures’ arrangement.  In general, this study will concentrate on the dynamic 

motion interaction between floating structures which is used to extract natural gas in 

deep water area. 

 

 

As mentioned above, the environmental condition is one of the obstructions 

in limiting the arrangement of floating structures in the offshore system.  Due to 

effect of wave, current and wind, motions of the floating structures are difficult to 

predict.  In this research, only the influence of first order wave forces to the motion 

of floating structure was studied because it is a significant factor in inducing the 

motion of floating structures.  According to Ali et al. (2010), the external force acting 

on the single floating structure is only caused by incident wave in single floating 

structure system.  However, the study of the wave load on the multiple floating 

structures becomes more complicated as the total wave force acted to the floating 

structures is the summation of the force from incident wave, the scattering wave 

from nearby structures and radiating wave due to the motion from nearby structures.  

This situation increases the complexity of the system and calls for a comprehensive 

study.  

 

 

In previous research on hydrodynamic interaction, the studies on the 

interaction between floating structures focused on the wave drift force and motion 

response due to the interaction effect.  From the research conducted by Ali et al. 

(2010), the outcome showed that the interaction between multiple floating structures 

causes the motion response to become higher due to the extra radiating wave force 

transferred from one floating structure to the nearby floating structures.  The 

observation was evaluated and proved by many researchers through their 

experimental studies or numerical simulation. However, there are still weaknesses 
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from the numerical method used in the previous research.  For example, some of the 

mathematical models to simulate the effect of hydrodynamic interaction are not 

applicable for the study of the structures arrange with a very small gap distance.  

This is because some of the proposed mathematical models applied Bessel function 

to simulate the wave propagation.  Hence, if the condition could not satisfy the 

cylindrical coordinate function of Bessel function, the result gained may be incorrect.  

This problem was raised by Kashiwagi (2008); Kashiwagi and Shi (2010) in their 

research on comparing the wave interaction theory to their Higher-Order Boundary 

Element Method (HOBEM).  The horizontal wave force they calculated using the 

theory shows consistent similarity with the result obtained from HOBEM.  However, 

the different results were obtained from both of the theories for vertical wave force.  

To solve this problem, they applied the exact algebra method to their HOBEM 

method to allow their methodology works for multiple body interaction in very close 

gap.  

 

 

Besides, most of the previous proposed methods were developed based on the 

potential theory.  The diffraction potential theory executes the wave load on the 

floating structure by estimating the wave diffraction effect.  In the potential theory, it 

is assumed that the viscous effect can be ignored in the calculation.  This assumption 

causes the potential theory to estimate a lower damping coefficient for the motion of 

floating structures.  The damping coefficient of the floating structure is under-

predicted, causing the RAO of floating structures prediction to become higher than 

the actual value in damping dominant region.  This weakness of the potential theory 

was reported by Loken (1981) and Lu et al. (2011).  Regarding this problem, over-

prediction of RAO by the potential theory is negligible if the natural frequencies of 

the motions are not in the range of the wave frequency which exists in the structure 

operating environment.  However, if the natural frequency of the motion is within the 

range of the favour wave frequency, then accurate estimation on the floating 

structure’s RAO in the damping dominant region is required to ensure the safety of 

the floating structure.   

 

 

Furthermore, the RAO of floating structures outside the damping dominant 

region can be predicted accurately as the diffraction potential theory is able to 
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estimate the added mass and wave force of the floating structures correctly.  From 

the motion equation, the motion of the floating structures in different wavelength 

depends on different factors as shown in Figure 1.1.  Figure 1.1 shows the example 

of the heave RAO tendency curve in different length of wavelength for the cylinder 

structure.  When the wavelength is much shorter than the structure length, the motion 

of floating structure is more dominated by the mass term of the structure.  On the 

other hand, in very long wavelength region, the motion of floating structure is more 

dominated by the restoring force of floating structure.  Typically, the motion 

response amplitude operator, RAO is equal to one in the region if the wavelength is 

much longer than the structure length.  In the region where the wave frequency is 

near to the natural frequency of the motion of floating structure, the RAO of the 

floating structure is more dominated by the damping term.  In this region, high 

resonance effect would be existed.  The RAO in the damping dominant region 

becomes the peak response in the RAO tendency curve. 

