
TEST CASE GENERATION OPTIMIZATION USING COMBINATION

PREDICTION MODEL AND PRIORITIZATION IDENTIFICATION FOR

COMPLEX SYSTEM RETESTING

NURUL SHAZANI BINTI SAHIDAN

UNIVERSITI TEKNOLOGI MALAYSIA

TEST CASE GENERATION OPTIMIZATION USING COMBINATION

PREDICTION MODEL AND PRIORITIZATION IDENTIFICATION FOR

COMPLEX SYSTEM RETESTING

NURUL SHAZANI BINTI SAHIDAN

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Masters in Science (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

APRIL 2017

lll

All praises to Allah the Almighty for

the strengths and His blessing in completing this thesis.

Specially dedicated to;

my beloved husband Mohd Farhan bin Ahmad

my adorable daughter Nur Jannah Humairah

my wonderful parents Sahidan Zakaria and Noorhayah Che Halim

my understanding parents in law Ahmad and Jamilah

my precious siblings Shahida, Shahrin, Shafizan, Shahanim, Shahiruddin, Shakirin

iv

ACKNOWLEDGEMENT

“In the name of Allah, the most Gracious and the most Merciful”

This thesis would have not been completed without the help and splendid support

from many individuals and teams. Firstly, my sincere gratitude goes to the backbone of my

research, my supervisors, Dr. Hishammuddin Asmuni and Dr. Muhamad Razib Othman for

their excellent supervision, knowledge, belief, patience and interest in the work and for

pushing me farther than I thought I could go. To my beloved parents, thank you for always

being there and never fail to give me words of encouragement. Your endless support is

making me for who I am today. To my dearest colleagues and research-mates, I am thankful

for the friendship, supportive comments and ideas in reviewing each other’s works and also

fun times throughout last three and half year of this study. To my precious close friends and

loved ones, thank you for helping me surviving all the stress and not letting me giving up. To

everyone who has consistently giving support and advice directly or the other way round,

including the team of Software Engineering Research Group (SERG) and GATES IT

Solutions Sdn. Bhd., I refer my appreciation. My greatest thanks should also credit to all

lecturers at the Faculty of Computing, Universiti Teknologi Malaysia (UTM) for their

understanding and support. Last but not least, I appreciate the financial support from the

GATES IT Solutions Sdn. Bhd. under GATES Scholar Foundation (GSF) and Malaysian

Ministry of Higher Education under MyMaster funds.

v

ABSTRACT

Nowadays, the retesting process has become crucial in assessing the

functionality and correctness of a system in order to ensure high reliability. Although

many techniques and approaches have been introduced by researchers, some issues

still need addressing to ensure test case adequacy. To determine test case adequacy, it

is crucial to first determine the test set size in terms of number of test cases to prevent

the system from failing to execute. It is also crucial to identify the requirement

specification factor that would solve the problem of insufficiency and scenario

redundancy. To overcome this drawback, this study proposed an approach for test case

generation in the retesting process by combining two models, which would reveal

more severe faults and improve software quality. The first model was enhanced

through determining the test case set size by constructing a predictive model based on

failure rate using seed fault validation. This model was then extended to requirement

prioritisation. Next, it was used to schedule the test cases that focus on Prioritisation

Factor Value of requirement specifications. The Test Point Analysis was used to

evaluate test effort by measuring level of estimation complexity and by considering

the relationship among test cases, fault response time, and fault resolution time. This

approach was then evaluated using complex system that called as Plantation

Management System as a project case study. Data of Payroll and Labour Management

module that applied in 138 estates been collected for this study. As a result, the test

case generation approach was able to measure test effort with High accuracy based on

two combination model and it achieved a complexity level with 90% confidence

bounds of Relative Error. This result proves that this approach can forecast test effort

rank based on complexity level of requirement, which can be extracted from early on

in the testing phase.

vi

ABSTRAK

Pada masa ini, proses pengujian semula adalah dianggap penting dalam menilai

fungsi dan ketepatan sesuatu sistem bagi memastikan tahap kebolehpercayaan yang

tinggi. Walaupun pelbagai teknik dan pendekatan telah diperkenalkan oleh para

penyelidik sebelum ini, terdapat beberapa isu yang masih perlu ditangani untuk

memastikan kecukupan kes ujian. Bagi menentukan kecukupan kes ujian, perkara

pertama yang perlu dipastikan adalah menentukan kecukupan saiz kes ujian, iaitu

bilangan kes-kes ujian yang diperlukan untuk mencegah kegagalan sesuatu sistem.

