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ABSTRACT 

Vortex-Induced Vibration (VIV) is a common phenomenon that occurred in 

the oil and gas industry and become one of the main concerns for the engineers while 

designing the riser system.  Thus, this research represents the analysis of the vortex-

induced motion of the circular cylindrical by using the Computational Fluid 

Dynamics (CFD) ANSYS CFX.  The simulation was carried out in two-dimensional 

with the stationary condition.  The bare cylinder was used as the reference for this 

research while the graph Strouhal number versus Reynolds number as the validation.  

The validation by using the Strouhal number is the common practice for the 

stationary circular cylinder simulation and Strouhal frequency obtained from this 

research was St ≈ 0.2. The simulation process was executed by using the ANSYS 

CFX Solver to simulate the cylinder and to identify the vortex shedding and also its 

magnitudes.  The turbulent model used in this simulation is Detached Eddy 

Simulation and the vortices created at the back of the cylinder as well as the flow 

separation can be monitored through post-processor.  Generally, when the fluid flow 

passed through the bluff body, it will excite by the forces and caused the vortices 

shed.  These vortices will separate periodically asymmetrically from either side of 

the body caused the time varying non-uniform pressure distribution around it.  This 

non-uniform pressure will create in both inline and transverse to the flow.  By having 

the idea of parallel plates attached to the cylinder, it will help the flow separation 

become streamline as well as reduce the VIV on the marine riser.  In addition, the 

Reynolds number is believed will give some significant effect on the behavior of 

VIV. 
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ABSTRAK 

Getaran vortex yang disebabkan daripada silinder adalah fenomena biasa 

yang terjadi di dalam industry cari gali minyak dan gas dan ia menjadi salah satu 

kebimbangan utama kepada para jurutera semasa mereka bentuk system riser. 

Sehubungan dengan itu, kajian ini menyatakan analisis tentang getaran yang 

disebabkan oleh silinder bulat dengan menggunakan pengkomputeran bendalir 

dinamik (CFD) ANSYS CFX.  Simulasi ini telah dijalankan di dalam dua-dimensi 

dengan keadaan yang statik atau pegun.  Silinder yang terdedah telah digunakan 

sebagai rujukan untuk kajian ini manakala graf nombor Strouhal lawan nombor 

Reynolds digunakan sebagai pengesahan.  Pengesahan menggunakan nombor 

Strouhal adalah amalan biasa yang sering dilakukan untuk simulasi silinder bulat 

yang pegun dan kekerapan Strouhal yang diperolehi untuk kajian ini adalah St ≈ 0.2. 

Proses simulasi telah dilaksanakan menggunakan penyelesaian ANSYS CFX untuk 

mensimulasikan silinder and untuk mengenal pasti penumpahan vortex dan 

magnitudnya.  Model bergelora yang digunnakan dalam simulasi ini adalah 

‘Detached Eddy Simulation’ dan vorteks yang terhasil di belakang silinder 

termasuklah aliran pemisah boleh dipantau melalui catatan pemproses.  Secara 

umumnya, apabila cecair mengalir melalui badan ‘bluff’, ia akan dibangkitkan oleh 

daya-daya dan akan mengakibatkan vorteks tersisih.  Vorteks-vorteks ini akan 

terpisah secara simetri berkala daripada kedua-dua belah badan disebabkan oleh 

masa-masa yang berubah dan tekanan yang tidak seragam disekitarnya.  Tekanan 

yang tidak seragam ini akan menghasilkan kedua-dua sebaris dan melintang kepada 

aliran.  Denagn adanya idea menggunakan dua plat secara selari yang dilekatkan 

dibelakang silinder, ia akan membantu aliran pemisah menjadi selaras dan sekaligus 

dapat mengurangkan VIV terhadap riser marin.  Tambahan pula, nombor Reynolds 

dipercayai akan memberi efek yang ketara terhadap tingkah laku VIV.  
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CHAPTER 1 