 

 

Figure 1.1  The dominant factor in influence the heave RAO of cylinder structure 

(Journee and Massie, 2001) 
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In this research, the new generation of round shape FLNG was selected for 

the study.  The advantage of round shape FLNG over the traditional ship-shape 

FLNG was studied by Lamport and Josefsson (2008).  Their research includes the 

comparison of motion response, mooring system design, constructability and 

fabrication, operability, safety and costing between both the structures.  The study 

conducted by Lamport and Josefsson (2008) and Arslan et al. (2011) obtained that 

this new design of FLNG has a better hydrodynamic behaviour as compared to ship 

shape structure.  Besides, oil and gas companies prefer the FLNG design because it 

has larger storage volume and larger area for topside facilities.  Lamport and 

Josefsson (2008) also found that the round shape FLNG performed better than ship 

shape FLNG in these two important factors.  Moreover, the simple hull shape for the 

round shape FLNG also helps to reduce the construction cost as simple hull 

structures are easier to construct.  

 

 

Due to the innovative design of a new generation of FLNG technology, there 

is more freedom to arrange other floating structures around the FLNG.  For example, 

the structure arrangements in the previous design are typically placed in a side by 

side arrangement or in a tandem arrangement due to the shape of the FLNG.  Also, 

the direction of tanker and FLNG arrangement are respected to the wave propagation 

direction and cannot be changed during the offloading process.  According to 

Lamport and Josefsson (2008), the round FLNG increases the flexibility of structure 

arrangement.  The relative direction of shuttle tanker to the wave propagation 

direction is adjustable during the offloading process for a safer arrangement.  To 

allow for horizontal rotations, the offloading system can be designed by utilizing an 

offloading reel station with the mooring hawser and hose attached on a pinned 

connection on a 90º trackline system at the periphery of the round shape FLNG.  

Therefore, the angle of arrangement for the Round Shape FLNG and shuttle tanker 

can be varied up to 180 degrees as shown in Figure 1.2.  Hence, in this research, the 

study on the RAO of the round shape FLNG only focuses on cases where the 

structure is alone and the interaction of FLNG with shuttle tanker due to the effect of 

gap distance between floating structures. 
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Figure 1.2  Allowance for the change of arrangement of LNG carrier during 

offloading process (Sevan Marine, 2014) 

 

 

 

 

1.2 Problem Statement 

 

 

Offshore industry often requests for an accurate and efficient numerical 

model to predict the behaviour of the floating structure.  The numerical model should 

be able to estimate the dynamic motion of floating structure accurately either the  

motion is dependent by the mass term, restoring force term or damping term.  The 

amount of over-predict or under-predict in the prediction of motion of floating 

structure by the numerical model should be minimized to avoid large difference in 

the motion of the floating structure observed during operating stage when compared 

to the numerical method result. 

 

 

However, the current numerical model which has been developed based on 

the diffraction potential theory to estimate the damping coefficient of the floating 

structure also has its weakness.  The theory ignores the viscous effect in estimating 

the hydrodynamic behaviour of floating structure, causing the under-estimation of 

damping coefficient predicted by the theory.  This weakness causes the current 

numerical model to over-predict the motion of the floating structure significantly 
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when the motion is dominant by the damping term. The over-estimation on the 

dynamic motion of floating structure in damping dominant region by diffraction 

potential theory causes the numerical model to be less accurate, and causes the 

hydrodynamic behaviour of floating structure difficult to predict by the numerical 

model in damping dominant region. 

 

 

The inaccuracy of the current numerical model causes higher design cost and 

consumes longer time during floating structure design process. To predict the 

hydrodynamic behaviour of the floating structure in damping dominant region, 

model experiment test can be a good solution.  However, the model experiment test 

is a costly and time consuming method to test the behaviour of floating structure.  

Therefore, the cost and time consumed to design the floating structure will increase 

because large amount of experiment test is required in estimating the motion of 

floating structure in damping dominant region. This is due to the weakness of the 

current numerical model in predicting the motion of floating structure in the damping 

dominant region. 