Selain itu, perkara kedua yang perlu diberi perhatian adalah mengenal pasti faktor

keperluan spesifikasi yang boleh membantu menyelesaikan masalah kekurangan dan

mengatasi masalah lebihan senario. Oleh itu, bagi mengatasi kelemahan-kelemahan

tersebut, kajian ini mencadangkan satu pendekatan baharu bagi menjana kes ujian

dalam proses pengujian semula dengan menggabungkan dua buah model. Model

pertama dipertingkatkan melalui penentuan saiz kes ujian dengan membina model

ramalan berdasarkan kadar kegagalan dengan menggunakan benih kesalahan

pengesahan. Model ini kemudiannya diperluas kepada keutamaan keperluan,

kemudian digunakan untuk menjadualkan kes-kes ujian dengan menggunakan nilai

faktor keutamaan bagi spesifikasi keperluan. Ujian Analisis Titik juga telah digunakan

bagi mengukur tahap anggaran kerumitan dan mempertimbangkan hubungan antara

kes-kes ujian, masa tindak balas kerosakan, dan masa penyelesaian kerosakan.

Pendekatan ini kemudian dinilai menggunakan sistem yang rumit, dikenali sebagai

sistem pengurusan ladang bagi kajian kes projek. Data berkaitan modul pengurusan

gaji dan tenaga kerja yang digunakan di 138 ladang telah dikumpul untuk digunakan

dalam kajian ini. Hasil daripada kajian ini, pendekatan penjanaan kes ujian dapat

mengukur kesungguhan ujian dengan ketepatan yang tinggi berdasarkan gabungan dua

model ini dan mencapai tahap kerumitan dengan 90% batas keyakinan Ralat Nisbi.

Keputusan ini membuktikan bahawa pendekatan tersebut boleh digunakan untuk

meramal taraf ujian kesungguhan berdasarkan tahap kerumitan keperluan, yang boleh

diambil kira dari awal semasa dalam fasa pengujian.

vii

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENTS iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES xi

