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ABSTRACT 

A study of flutter of the UAV composite wing has been done by considering 

the aeroelasticity phenomenon which involves the dynamic instability of a structure 

which able to lead a catastrophic failure. To prevent any failure, various design effects 

and materials parameters of the wing structure for a composite UAV wing are being 

considered in the study as it able to give a significant effect towards the flutter.The 

flutter velocity can be obtained by deriving the equation from the binary wing model 

which governs by mathematical equation related to the effect of aerodynamic damping 

and stiffness as well as structural damping and stiffness. The most important 

parameters in this study is the heaving stiffness, 𝐾𝑢 and pitching stiffness, 𝐾𝜃 which 

is resulted from the derivation of the full aeroelastic equation of motion. The stiffness 

can be obtained by simulating or analysis of the wing structures in the finite element 

software, Abaqus/CAE 6.13-EF1 where the natural frequencies of the bending and 

torsional can be obtained. The equation of full aeroelastic motion can be solved by 

finding its eigenvalue from the MATLAB software by writing the script file. The 

flutter speed can be obtained from the intersection point of heaving and pitching 

frequency across the speed as well as at the point where the damping ratio is zero along 

the air speed. From the study, a sets of spar and ribs at certain location across the wing 

has been proves to produce a higher flutter velocity which is 162.31 m/s. 
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ABSTRAK 

Kajian tentang kibaran yang berlaku ke atas pesawat tanpa penumpang telah 

dijalankan dengan mengambil kira fenomena aeroelastisiti yang merangkumi 

ketidakstabilan dinamik terhadap struktur yang boleh membawa kepada kemalangan 

akibat dari kegagalan fungsi pesawat. Bagi mengelakkan sebarang kegagalan berlaku, 

pelbagai kesan reka bentuk dan parameter material struktur wing yang diperbuat dari 

komposit telah diambil kira didalam kajian ini. Kelajuan kibaran boleh didapati 

daripada persamaan penuh aeroelastik yang mengambil kira kesan daripada redaman 

dan ketegangan aerodinamik serta redaman dan ketegangan struktur. Antara parameter 

yang memainkan peranan penting di dalam persamaan penuh aeroelastik ialah 

ketegangan lenturan, 𝐾𝑢 dan ketegangan kilasan, 𝐾𝜃. Kedua-dua ketegangan ini  boleh 

diperolehi daripada analisis atau simulasi sayap pesawat di dalam perisian unsur 

terhingga, Abaqus/CAE 6.13-EF1 di mana kekerapan semulajadi lenturan dan kilasan 

boleh diperolehi. Persamaan penuh aeroelastik boleh diselesaikan dengan mencari 

nilai eigen dengan menggunakan perisian MATLAB yang merangkumi skrip file. 

Kelajuan kibaran kemudiannya boleh diperolehi dari titik persilangan antara 

kekerapan lenturan dan kekerapan kilasan terhadap kelajuan angin serta menggunakan 

titik di mana nisbah redaman adalah sifar. Berdasarkan kajian yang telah dijalankan, 

sebuah set struktur dalaman sayap pesawat telah dibuktikan mampu untuk 

menghasilkan kelajuan kibarang paling tinggi iaitu 162.31 m/s. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background of Study 

Aeroelasticity is the subject that describes the interaction between 

aerodynamic, inertia and elastic forces. From the Collar’s aeroelastic triangle in Figure 

1.1, the aerodynamic stability, structural vibrations and static aeroelasticity is a results 

from the interaction between two different types of forces. However, three forces are 

required for the dynamics aeroelasticity to occur. 

 

Figure 1.1: Collar’s aeroelastic triangle. 

Aeroelastic phenomena can be classified into static and dynamic. The static 

aeroelastic effects can also lead to a reduction in the effectiveness of the control 

surfaces and eventually to the phenomenon of control reversal.  
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Dynamic aeroelasticity on the other hand is concerned with the oscillatory 

effects of the aeroelastic interactions. A major area of interest in dynamic aeroelasticity 

is the potentially catastrophic phenomenon of flutter which involves two or more 

modes of vibrations from the coupling of aerodynamic, inertial and elastic forces 

(Wright & Cooper, 2007).  

For the past few decades, aeroelastic behaviour has been studied by a lot of 

researchers to prevent the catastrophic failure from happening and the results can be 

obtained from previous research work which covers a lot of aspects in providing the 

best method to predict flutter as well as providing the parameters which affect the 

flutter behaviour. 

1.2 Problem Statement 

Due to the high strength to weight ratio, composites materials has been used in 

the aircraft designs (Chang, Yang, Wang, & Wang, 2010; Georgiades & Banerjee, 

2016; Guo, Banerjee, & Cheung, 2003). One of the advantages of using composites is 

the ability to design the material properties according to the orientation, which can be 

useful in overcoming aeroelastic problems such as divergence, flutter and gust 

response. Various researches have been carried out to understand the effects of 

composites laminate configuration towards flutter, especially the ply orientation. 

There is however scarce information on the effects of composites layout such as 

internal structure configuration towards flutter characteristics.  

As mentioned earlier, flutter may lead to the catastrophic failure if the aircraft 

does not have stiffer structures. Therefore, this study covered the parametric analysis 

on the material and the factors which affect the flutter for swept wing of composites 

UAV. 
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1.3 Objectives 

The objective of this work is to understand the effects of the various spar and 

rib design configurations and materials parameters on the flutter characteristics of a 

composite UAV wing structure. 

1.4 Scope of Study 

This work used UTM CAMAR unmanned aerial vehicle (UAV) wing as a case 

study and considered only the major internal structural components namely the spars 

and the ribs and neglecting other additional structures such as stringers and others. 

Combinations of up to two spars and two ribs placed at various positions were 

considered. The material used for the study was limited to carbon-epoxy composites 

as used in UTM CAMAR. 

1.5 Overview of the Study 

The study of the flutter analysis begin by discussing the phenomenon of the 

flutter in Chapter 1, as well as the objectives, problem statement and the scope of the 

study. 

The detailed literature review is discussed in Chapter 2, where the initial 

derivation of the flutter equation is laid out and the basic concept to apply the flutter 

analysis which is binary aeroelastic model and the final full aeroelastic motion 

equation are shown in the chapter. 

The methodology of the study is discussed in Chapter 3, where the step by step 

of solving and analysing the flutter throughout the study starting from the literature 

review until obtaining the flutter velocity through the MATLAB script file, 

cama_20kg.m are discussed in the chapter. 
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In Chapter 4, the flutter analysis process is outlined by discussing the initial 

step of starting the analysis as well as the constant parameter and the physical 

parameters of the case studies which is UTM CAMAR 20 kg. 

Later, in Chapter 5, the results of each of the topology optimisation and the 

parametric studies are discussed by plotting and tabulating the results. 

The conclusion and recommendation of future studies are discussed in Chapter 

6 by relating the parameters that is being set in the study with the results obtained. 
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