 

 

According to Kvittem et al. (2012), the diffraction potential theory can 

predict the hydrodynamic behaviour of large floating structure accurately. This is 

because the effect of wave diffraction is significant when the incident wave interacts 

with large floating structure.  When the motion of floating structure is dominant by 

the mass term or dominant by restoring force term, the motion of the floating 

structure estimated by the diffraction potential theory is close to the experiment 

result.  However, the viscous effect is ignored by the diffraction potential theory, 

causing the motion predicted by the theory at damping dominant region to become 

over-estimated significantly.  Based on the available literatures, the weakness of the 

diffraction potential theory as mentioned was also reported by Loken (1981) and Lu 

et al. (2011).  Loken (1981) found that the diffraction potential theory would over 

predict the motion response of floating structure in damping dominant region due to 

under prediction of radiation damping by the theory.  Besides, Lu et al. (2011) 

reported similar finding in their research when comparing the potential theory and 

viscous theory.  They found that the viscous theory mostly under-predicts the wave 
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force in the calculation while the potential theory over predicts the motion when the 

viscous effect is ignored in the approach of potential theory.  

 

 

Since the diffraction potential theory is accurate in most regions, except in the 

damping dominant region, this research proposed to develop the numerical model 

based on the theory. To improve the numerical model develop based on diffraction 

potential theory, the numerical model applies drag equation to predict the viscous 

effect acting on the floating structure because the viscous effect is ignored by the 

diffraction potential theory.  The drag equation is modified in this research.  So, The 

additional viscous damping and linearize drag force calculated by using the modified 

drag equation can be combined with the radiation damping and radiating wave force 

estimated by using diffraction potential theory.  The damping coefficients and the 

wave force estimated by both mathematical models are combined in the motion 

equation to calculate the dynamic motion of floating structure. Therefore, the motion 

of the floating structure when it is alone and when it is interacting with other 

structure was calculated by the new numerical model in this research to have a more 

accurate result regardless of the motion is dominant by mass term, restoring force 

term or damping term. 

 

 

From the improvement made to the numerical model, offshore industry stands 

to benefit substantially from the new proposed numerical model which combines the 

diffraction potential theory with the drag equation to estimate the motion of floating 

structure.  Through the improved the numerical model, the hydrodynamic behaviour 

of the floating structure can be predicted by numerical method with higher accuracy.  

As the motion of the floating structure in damping dominant region is important in 

designing the floating structure, the proposed numerical model is able to estimate the 

motion of floating structure with better accuracy.  The amount of over-predict in the 

motion of floating structure can be reduced by the new proposed method.  This 

proposed numerical model provides a better motion analysis method to the offshore 

industry and helps to reduce the cost and time consumed in designing a floating 

structure.  This target can be achieved by reducing the amount of experiment test 

required to test the hydrodynamic behaviour of the floating structure.   
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Improving the accuracy of the numerical model to predict the hydrodynamic 

behaviour of floating structure is crucial to increase the reliability of the numerical 

solution to analyse the motion floating structure.  The current numerical model is 

developed based on diffraction potential theory, which is accurate in predicting the 

motion of floating structure in most regions except the damping dominant region.  In 

this research, the alternative numerical model proposed includes the viscous effect 

which was ignored by diffraction potential theory in estimating the hydrodynamic 

behaviour of the floating structure.  Through this improvement, the proposed 

numerical model is able to estimate the motion of floating structure in all the regions 

of motion regardless of the motion is dominant by mass term, restoring force term or 

damping term.  This is because the under-estimation of the damping coefficient by 

the diffraction potential theory is improved by introducing the drag equation to 

predict the viscous damping which is ignored by the diffraction potential theory. 