LIST OF FIGURES xiii

LIST OF SYMBOLS xv

LIST OF ABBREVIATIONS xvi

1 INTRODUCTION

1.1 Background 1

1.2 Challenges in Modeling Test Case Generation 3

1.3 Current Method in Modelling the Test Case

Generation

1.4 Problem Statement 6

1.5 Objectives of the Study 7

1.6 Scope of the Study 8

1.7 Significance of the Study 8

1.8 Organization of the Thesis 9

TABLE OF CONTENTS

viii

16

19

LITERATURE REVIEW

2.1 Introduction 11

2.2 Understanding of Complex System 11

2.3 Mapping Test Case using Requirements

Traceability

2.4 Structuring Test Cases Size Using Prediction

Model

2.5 Identifying Test Case using Prioritization Model 24

2.6 Evaluation of Test Effort Estimation 30

2.6.1 Test Point Analysis 33

2.8 Summary 36

RESEARCH METHODOLOGY

3.1 Introduction 37

3.2 Research Framework 38

3.3 Research Process 39

3.3.1 Test Predictive Model 39

3.3.1.1 Retesting Process 40

3.3.1.2 Test Case Predictive Process 44

3.3.1.3 Adapting the Test Predictive
48

Model for Seed Fault Analysis

3.3.2 Test Prioritization Model 52

3.3.2.1 4FTC Prioritization Factor
53

Implementation

3.3.2.2 Prioritization Factor Value (PFV) 55

3.3.2.3 4FTC Validation Metrics 56

3.3.2.4 Acceptable Test Case Size 57

3.3.3 Test Effort Estimation 58

3.3.3.1 Test Point Analysis 59

3.4 Case Study Selection and Data Source 61

3.5 Evaluation Metrics 63

3.6 Summary
64

2

3

IX

TEST PREDICTIVE MODEL: UNDER/OVER

4 PREDICTION OF TEST CASE SIZE

ESTIMATION

4.1 Introduction 65

4.2 Implementation in Case Study 66

4.3 Discussion based on implementation 69

4.3.1 Conservative versus Liberal predictions 70

4.3.2 Functionality with Multiple Faults 71

4.4 Summary 72

SELECTION AND IDENTIFICATION OF

5 PRIORITIZATION FACTOR FOR TEST CASE

OPTIMIZATION

5.1 Introduction 73

5.2 Case Study Implementation and Discussion 74

5.2.1 4FTC Comparative Analysis 76

5.3 Summary 78

EVALUATION OF TEST EFFORT ESTIMATION

BASED ON RANK OF COMPLEXITY

6.1 Introduction 79

6.2 Historical Data Process 80

6.3 Comparative Analysis with Diffrent Approach 80

6.3.1 Evaluation Test Effort for Random

Model

6.3.2 Evaluation Test Effort for Predictive

Model

6.3.3 Evaluation Test Effort for Combination

of Predictive and 4FTC Model

6.4 Comparison Analysis and Discussion 86

6.4.1 Rank of complexity level for test effort
88

estimation

6.5 Summary 89

81

82

82

6

x

7 CONCLUSION

7.1 Concluding Remarks 90

7.2 Contributions of the study 92

7.3 Future Works 93

REFERENCES 95

APPENDIX 99

xi

TABLE TITLE PAGE

2.1 Features of ERP 13

2.2 Summary of complex system 15

2.3 Summary of RT Classification 18

2.4 Summary of predictive analytics model 23

Stakeholders that involve in prioritization
2.5 28

techniques

Summary of Prioritization algorithm’s
2.6 29

characteristics

2.7 Evaluation of complexity level of test estimation 31

2.7 Summary of test effort estimation 35

3.1 Term input means for test case 42

3.2 Type of Reported Bugs 43

3.3 Status and resolution of bugs 43

3.5 Severity Value 56

3.6 Test case example 62

3.7 Evaluation Metrics 63

4.1 Defect error of Labour and Payroll 66

4.2 Fault failures rate of PMS system 67

4.3 Probability of fault based on fault rate 68

4.4 Fault Detection Effectiveness 68

4.5 Summary of seed fault analysis using AppPerfect 69

4.6 Confidence levels at which null hypotheses (H0) 71

LIST OF TABLES

can be rejected.

4.7 Summary prediction of test case size 72

5.1 List of requirements after assign factor priority 74

5.2 TSFD using 4FTC for UAT phase 75

6.1 Service Level Agreement (SLA) process time 80

6.2 Data validation of test effort for random model 83

6.3 Data validation of test effort for predictive model 84

6.4
Data validation of test effort for combination of

predictive and 4FTC model
85

6.5 Summary of comparison of model criteria value 86

6.6 Complexity Level 88

xill

FIGURE TITLE PAGE

1.1 Significance of the study 9

2.1 Complex system characteristic 12
2.2 ERP advantages and disadvantages 14

2.3 Relation of classification of RT 17

2.4 General approaches for predictive model 20

Relationship between training, optimism and true
2.5 22

prediction error.