INTRODUCTION 

1.1. Introduction 

Nowadays, oil and gas exploration has been growing tremendously; the oil 

production companies and its facilities are moving forward to untapped the oil and 

gas reserve.  Marine risers are one of the marine facilities that attached to the 

platform or floating vessels which have been used as transportation means for 

hydrocarbons resources as well as for drilling operation as shown in Figure 1.1.  The 

conditions of sea states, the currents, and waves, the weather together with the 

hurricanes, are the big challenges harshly decrease a drill rig’s operation 

magnificently.  Based on research by Taggart et al. (2008), in the Gulf of Mexico 

(GoM), drilling and completion operation and resulting cost to operate can be very 

high due to the high loop currents and series of hurricanes.  This statement has been 

supported by Grealish et.al which mentioned that GoM is one of the regions that has 

this high current profile, known as loop currents and cold core eddies.  
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One of the critical part concerning in offshore industry is the riser, which 

connects the platform to the wellhead at the seabed.  Risers are long and flexible 

structure and caused the critical ratio L/D tends to be very large.  This problem 

always occurred especially in the deep ocean areas compared to the shallower water. 

Typically, more than 50% of the riser is covered, with the recent riser installation 

employing up to 100% with suppression device  

The applications of riser for drilling and production activities are subjected to 

large forces, due to the waves and currents of the sea state.  Generally, a slender 

structure like marine risers is susceptible to the vortex induced vibration (VIV), 

which can cause severe oscillation and lead to the fatigue as well as total damage to 

the structure.  The resonance will occur when the frequency of excitation of vortices 

is at or close to the natural frequency of the structure.  Thus, the large amplitude of 

oscillation may have induced between the flow and structure’s motion which can 

cause the lock-in phenomenon.  

The VIV phenomenon was found to be a problem in the offshore industry, 

formerly there are two approaches to address this problem, namely: modify the 

design of riser to eliminate the VIV or employ the usage of VIV suppression devices.  

In order to change the natural frequency of the structures are largely impossible and 

impractical, thus the VIV suppression devices can be deployed to disrupt the 

formation of vortices.  There are many types of suppression devices in the market 

including helical strakes, fairings, vane and shroud.  Helical strakes and fairings are 

Figure 1.1:  Example of riser: (a) drilling riser during the installation, (b) rigid riser, 

(c) flexible riser, and (d) hybrid riser configuration called Self-Standing Hybrid 

Riser. (Murai M. & Yamamoto M. 2010) 
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known as most effective and preferable commonly used by operators and company.  

Although the VIV can be suppressed by the strakes or fairings, the cost related to the 

hardware and installation is high.  Hence, the research on the riser VIV has been 

rising in the oil and gas industry to achieve the safe and economical design. 

1.2. Problem Statement 

The current will cause vortexes to shed from the sides of the riser.  Donald et 

al. (1998) mentioned in their research that these vibrations will lead to fatigue failure 

of the riser.  Under steady current flow, cross flow vibrations of risers have two 

immediate consequences which are increased in fatigue damage and increased in line 

drag.  Deepwater riser will fail to meet the fatigue design criteria due to VIV.  To 

counteract the fatigue impact, VIV needs to be suppressed.  There is two option 

whether redesign the riser which relatively expensive or by adding VIV suppression 

devices to reduce the vibration.  

A lot of work or research has been carried out for suppressed the marine riser 

VIV.  Many types of suppression devices have been introduced to overcome this 

problem.  However, there is not much detailed study in numerical or experiment 

being done using the flat plate as a suppression device.  This research will investigate 

this problem. 

1.3. Purpose Statement 

The purpose of this research is to validate the effectiveness of parallel plates 

as suppression device in order to minimize the Vortex Induced Vibration (VIV). 
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1.4. Objective 

The objectives of this research are: 

 

1. To study the efficiency of parallel plates as VIV suppression device that able 

to reduce VIV on the marine riser. 

2. To evaluate the effect of plate lengths and gaps on different Reynolds 

number. 

1.5. Scope of Research 

This research is focusing on minimizing the occurrence of VIV in the marine 

riser by designing suppression device with parallel plates.  The literature review of 

the art of VIV for marine riser has been carried out throughout this research.  CFD 

software ANSYS CFX is used to study the ability of the different plate lengths and 

gaps for reducing VIV.  The stationary bare riser is used as a reference and to 

validate this research we will use the graph and calculate the Strouhal number.  
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