 

 

 

 

1.3 Objective 

 

 

 To solve the problems mentioned in sub-chapter 1.2, three objectives of this 

research are listed as follow: 

 

 

i. To propose a new estimation method of RAO of a single floating structure 

using diffraction potential theory and drag equation. 

ii. To further propose the new method as mentioned in the first objective on 

estimation of RAO of the floating structure due to interaction with another 

structure using diffraction potential theory, Huygens principle, motions 

dissipate energy method and drag equation. 

iii. To verify the propose method by conducting motion experiment in basin tank. 
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1.4 Scope of Research 

 

 

i. To develop a method to simulate the motion behaviour of floating structures 

based on the diffraction potential theory. 

ii. To improve the accuracy of the proposed method to simulate the motion 

behaviour of floating structures in damping dominant region based on the drag 

equation. 

iii. To compare the accuracy of the proposed method to the established method in 

estimating the RAO of floating structures. 

iv. To simulate the RAO of the round shape FLNG in the in regular wave 

condition. 

v. To study the hydrodynamic behaviour of round shape FLNG in head sea 

condition. 

vi. To study the hydrodynamic behaviour of round shape FLNG in moderate sea 

state ocean condition. 

vii. To study the improvement on the accuracy of the floating structures’ RAO 

predicted by the proposed method as compared to the established method using 

motion experiment result. 

viii. To further develop the proposed method to simulate the effect of interaction 

between floating structures to the RAO of floating structures using the 

Huygens Principle and motion dissipate energy concept. 

ix. To simulate the RAO of round shape FLNG when the LNG carrier is arranged 

closer to the FLNG during offloading process using the proposed method and 

motion experiment test. 

x. To study the improvement of the accuracy of the predicted round shape 

FLNG’s RAO when it is interacting with LNG carrier by comparing the results 

from the proposed method and the established method using experiment results. 

xi. To study the effect of wavelength to RAO of round shape FLNG when the 

structure is interacting with other floating structures using the proposed method. 

xii. To study the influence of LNG carrier to the RAO of round shape FLNG by 

comparing the RAO of FLNG when it is alone and when FLNG interacts with 

LNG carrier.  
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1.5 Research Question 

 

 

To achieve the objectives of the research, the questions on the solution and 

factors required to consider so the target of this research can be achieved are stated in 

follow:   

 

 

i. What is the factor influence the motion of floating structure? 

ii. How the existing theories estimate the RAO of floating structure? 

iii. What is the weakness of existing theories in order to predict the RAO of 

floating structure? 

iv. How to develop a new method which can improve the accuracy of the 

numerical prediction on the RAO of floating structure? 

v. How to simulate the RAO of the round shape FLNG in the selected ocean 

environment? 

vi. What are the variables influence the motion of the floating structures when 

the structures are interacting between each other? 

vii. How to develop a new method which can estimate the effect of interacting 

between the floating structures to the RAO of floating structures? 

viii. What are the important factors must be considered in analyse the effect of 

interaction between floating structures to the RAO of floating structures? 

ix. How to collect the RAO data which shown the real motion of the round shape 

FLNG when it is interacting with wave? 

x. How to validate the proposed method and ensure it capability to apply in 

estimate the RAO of floating structure in selected environment condition?  

 

 

 

 

1.6 Significance of Study 

 

 

In this research, the 6 DoF RAO of new generation round shape FLNG were 

studied.  To estimate the RAO of the round shape FLNG accurately, this research has 

developed a method to simulate the RAO of the selected floating structure.  The 

proposed method is able to estimate the RAO of the floating structure within the 
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selected ocean environment condition where the FLNG operates.  The proposed 

method improves the accuracy of the simulation by reducing the amount of over-

prediction on the floating structure’s RAO in damping dominant region as compared 

to the result simulated by the existing established method.  A more accurate 

estimation of the RAO in damping dominant region is important for the floating 

structure which the motion natural frequency of the structure is among the ocean 

environment condition of the structures designed to operate.  Besides, the proposed 

method also improves the accuracy on simulate the RAO of floating structure when 

the structure is interacting with another floating structure in the motion damping 

dominant region.  When the structures are arranged nearby each other, accurate 

prediction of the RAO of the floating structures is important to ensure the safety of 

the structures.  