2.6 The structure of the next release 25

2.7 Illustration of Test Effort Cycle Estimation 32

3.1 Research Framework 38

3.2 Test Case Prediction Process 40

3.3 Test case selection process flow 41

3.4 Flow diagram for test execution 43

3.5 Bug tracking process 44

3.6 Legitimate input domain 49

Multi-stakeholders access control for Plantation
3.7 51

System

3.8 4FTC Prioritization Process 52

3.9 Test Cycle in PMS execution 62

5.1 Percentage of TSFD (4FTC versus Random) 77

6.2 Linear Regression Analysis of three data evaluation 87

LIST OF FIGURES

xv

LIST OF SYMBOLS

H - High

L - Low

M - Medium

VH - Very High

VL - Very Low

xvi

LIST OF ABBREVIATIONS

4FTC - Four Factor Test Case

AE - Accuracy Estimation

CP - Customer-assigned priority

CPU - Central Processing Unit

CR - Change Request

DR - Defect Request

DRL - Defect Request Logical

DRS - Defect Request Syntax

ERP - Enterprise Resource Planning

FPA - Function Point Analysis

IC - Developer-Perceived Implementation Complexity

IT - Incomplete Task

LSE - Least Square Estimation

MLE - Maximum Likelihood Estimation

MRE - Mean Relative Error

MSF - Mean Square Faults

NC - No Category

PC - Process Configuration

PFV - Prioritization Factor Value

PMS - Plantation Management System

QC - Quality Control

RE - Relation Error

RT - Requirement Traceability

xvii

RV - Requirement Volatility

SLA - Service Level Agreement

TPA - Test Point Analysis

TSFD - Total Severity Fault Detection

UAT - User Acceptance Test

CHAPTER 1

INTRODUCTION

1.1 Background

Software testing is a form of investigation that is conducted to provide

stakeholders with information about the quality of the product or service under test.

Boehm et al. (2003) states that software testing can also provide an objective,

independent view of the software to allow the business to appreciate and understand

the risks of software implementation. Test techniques include the process of

executing a programme or application with the intent of finding software bugs (errors

or other defects), and to verify that the software product is fit to use. In this part, the

software tester and business analyst play important roles to make sure all features of

the application given by the end user works correctly. Usually, the software tester

will execute manual testing to detect any defects in the system. To ensure

completeness of testing, the tester often follows a written test plan that leads them

through a set of important test cases. With this informal approach, the tester does not

follow any rigorous testing procedure, but rather explores the user interface of the

application using as many of its features as possible, and using information gained in

prior tests to intuitively derive additional tests. The success of exploratory manual

testing relies heavily on the domain expertise of the tester, because a lack of

knowledge will lead to incompleteness in testing.

2

Large-scale engineering projects that rely on manual software testing follow a

more rigorous methodology in order to maximise the number of defects that can be

found. A systematic approach focuses on predetermined test cases and generally

involves steps such as prediction of test case size and prioritisation of test case

running number. A major issue when dealing with incomplete testing is the shortage

of taxonomies to achieve a satisfactory level of information about defects in the

requirements phase. Thus, it can be concluded that no matter how good the

subsequent phases are, the quality of the requirements phase will still be the main

determinant that affects the overall quality of the subsequent phases, including the

testing phase of the software development process. The Software Requirement

Specification (SRS) document defines the capabilities of the provided software

(Alshazly et al., 2014). Therefore, if an analyst or a developer does not share the

same understanding regarding the requirements, the outcome of the development

process will not satisfy customer needs (Gutierrez et al., 2004).

Besides that, the software tester usually generates the test suites based on a

coverage criterion that is given without considering the issue of ensuring that parts of

the model are exhaustively exercised. Implementation of impracticable testing will

allow errors to occur when generating many or way too many test cases in a set of

test suites. This situation leads to a decrease in the likelihood of selected test suites

uncovering errors in the implemented system. For efficiency of the testing process,

the goal is to choose test cases from the test suite in order to establish the correctness

of the modification (Gutierrez et al., 2004). Such test suite reuse, in the form of

retesting, takes up as much as one-half of the cost of software maintenance (Boehm

et al., 2003). For this reason, researchers have considered various techniques to

reduce the cost of the retesting process. Retesting is used to verify alternations and to

ensure that the changes have not corrupted other functionalities of the software (Peng

et al, 2014). Logically, the increment in test cases size will lead to increased project

size and time. Due to this reason, project development will face difficulty in

predicting and managing time (Xie et al, 2003). It will also become the main

problem to address when the testing deals with a vast and complex system. As is

generally known, the test cycle is an important factor in testing; late changes or

additions to function at the final moments of the testing phase can incur high costs in

3

the execution process. Therefore, intelligent planning and decision-making must be

thoroughly done throughout the generation of the test case in order to achieve

optimisation.

In addition, the test cases must also be prioritised to the best new positions

based on software requirement specifications, so as to reduce the need for additional

test efforts. These techniques let testers order their test cases so that the test cases

with the highest priority are executed earlier in the retesting process (Peng et al.,

2014). Besides that, test maturity has also become a significant factor that effects

project size. Test maturity is the process that is done to ensure a system achieves

stability. In the progress of reaching stability, changes in the function will keep

occurring in the project development life cycle and this can increase the test

execution phase and time pressure (Elbaum et al, 2001).

1.2 Challenges in Modelling Test Case Generation

Even with the current technology and sophisticated tools for generating a test

case for testing areas nowadays, there are still issues and challenges that the

researcher needs to address in order to reduce test efforts and save time and cost.

Techniques like root cause analysis and orthogonal defect classification are some of

the commonly used practices.

Firstly, there is a significant challenge in identifying the adequate test case

size. The number of test case size must be taken into consideration when dealing

with system testing. The application of a few test cases or overdrawn test cases can

result to inaccuracy rate of fault detection. As a consequence, the assumption for the

test case size is important for improving the ability of detecting the fault, thus

reducing the cost and time for the retesting process. There are some defects that

4

affect the option selection of test case size, which is due to lack of knowledge on the

part of the tester in defining multiple scenarios when dealing with the requirement

phase or indequate testing executed by the internal user.

The second challenge involves planning for the test cases to be executed to

achieve the performance goal. The important of increasing the performance goal can

be done by producing high rates of fault detection in the system. With this, when the

test case is executed based on complexity, the fault can be detected at the earliest

time in the testing phase (Krishnamoorthi & Sahaaya 2009). The best way to assist

the testing process is by prioritising its functionality based on the requirement

criteria. Prior planning of prioritisation is one of the test strategies that contribute to

improving the rate of fault detection with the aim of increasing the performance and

bettering the quality in the testing phase (Boehm et al., 2003). The idea of this

technique is to release the test case with higher priority so it is executed first, which

is then followed by the lowest priority test case. The level of priority is based on the

complexity of the requirement. Since test case prioritisation techniques do not

discard test cases, the drawbacks of test case minimisation techniques can be

avoided.

Last but not least, approach of generating the test cases can also become a

major challenge, particularly in an effort to increase software reliability. Software

reliability is the failure probability of the software operation. The lower the

percentage of failure of the system, the higher the reliability of the product (Lo &

Huang 2006). The important aspects that need to be consider an identification of

measures, formulation of theories, capturing of historical data and assessment of how

effective those effort estimation models in order to achieve realistic effort estimates

for the successful management of software development

5

1.3 Current Method in Modelling Test Case Generation

In general, the current methods for test case generation can be categorised

into three: requirement traceability, probabilistic estimation, and multiple

performance metrics.

a) Requirement traceability is the process of mapping between requirement and test

cases that will be generated. Practically, test cases are used to demonstrate the

flow of the requirement provided by the client. It will be difficult for testers to

determine whether or not the requirement is adequate for testing if the test cases

have no connection to the individual requirement (Vaysburg, 2001). Traceability,

as introduced by Gotel et al. (1994), has two different criteria, which are (pre-

RS) traceability and (post-RS) traceability. Both represent the encompassing

solution and provide the basic framework to illustrate the nature of the issue. The

authors successfully proved that poor requirement traceability as a widely

reported problem. Since traceability is an important characteristic

(Krishnamoorthi and Sahaaya Arul Mary, 2009) and end-to-end traceability is

derived from software requirements, test cases and their associated defects in

detecting the most severe faults must be discovered at the earliest possible

moment in the testing life cycle.

b) Probabilistic estimation is the result of using a retesting model and is used to

'predict'/estimate missing or out-of-sample y-values, where y is defined as the

dependent variable. In practice, it is very difficult to estimate failure rates with

such accuracy. Therefore, Debroy and Wong (2011) introduced the idea of

predicting the defect based on historical data. Observation of the failure rates was

originally based on the entire set of available test cases against a faulty version of

a programme. Historical data can be applied in the requirement specifications by

identifying the failure in cumulative number when the test cases are run.

c) The validation metrics measures an organisation's activities and performance. In

project management, validation metrics is used to assess the health of the project

and consists of the measuring of seven criteria: safety, time, cost, resources,

6

scope, quality, and actions (Neville, 2008). In testing, quality becomes a great

concern before a product is released to the customer. One criticism of

performance metrics is that the value of information is computed using

mathematical methods based on historical data that have been collected from an

industrial study.