 

 

 

 

1.7 Organization of the Thesis 

 

 

This thesis consists of nine chapters.  The first chapter presents the overview 

discussion on the tasks conducted in this research.  The chapter discusses the 

objectives of this research and the contribution of the research to the topic.  The 

scope and the field of research are explained in this chapter to deliver the idea on the 

area of discussion in this thesis. 

 

 

Discussion on literature review is presented in Chapter 2.  The literature 

review focuses on the available methods to simulate the RAO of floating structures.  

The weaknesses and strengths of the existing methods were also discussed in the 

chapter.  Besides, the chapter includes the experimental study conducted by previous 

researches to study the motion of floating structures.  In this chapter, reviews on the 

current available FLNG or FPSO are conducted to study the advantages of the 

selected model as the case study in this research. 

 

 

In Chapter 3, the methodology of this research is presented.  The chapter 

explain the overall idea of the work conducted in the research.  Besides, this chapter 
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also help in guiding the reader to search for detail information of the methodology 

used in the research which presented in following Chapter 4 to Chapter 7.  The 

chapter started with presenting the work flow of the research.  The research flow 

chart is shown in this chapter to deliver overview of this research work conducted.  

After that, the discussion on the variables studied in this research and the process to 

collect the data which required for analyse in this research was explained.  The 

selected basic concepts used to develop the proposed method in this research are also 

introduced in this chapter.   

 

 

In this thesis, chapter 4 serves to explain the basic theories in developing the 

proposed method.  This chapter discusses the equations used to estimate the RAO of 

floating structure is developed based on the diffraction potential theory.  After that, 

this chapter also explained the concepts used to estimate the interaction effect due to 

the motion of floating structures.   

 

 

Chapter 5 explains the development of the proposed method.  The first part of 

Chapter 5 presents the modification on the motion equation which combined the 

diffraction potential theory explained in Chapter 4 with the linearized drag equation.  

The purpose of the modification is to improve the accuracy of the method to predict 

the RAO of floating structure.  The second part of Chapter 5 explains the 

mathematical equations developed to estimate the effect of interaction between 

floating structures to the RAO of each floating structure based on the concepts 

presented in Chapter 3 and Chapter 4. 

 

 

Chapter 6 explains the procedures of the proposed method to estimate the 

RAO of floating structure when the structure is alone and when the structure is 

interacting with the nearby floating structure.  This chapter also presents the 

numerical setup in this research to test the proposed method. The numerical setup in 

this chapter includes the meshing system and the software setup. 

 

 

Chapter 7 contains the setup of the motion experiment to generate the data 

used to validate the proposed method.  Besides, this chapter presents the selected 
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conditions of the model scale motion experiments.  Other than that, this chapter 

presents the procedures in processing the experiment data until the RAO tendencies 

of the selected Round Shape FLNG in each selected conditions is obtained.  The data 

analysis procedures explained in this chapter includes the mathematical model to 

transfer the measured data from measurement point to FLNG’s centre of gravity and 

the mathematical model used to transform the time domain data to frequency domain. 

 

 

Chapter 8 presents the RAO tendencies estimated by the proposed method, 

commercial code and experiments which are then tested in each selected condition.  

The comparisons were made by compared the RAO of the selected round shape 

FLNG predicted by proposed method to results predicted by established commercial 

software and the result from models experiments.  The comparisons are showing the 

validation of the proposed method and the improvement on the proposed method to 

estimate the RAO of floating structures.  The last part of this chapter discusses the 

influence of second floating structure which arranged nearby the round shape FLNG 

to the change of RAO tendencies of the round shape FLNG.  

 

 

In Chapter 9, the conclusion of the thesis explains the overall achievement in 

this research.  The capability of the proposed method is highlighted in this chapter by 

comparing it to the previous methods.  Finally, recommendations are raised up to 

discuss the future jobs of the research to further improve the proposed method in this 

research. 

 

 

 

 

1.8 Summary 

 

 

This chapter introduces the overall target of the research.  The background of 

this research and the objectives aimed to achieve in this research are also presented 

in this chapter.  Besides, the tasks conducted in this research are briefly discussed in 

this chapter.  The detail discussions on the tasks conducted in this research are 

presented in the remaining chapters of this thesis. 
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