1.4 Problem Statement

The problem in representing modelling of the test case generation,

specifically in the retesting process, is described as follows:

“Given a large and complex system that has issues regarding budgetary cost and time

in testing effort, the challenge is to predict test case size in terms of the number of

test cases that might suffer from the redundancy process. Also, to prioritise test

planning that can detect the most severe faults at the earliest moment in the testing

life cycle. Lastly, the method must be able to measure the test effort based on

complexity level with a high prediction capability and yielding fairly accurate

results.”

The first challenge is related to insufficient user story for the testing

execution when generating the test cases. Thus, this study aims to predict the test

case size of the test cases. Test case size can greatly impact the budgeting of cost and

time in testing if testers underestimate the prediction of test case size. Hence, the

relationship between test case size and fault detection are both taken into

consideration in this study. Poor fault detection will occur if too few test cases are

generated and the use of too many test cases might incur expensive cost and result in

time constraints.

The second challenge involves no interdependencies between user

requirements and their prioritisation based on their relative ranking or grouping on a

7

specified criterion or criteria that may suffice. The current requirements for

engineering techniques for prioritisation of software requirements implicitly assume

that each user requirement will have an independent and symmetric impact on user

satisfaction. For example, it is assumed that implementing a high-priority user

requirement will positively impact his/her satisfaction and not implementing a high-

priority user requirement will negatively impact his/her satisfaction. For this reason,

this study aims to generate the test case based on requirement priority collected from

the stakeholders themselves. The factor with high value is recognised as having a

complex requirement that must be prioritised in order to increase test efficiency.

The third challenge is the measurement of effort without using any approach

in order to estimate effort level. It is important to estimate level of effort to increase

the reliability and quality of the product. This study therefore determines the level of

test effort based on time lag from the detection and correction of faults that occur in

the system. In actual fact, the time taken for bug correction will become shorter if the

test effort focuses more on the allocation between the detection and correction of

faults. However, in the development life cycle, it is nearly impossible to make the

system bug-free but attempts by the developer to reduce the percentage of fault

detection will ensure a high reliability for the software.

1.5 Objectives of the Study

The goal of this research is to develop an approach for test case generation for the

retesting process using a predictive and prioritisation model to reveal more severe

faults and to improve customer-perceived software quality. Therefore, there are three

objectives of this study that need to be achieved:

i. To estimate the optimum test case size required to detect the faults in the

system

ii. To prioritise test cases based on the requirement specification to increase test

effectiveness

iii. To evaluate the test effort and assess its effectiveness by implementing an

industrial case study

1.6 Scope of the Study

In order to achieve the objectives stated, the limitations below bind the scope of this

study:

a) This study focuses on improving the test case optimisation that can reduce the

time and cost for the retesting process.

b) Test prediction is applied to assess the optimisation of the test case based on

669 test case sizes.

c) Test prioritisation is integrated with requirement specifications to determine

the adequate test planning before retesting is executed.

d) A Plantation Management System (PMS) that focuses on the labour and

payroll module is used in this study to demonstrate the proposed model.

e) Historical data from the User Acceptance Test of the PMS system are taken

into consideration for the evaluation phase of this study.

f) The test effort is evaluated via 37 test suites with 651 fault detections in the

system.

8

1.7 Significance of the Study

The significance of this study can be divided into three different categories,

which are: (i) System performance; (ii) Software tester; and (iii) In-house software

organisation. The benefit of these respective categories is simplified in Figure 1.1:

9

Figure 1.1 Significance of the study

1.8 Organisation of the Thesis

This thesis is organised into seven chapters. A brief description of each chapter is

given as follows:

i. Chapter 1 defines the challenges, problems, current methods, objectives,

scope, and significance of the study.

ii. Chapter 2 reviews the main issues of interest, which include requirement

traceability, test prediction model, test case prioritisation, and test effort

estimation techniques.

iii. Chapter 3 presents the design of the computational method that supports the

objectives of the study. This includes the research framework, data collection,

and instrumentation and analysis.

iv. Chapter 4 describes the scheme for developing a prediction model to estimate

the reliability of the retesting process and to determine the test case size using

failure rate so as to improve fault detection in the system.

v. Chapter 5 discusses the implementation of the test case prioritisation model

by considering four factors of requirement complexity.

vi. Chapter 6 evaluates the test effort based on fault detection and correction

model by showing the relationship between the flow of test cases, fault

10

response time, and fault resolution time, which are demonstrated using three

types of comparative analyses.

vii. Chapter 7 draws the overall conclusions from the obtained results and

presents the contributions of the study as well as recommends potential

directions for future study.

95

REFERENCES

Altinel, I. K., Sciences: Profiles A General Software Testing Model Involving,

(2001). Probability in the Engineering and Informational Sciences, 15,519-533

Amasaki, S., Yokogawa, T. (2012). A study on predictive performance of regression-

based effort estimation models using base functional components. Lecture Notes

in Computer Science (Including Subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 7343 LNCS, 350-354.

Anand, S., Burke, E. K., Chen, T. Y., Clark, J., Cohen, M. B., Grieskamp, W.,

McMinn, P. (2013). An orchestrated survey of methodologies for automated

software test case generation. Journal o f Systems and Software, 86(8), 1978­

2001.

Averous, J. (2012). Large Complex Projects. LNCS 7343, 350-354,

Calzolari, F., Tonella, P., Antoniol, G. (2001). Maintenance and testing effort

modeled by linear and nonlinear dynamic systems. Information and Software

Technology, 43(8), 477-486.

Chikh, A., Aldayel, M. (2012). A new traceable software requirements specification

based on IEEE 830. International Conference on Computer Systems and

Industrial Informatics, ICCSII2012. New York, USA. pp. 301-307

Catelani, M., Ciani, L., Scarano, V. L., Bacioccola, A. (2011). Software automated

testing: A solution to maximize the test plan coverage and to increase software

reliability and quality in use. Computer Standards & Interfaces, 33(2), 152-158.

Debroy, V., & Wong, W. E. (2011). On the estimation of adequate test set size using

fault failure rates. Journal o f Systems and Software, 84(4), 587-602.

Fazlalizadeh, Y., Khalilian, A. (2009). Incorporating Historical Test Case

Performance Data and Resource Constraints into Test Case Prioritization. Tests

and Proofs: Third International Conference, TAP 2009, Zurich 43-57.

96

Gotel, O. C. Z., Finkelstein, A. C. W., Sw, L. An analysis of the requirements

traceability problem (1994).Journal Software Engineering & Applications. 3,

869-874.

Hassouna, A., Tahvildari, L. (2010). An effort prediction framework for software

defect correction. Information and Software Technology, 52(2), 197-209.

Huang, R., Chen, J., Towey, D., Chan, A. T. S., & Lu, Y. (2015). Aggregate-strength

interaction test suite prioritization. Journal o f Systems and Software, 99, 36-51.

Jiang, B., Chan, W. K. (2015). Input-based adaptive randomized test case

prioritization: A local beam search approach. Journal o f Systems and Software,

105, 91-106.

Kapur, P. K., Goswami, D. N., Bardhan, A., Singh, O. (2008). Flexible software

reliability growth model with testing effort dependent learning process. Applied

Mathematical Modelling, 32(7), 1298-1307.

Kvarnstrom, B. (2008). Traceability Methods for Continuous Processes.

Environmental Management. 1402-1757

Kavitha, R., Kavitha, V. R., Suresh Kumar, N. (2010). Requirement based test case

prioritization. 2010 International Conference on Communication Control and

Computing Technologies. Madurai, India 826-829.

Krishnamoorthi, R., Sahaaya Arul Mary, S. (2009). Factor oriented requirement

coverage based system test case prioritization of new and regression test cases.

Information and Software Technology, 51(4), 799-808.

Law, C. C. H., Chen, C. C., Wu, B. J. P. (2010). Managing the full ERP life-cycle:

Considerations of maintenance and support requirements and IT governance

practice as integral elements of the formula for successful ERP adoption.

Computers in Industry, 61(3), 297-308.

Lin, C.-T., Huang, C.-Y. (2008). Enhancing and measuring the predictive capabilities

of testing-effort dependent software reliability models. Journal o f Systems and

Software, 81(6), 1025-1038.

Lo, J.-H., Huang, C.-Y. (2006). An integration of fault detection and correction

processes in software reliability analysis. Journal o f Systems and Software,

79(9), 1312-1323.

Lunn, K., Sixsmith, A., Lindsay, A., Vaarama, M. (2003). Traceability in

requirements through process modelling, applied to social care applications.

Information and Software Technology, 45(15), 1045-1052.

97

Mader, P., Egyed, A., Maeder, P. (2012). Assessing the effect of requirements

traceability for software maintenance. IEEE International Conference on

Software Maintenance, Austria, 171-180.

Marco, L. (2014). Security In Large, Strategic And Complex Systems. First

International Workshop on Signal Processing for Secure Communications

(SP4SC-2015), 25 August 2015, Rome. pp 13-18.

Matende, S., Ogao, P. (2013). Enterprise Resource Planning (ERP) System

Implementation: A Case for User Participation. Procedia Technology, 9, 518­

526.

May, J., Dhillon, G., Caldeira, M. (2013). Defining value-based objectives for ERP

systems planning. Decision Support Systems, 55(1), 98-109.

Morgenshtern, O., Raz, T., Dvir, D. (2007). Factors affecting duration and effort

estimation errors in software development projects. Information and Software

Technology, 49(8), 827-837.

Peng, R., Li, Y. F., Zhang, W. J., Hu, Q. P. (2014). Testing effort dependent software

reliability model for imperfect debugging process considering both detection

and correction. Reliability Engineering & System Safety, 126, 37-43.

Rempel, P., Lehnert, S., Kuschke, T., Farooq, Q. U. A. (2013). A Framework for

Traceability Tool Comparison. Softwaretechnik-Trends, 32(3), 6-11.

Salem, A. (2010). A Model for Enhancing Requirements Traceability and Analysis.

International Journal o f Advanced Computer Science and Applications, 1(5),

14-21.

Shahamiri, S. R., Kadir, W. M. N. W., Ibrahim, S., & Hashim, S. Z. M. (2011). An

automated framework for software test oracle. Information and Software

Technology, 53(7), 774-788.

Sharma, A., Kushwaha, D. S. (2012). Estimation of Software Development Effort

from Requirements Based Complexity. Procedia Technology, 4, 716-722.

Simao, A., Petrenko, A. (2011). Generating asynchronous test cases from test

purposes. Information and Software Technology, 53(11), 1252-1262.

Srikanth, H., Banerjee, S., Williams, L., Osborne, J. (2014). Towards the

prioritization of system test cases. Software Testing, Verification and

Reliability, 24(4), 320-337.

Srikanth, H., Drive, T. P., Cohen, M. B (2002). Reducing Field Failures in System

Configurable Software: Cost-Based Prioritization. Software Testing,

98

Verification and Reliability, 320-337

Srikanth, H., Williams, L (2000). Requirements-Based Test Case Prioritization.

Software Testing, Verification and Reliability, 101-103

Srikanth, H., Banerjee, S. (2012). Improving test efficiency through system test

prioritization. Journal o f Systems and Software, 85(5), 1176-1187.

Sundaram, S. K., Hayes, J. H., Dekhtyar, A., Holbrook, E. A. (2010). Assessing

traceability of software engineering artifacts. Requirements Engineering, 15(3),

313-335.

Temberger, M. I., Kovacic, A. (2008). The Role of Business Process Modelling in

ERP Implementation Projects. In Tenth International Conference on Computer

Modeling and Simulation. Cambridge, UK, 1-3 April 2008, pp. 260 - 265.

Zisman, A., Spanoudakis, G., Perez-Minana, E., & Krause, P. (2003). Tracing

Software Requirements Artefacts. The 2003 International Conference on

Software Engineering Research and Practice (SERP’03). 2003. Las Vegas,

(August 2015), 1-7.

